gp: [N,k,chi] = [650,2,Mod(73,650)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(650, base_ring=CyclotomicField(20))
chi = DirichletCharacter(H, H._module([11, 5]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("650.73");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [136]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{136} - 10 T_{3}^{134} - 12 T_{3}^{133} - 139 T_{3}^{132} + 176 T_{3}^{131} + \cdots + 11\!\cdots\!00 \)
T3^136 - 10*T3^134 - 12*T3^133 - 139*T3^132 + 176*T3^131 + 2032*T3^130 + 468*T3^129 + 15960*T3^128 - 23506*T3^127 - 283790*T3^126 - 36002*T3^125 - 2011517*T3^124 + 3438590*T3^123 + 35566970*T3^122 - 2585866*T3^121 + 218784236*T3^120 - 380936270*T3^119 - 3396471512*T3^118 + 475196482*T3^117 - 16253538520*T3^116 + 32821607190*T3^115 + 266428784560*T3^114 - 101991559052*T3^113 + 1165266280826*T3^112 - 2286486665826*T3^111 - 17900581507618*T3^110 + 9930782989998*T3^109 - 79063763690036*T3^108 + 132006644471552*T3^107 + 1046909862668118*T3^106 - 693021399426626*T3^105 + 4590313415908557*T3^104 - 5690105137446750*T3^103 - 51559985902763538*T3^102 + 40290280464961262*T3^101 - 219705786337610810*T3^100 + 217184859658712024*T3^99 + 2209656366454500782*T3^98 - 2043069582646812880*T3^97 + 9734717052138157186*T3^96 - 6827980465520954366*T3^95 - 82593635824897251046*T3^94 + 83015912290025857530*T3^93 - 371790880704433498605*T3^92 + 136176079229797472698*T3^91 + 2575728045734815025818*T3^90 - 2644501798306769898950*T3^89 + 11145435593120970230952*T3^88 + 68478303542438536552*T3^87 - 61953221102588792644432*T3^86 + 67392170284127919566062*T3^85 - 249581700462271688635962*T3^84 - 17758100465247501006600*T3^83 + 1198293251981905452110764*T3^82 - 1387014470089519546583914*T3^81 + 5248857431186275484013128*T3^80 - 334583145158969214459732*T3^79 - 19408125341632923467618762*T3^78 + 25089417149682617800578006*T3^77 - 96514233286721673797713395*T3^76 + 20866602484624321604978548*T3^75 + 228794050576574857552099918*T3^74 - 336557630048342823349054152*T3^73 + 1395455087181128149344101556*T3^72 - 624420453599582190821089856*T3^71 - 1434429758696626681257644832*T3^70 + 3176165304532787819864575498*T3^69 - 14095984720904836227166023875*T3^68 + 9769203711409584476952615930*T3^67 + 881713671924409988614187434*T3^66 - 15419163767742991354360214424*T3^65 + 100684812174028625513791344765*T3^64 - 84774200747187177830470860132*T3^63 + 39847225795523527973418952442*T3^62 + 5778849567430428330390017588*T3^61 - 489839838667694588420912660115*T3^60 + 375976226076420062904275124980*T3^59 - 159899603287973070540828674358*T3^58 + 216730135780804678749290687944*T3^57 + 1933975084765041304100306457691*T3^56 - 750666705094009671229715636832*T3^55 + 651822399057280593343705424302*T3^54 + 295879123394901666155771978636*T3^53 - 4675710780714220972427573384442*T3^52 + 2544362575436816267053173851926*T3^51 - 399101144586781218720073984684*T3^50 - 647431543347118505491377257592*T3^49 + 13685514626248515478108845634522*T3^48 - 5675960712556790380383925084708*T3^47 + 6025932993668266096147709762106*T3^46 - 4943556591729868320993385628882*T3^45 - 18924405924150806310313157240607*T3^44 - 298802544633039425910232653880*T3^43 - 2638932694449872169994840377950*T3^42 - 10085414786461838501112522264998*T3^41 + 38994730639130088059776451771031*T3^40 - 15685943641220862734968275499570*T3^39 + 24739855068304054623275296715322*T3^38 + 7941569193019503037784129367480*T3^37 - 18439933259088366074047394437501*T3^36 + 18053749318143741782017632340056*T3^35 - 8240263402711404264315590557746*T3^34 - 3439498071574112087779540290784*T3^33 + 20321655411833720848805239240439*T3^32 - 8559171285119601420163424041166*T3^31 + 10454260545425161967014212848078*T3^30 + 3985499006014971209253776921060*T3^29 - 10520810471762408630597816501979*T3^28 + 9912016289074588936118437368830*T3^27 - 6645403687570441158837776755448*T3^26 - 2114545260198788256011854423302*T3^25 + 5939014098518664856350356672217*T3^24 - 6417742282524165241808076787592*T3^23 + 4498725516633672709249238043302*T3^22 - 1952923649200908138936399909990*T3^21 + 658056761484039268830953116739*T3^20 - 81871697924148539692279969680*T3^19 - 26812877912112117268912911218*T3^18 + 3401072428413098374263648898*T3^17 - 3730155668512727526662960109*T3^16 - 720776001958110002603435200*T3^15 + 621514288438027413923363660*T3^14 + 109872171937180405512838500*T3^13 + 236632091694813954107159670*T3^12 - 38031018342796059975577500*T3^11 - 32612288226920634307803100*T3^10 + 4533133349598369513884300*T3^9 + 733028365225204030678025*T3^8 - 40520612144633010848750*T3^7 + 31525343239110964619250*T3^6 - 14097454726172319633000*T3^5 + 411872395399952425500*T3^4 + 176769644606307150000*T3^3 + 6745546105121805000*T3^2 - 158150900361490000*T3 + 11734110640810000
acting on \(S_{2}^{\mathrm{new}}(650, [\chi])\).