Properties

Label 65.6.a.c.1.4
Level $65$
Weight $6$
Character 65.1
Self dual yes
Analytic conductor $10.425$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [65,6,Mod(1,65)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("65.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(65, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 65 = 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 65.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.4249482878\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.1878612.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 16x^{2} + 16x + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(4.24074\) of defining polynomial
Character \(\chi\) \(=\) 65.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+7.55727 q^{2} -14.4912 q^{3} +25.1123 q^{4} -25.0000 q^{5} -109.514 q^{6} +26.5515 q^{7} -52.0524 q^{8} -33.0063 q^{9} -188.932 q^{10} -532.748 q^{11} -363.906 q^{12} -169.000 q^{13} +200.657 q^{14} +362.279 q^{15} -1196.97 q^{16} -210.286 q^{17} -249.437 q^{18} -72.2469 q^{19} -627.807 q^{20} -384.762 q^{21} -4026.12 q^{22} +766.119 q^{23} +754.300 q^{24} +625.000 q^{25} -1277.18 q^{26} +3999.65 q^{27} +666.769 q^{28} +7441.26 q^{29} +2737.84 q^{30} +281.855 q^{31} -7380.12 q^{32} +7720.13 q^{33} -1589.19 q^{34} -663.788 q^{35} -828.863 q^{36} -10253.6 q^{37} -545.989 q^{38} +2449.01 q^{39} +1301.31 q^{40} -817.696 q^{41} -2907.75 q^{42} -5039.97 q^{43} -13378.5 q^{44} +825.157 q^{45} +5789.77 q^{46} -19743.1 q^{47} +17345.4 q^{48} -16102.0 q^{49} +4723.29 q^{50} +3047.29 q^{51} -4243.97 q^{52} +32689.8 q^{53} +30226.4 q^{54} +13318.7 q^{55} -1382.07 q^{56} +1046.94 q^{57} +56235.6 q^{58} -517.778 q^{59} +9097.65 q^{60} -15538.7 q^{61} +2130.06 q^{62} -876.367 q^{63} -17470.6 q^{64} +4225.00 q^{65} +58343.1 q^{66} +19642.0 q^{67} -5280.75 q^{68} -11102.0 q^{69} -5016.42 q^{70} -4456.07 q^{71} +1718.06 q^{72} -49182.4 q^{73} -77489.1 q^{74} -9056.97 q^{75} -1814.28 q^{76} -14145.3 q^{77} +18507.8 q^{78} +5454.34 q^{79} +29924.2 q^{80} -49939.1 q^{81} -6179.54 q^{82} -108095. q^{83} -9662.25 q^{84} +5257.15 q^{85} -38088.4 q^{86} -107833. q^{87} +27730.8 q^{88} -33432.3 q^{89} +6235.93 q^{90} -4487.21 q^{91} +19239.0 q^{92} -4084.41 q^{93} -149204. q^{94} +1806.17 q^{95} +106946. q^{96} +19554.2 q^{97} -121687. q^{98} +17584.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 9 q^{2} - 4 q^{3} + 93 q^{4} - 100 q^{5} - 74 q^{6} - 136 q^{7} - 447 q^{8} + 644 q^{9} + 225 q^{10} - 516 q^{11} - 710 q^{12} - 676 q^{13} + 1604 q^{14} + 100 q^{15} - 719 q^{16} + 344 q^{17} - 6905 q^{18}+ \cdots + 290668 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 7.55727 1.33595 0.667974 0.744184i \(-0.267162\pi\)
0.667974 + 0.744184i \(0.267162\pi\)
\(3\) −14.4912 −0.929608 −0.464804 0.885414i \(-0.653875\pi\)
−0.464804 + 0.885414i \(0.653875\pi\)
\(4\) 25.1123 0.784758
\(5\) −25.0000 −0.447214
\(6\) −109.514 −1.24191
\(7\) 26.5515 0.204807 0.102403 0.994743i \(-0.467347\pi\)
0.102403 + 0.994743i \(0.467347\pi\)
\(8\) −52.0524 −0.287552
\(9\) −33.0063 −0.135828
\(10\) −188.932 −0.597454
\(11\) −532.748 −1.32752 −0.663758 0.747947i \(-0.731040\pi\)
−0.663758 + 0.747947i \(0.731040\pi\)
\(12\) −363.906 −0.729518
\(13\) −169.000 −0.277350
\(14\) 200.657 0.273611
\(15\) 362.279 0.415733
\(16\) −1196.97 −1.16891
\(17\) −210.286 −0.176477 −0.0882384 0.996099i \(-0.528124\pi\)
−0.0882384 + 0.996099i \(0.528124\pi\)
\(18\) −249.437 −0.181460
\(19\) −72.2469 −0.0459129 −0.0229565 0.999736i \(-0.507308\pi\)
−0.0229565 + 0.999736i \(0.507308\pi\)
\(20\) −627.807 −0.350955
\(21\) −384.762 −0.190390
\(22\) −4026.12 −1.77349
\(23\) 766.119 0.301979 0.150990 0.988535i \(-0.451754\pi\)
0.150990 + 0.988535i \(0.451754\pi\)
\(24\) 754.300 0.267311
\(25\) 625.000 0.200000
\(26\) −1277.18 −0.370525
\(27\) 3999.65 1.05588
\(28\) 666.769 0.160724
\(29\) 7441.26 1.64305 0.821527 0.570170i \(-0.193123\pi\)
0.821527 + 0.570170i \(0.193123\pi\)
\(30\) 2737.84 0.555398
\(31\) 281.855 0.0526771 0.0263386 0.999653i \(-0.491615\pi\)
0.0263386 + 0.999653i \(0.491615\pi\)
\(32\) −7380.12 −1.27406
\(33\) 7720.13 1.23407
\(34\) −1589.19 −0.235764
\(35\) −663.788 −0.0915924
\(36\) −828.863 −0.106592
\(37\) −10253.6 −1.23132 −0.615661 0.788011i \(-0.711111\pi\)
−0.615661 + 0.788011i \(0.711111\pi\)
\(38\) −545.989 −0.0613373
\(39\) 2449.01 0.257827
\(40\) 1301.31 0.128597
\(41\) −817.696 −0.0759682 −0.0379841 0.999278i \(-0.512094\pi\)
−0.0379841 + 0.999278i \(0.512094\pi\)
\(42\) −2907.75 −0.254351
\(43\) −5039.97 −0.415678 −0.207839 0.978163i \(-0.566643\pi\)
−0.207839 + 0.978163i \(0.566643\pi\)
\(44\) −13378.5 −1.04178
\(45\) 825.157 0.0607443
\(46\) 5789.77 0.403428
\(47\) −19743.1 −1.30368 −0.651839 0.758357i \(-0.726002\pi\)
−0.651839 + 0.758357i \(0.726002\pi\)
\(48\) 17345.4 1.08663
\(49\) −16102.0 −0.958054
\(50\) 4723.29 0.267190
\(51\) 3047.29 0.164054
\(52\) −4243.97 −0.217653
\(53\) 32689.8 1.59854 0.799269 0.600973i \(-0.205220\pi\)
0.799269 + 0.600973i \(0.205220\pi\)
\(54\) 30226.4 1.41060
\(55\) 13318.7 0.593683
\(56\) −1382.07 −0.0588926
\(57\) 1046.94 0.0426811
\(58\) 56235.6 2.19504
\(59\) −517.778 −0.0193648 −0.00968241 0.999953i \(-0.503082\pi\)
−0.00968241 + 0.999953i \(0.503082\pi\)
\(60\) 9097.65 0.326250
\(61\) −15538.7 −0.534674 −0.267337 0.963603i \(-0.586144\pi\)
−0.267337 + 0.963603i \(0.586144\pi\)
\(62\) 2130.06 0.0703739
\(63\) −876.367 −0.0278186
\(64\) −17470.6 −0.533160
\(65\) 4225.00 0.124035
\(66\) 58343.1 1.64865
\(67\) 19642.0 0.534563 0.267282 0.963618i \(-0.413875\pi\)
0.267282 + 0.963618i \(0.413875\pi\)
\(68\) −5280.75 −0.138492
\(69\) −11102.0 −0.280722
\(70\) −5016.42 −0.122363
\(71\) −4456.07 −0.104907 −0.0524537 0.998623i \(-0.516704\pi\)
−0.0524537 + 0.998623i \(0.516704\pi\)
\(72\) 1718.06 0.0390577
\(73\) −49182.4 −1.08020 −0.540098 0.841602i \(-0.681613\pi\)
−0.540098 + 0.841602i \(0.681613\pi\)
\(74\) −77489.1 −1.64498
\(75\) −9056.97 −0.185922
\(76\) −1814.28 −0.0360306
\(77\) −14145.3 −0.271884
\(78\) 18507.8 0.344444
\(79\) 5454.34 0.0983273 0.0491636 0.998791i \(-0.484344\pi\)
0.0491636 + 0.998791i \(0.484344\pi\)
\(80\) 29924.2 0.522754
\(81\) −49939.1 −0.845722
\(82\) −6179.54 −0.101490
\(83\) −108095. −1.72231 −0.861154 0.508344i \(-0.830258\pi\)
−0.861154 + 0.508344i \(0.830258\pi\)
\(84\) −9662.25 −0.149410
\(85\) 5257.15 0.0789229
\(86\) −38088.4 −0.555324
\(87\) −107833. −1.52740
\(88\) 27730.8 0.381730
\(89\) −33432.3 −0.447396 −0.223698 0.974659i \(-0.571813\pi\)
−0.223698 + 0.974659i \(0.571813\pi\)
\(90\) 6235.93 0.0811513
\(91\) −4487.21 −0.0568032
\(92\) 19239.0 0.236981
\(93\) −4084.41 −0.0489691
\(94\) −149204. −1.74165
\(95\) 1806.17 0.0205329
\(96\) 106946. 1.18437
\(97\) 19554.2 0.211014 0.105507 0.994419i \(-0.466353\pi\)
0.105507 + 0.994419i \(0.466353\pi\)
\(98\) −121687. −1.27991
\(99\) 17584.0 0.180314
\(100\) 15695.2 0.156952
\(101\) 86925.1 0.847894 0.423947 0.905687i \(-0.360644\pi\)
0.423947 + 0.905687i \(0.360644\pi\)
\(102\) 23029.1 0.219168
\(103\) −128981. −1.19793 −0.598966 0.800774i \(-0.704422\pi\)
−0.598966 + 0.800774i \(0.704422\pi\)
\(104\) 8796.86 0.0797525
\(105\) 9619.06 0.0851450
\(106\) 247046. 2.13557
\(107\) −172004. −1.45238 −0.726189 0.687495i \(-0.758710\pi\)
−0.726189 + 0.687495i \(0.758710\pi\)
\(108\) 100440. 0.828607
\(109\) 199792. 1.61069 0.805345 0.592806i \(-0.201980\pi\)
0.805345 + 0.592806i \(0.201980\pi\)
\(110\) 100653. 0.793130
\(111\) 148586. 1.14465
\(112\) −31781.3 −0.239401
\(113\) −183485. −1.35177 −0.675886 0.737006i \(-0.736239\pi\)
−0.675886 + 0.737006i \(0.736239\pi\)
\(114\) 7912.01 0.0570197
\(115\) −19153.0 −0.135049
\(116\) 186867. 1.28940
\(117\) 5578.06 0.0376720
\(118\) −3912.98 −0.0258704
\(119\) −5583.41 −0.0361437
\(120\) −18857.5 −0.119545
\(121\) 122769. 0.762300
\(122\) −117430. −0.714296
\(123\) 11849.4 0.0706207
\(124\) 7078.03 0.0413388
\(125\) −15625.0 −0.0894427
\(126\) −6622.94 −0.0371642
\(127\) −193041. −1.06204 −0.531020 0.847359i \(-0.678191\pi\)
−0.531020 + 0.847359i \(0.678191\pi\)
\(128\) 104134. 0.561782
\(129\) 73035.0 0.386418
\(130\) 31929.4 0.165704
\(131\) 107072. 0.545127 0.272563 0.962138i \(-0.412129\pi\)
0.272563 + 0.962138i \(0.412129\pi\)
\(132\) 193870. 0.968447
\(133\) −1918.27 −0.00940328
\(134\) 148440. 0.714149
\(135\) −99991.3 −0.472202
\(136\) 10945.9 0.0507462
\(137\) 201648. 0.917892 0.458946 0.888464i \(-0.348227\pi\)
0.458946 + 0.888464i \(0.348227\pi\)
\(138\) −83900.4 −0.375030
\(139\) −157480. −0.691336 −0.345668 0.938357i \(-0.612348\pi\)
−0.345668 + 0.938357i \(0.612348\pi\)
\(140\) −16669.2 −0.0718779
\(141\) 286100. 1.21191
\(142\) −33675.7 −0.140151
\(143\) 90034.4 0.368187
\(144\) 39507.4 0.158772
\(145\) −186032. −0.734796
\(146\) −371684. −1.44309
\(147\) 233337. 0.890615
\(148\) −257491. −0.966290
\(149\) 462386. 1.70624 0.853118 0.521718i \(-0.174709\pi\)
0.853118 + 0.521718i \(0.174709\pi\)
\(150\) −68446.0 −0.248382
\(151\) 28498.2 0.101713 0.0508563 0.998706i \(-0.483805\pi\)
0.0508563 + 0.998706i \(0.483805\pi\)
\(152\) 3760.63 0.0132024
\(153\) 6940.76 0.0239706
\(154\) −106900. −0.363224
\(155\) −7046.39 −0.0235579
\(156\) 61500.1 0.202332
\(157\) 50435.7 0.163301 0.0816505 0.996661i \(-0.473981\pi\)
0.0816505 + 0.996661i \(0.473981\pi\)
\(158\) 41219.9 0.131360
\(159\) −473714. −1.48602
\(160\) 184503. 0.569775
\(161\) 20341.6 0.0618474
\(162\) −377403. −1.12984
\(163\) 55500.3 0.163616 0.0818081 0.996648i \(-0.473931\pi\)
0.0818081 + 0.996648i \(0.473931\pi\)
\(164\) −20534.2 −0.0596167
\(165\) −193003. −0.551893
\(166\) −816903. −2.30091
\(167\) −448378. −1.24409 −0.622046 0.782981i \(-0.713698\pi\)
−0.622046 + 0.782981i \(0.713698\pi\)
\(168\) 20027.8 0.0547470
\(169\) 28561.0 0.0769231
\(170\) 39729.7 0.105437
\(171\) 2384.60 0.00623628
\(172\) −126565. −0.326207
\(173\) 655681. 1.66563 0.832813 0.553554i \(-0.186729\pi\)
0.832813 + 0.553554i \(0.186729\pi\)
\(174\) −814919. −2.04052
\(175\) 16594.7 0.0409614
\(176\) 637681. 1.55175
\(177\) 7503.20 0.0180017
\(178\) −252657. −0.597697
\(179\) 189556. 0.442186 0.221093 0.975253i \(-0.429038\pi\)
0.221093 + 0.975253i \(0.429038\pi\)
\(180\) 20721.6 0.0476696
\(181\) −418433. −0.949358 −0.474679 0.880159i \(-0.657436\pi\)
−0.474679 + 0.880159i \(0.657436\pi\)
\(182\) −33911.0 −0.0758861
\(183\) 225173. 0.497037
\(184\) −39878.4 −0.0868346
\(185\) 256340. 0.550664
\(186\) −30867.0 −0.0654202
\(187\) 112029. 0.234276
\(188\) −495794. −1.02307
\(189\) 106197. 0.216250
\(190\) 13649.7 0.0274309
\(191\) 868610. 1.72283 0.861413 0.507906i \(-0.169580\pi\)
0.861413 + 0.507906i \(0.169580\pi\)
\(192\) 253169. 0.495630
\(193\) 30232.2 0.0584220 0.0292110 0.999573i \(-0.490701\pi\)
0.0292110 + 0.999573i \(0.490701\pi\)
\(194\) 147776. 0.281904
\(195\) −61225.1 −0.115304
\(196\) −404358. −0.751841
\(197\) −480183. −0.881539 −0.440769 0.897620i \(-0.645294\pi\)
−0.440769 + 0.897620i \(0.645294\pi\)
\(198\) 132887. 0.240891
\(199\) 477273. 0.854347 0.427174 0.904170i \(-0.359509\pi\)
0.427174 + 0.904170i \(0.359509\pi\)
\(200\) −32532.8 −0.0575104
\(201\) −284636. −0.496934
\(202\) 656916. 1.13274
\(203\) 197577. 0.336509
\(204\) 76524.3 0.128743
\(205\) 20442.4 0.0339740
\(206\) −974743. −1.60038
\(207\) −25286.8 −0.0410173
\(208\) 202287. 0.324198
\(209\) 38489.4 0.0609502
\(210\) 72693.8 0.113749
\(211\) −1.06139e6 −1.64123 −0.820617 0.571479i \(-0.806370\pi\)
−0.820617 + 0.571479i \(0.806370\pi\)
\(212\) 820916. 1.25447
\(213\) 64573.6 0.0975228
\(214\) −1.29988e6 −1.94030
\(215\) 125999. 0.185897
\(216\) −208192. −0.303619
\(217\) 7483.69 0.0107886
\(218\) 1.50988e6 2.15180
\(219\) 712710. 1.00416
\(220\) 334463. 0.465898
\(221\) 35538.3 0.0489459
\(222\) 1.12291e6 1.52919
\(223\) −1.36296e6 −1.83535 −0.917677 0.397327i \(-0.869938\pi\)
−0.917677 + 0.397327i \(0.869938\pi\)
\(224\) −195953. −0.260935
\(225\) −20628.9 −0.0271657
\(226\) −1.38664e6 −1.80590
\(227\) −277762. −0.357773 −0.178887 0.983870i \(-0.557250\pi\)
−0.178887 + 0.983870i \(0.557250\pi\)
\(228\) 26291.1 0.0334943
\(229\) 565012. 0.711981 0.355991 0.934489i \(-0.384143\pi\)
0.355991 + 0.934489i \(0.384143\pi\)
\(230\) −144744. −0.180419
\(231\) 204981. 0.252746
\(232\) −387336. −0.472463
\(233\) 1.44268e6 1.74093 0.870464 0.492233i \(-0.163819\pi\)
0.870464 + 0.492233i \(0.163819\pi\)
\(234\) 42154.9 0.0503279
\(235\) 493577. 0.583023
\(236\) −13002.6 −0.0151967
\(237\) −79039.6 −0.0914059
\(238\) −42195.3 −0.0482861
\(239\) 969954. 1.09839 0.549195 0.835694i \(-0.314934\pi\)
0.549195 + 0.835694i \(0.314934\pi\)
\(240\) −433636. −0.485956
\(241\) −1.01312e6 −1.12362 −0.561810 0.827266i \(-0.689895\pi\)
−0.561810 + 0.827266i \(0.689895\pi\)
\(242\) 927799. 1.01839
\(243\) −248240. −0.269685
\(244\) −390211. −0.419590
\(245\) 402550. 0.428455
\(246\) 89548.7 0.0943456
\(247\) 12209.7 0.0127340
\(248\) −14671.3 −0.0151474
\(249\) 1.56642e6 1.60107
\(250\) −118082. −0.119491
\(251\) −1.21251e6 −1.21479 −0.607395 0.794400i \(-0.707786\pi\)
−0.607395 + 0.794400i \(0.707786\pi\)
\(252\) −22007.6 −0.0218309
\(253\) −408148. −0.400882
\(254\) −1.45886e6 −1.41883
\(255\) −76182.1 −0.0733673
\(256\) 1.34603e6 1.28367
\(257\) −48654.6 −0.0459506 −0.0229753 0.999736i \(-0.507314\pi\)
−0.0229753 + 0.999736i \(0.507314\pi\)
\(258\) 551945. 0.516234
\(259\) −272248. −0.252183
\(260\) 106099. 0.0973373
\(261\) −245609. −0.223173
\(262\) 809172. 0.728262
\(263\) −609097. −0.542996 −0.271498 0.962439i \(-0.587519\pi\)
−0.271498 + 0.962439i \(0.587519\pi\)
\(264\) −401852. −0.354859
\(265\) −817246. −0.714888
\(266\) −14496.8 −0.0125623
\(267\) 484473. 0.415903
\(268\) 493256. 0.419503
\(269\) 1.19518e6 1.00705 0.503527 0.863980i \(-0.332035\pi\)
0.503527 + 0.863980i \(0.332035\pi\)
\(270\) −755661. −0.630837
\(271\) −1.07304e6 −0.887553 −0.443776 0.896138i \(-0.646362\pi\)
−0.443776 + 0.896138i \(0.646362\pi\)
\(272\) 251705. 0.206286
\(273\) 65024.8 0.0528047
\(274\) 1.52390e6 1.22626
\(275\) −332967. −0.265503
\(276\) −278795. −0.220299
\(277\) 524566. 0.410772 0.205386 0.978681i \(-0.434155\pi\)
0.205386 + 0.978681i \(0.434155\pi\)
\(278\) −1.19012e6 −0.923589
\(279\) −9303.00 −0.00715505
\(280\) 34551.8 0.0263376
\(281\) 942346. 0.711942 0.355971 0.934497i \(-0.384150\pi\)
0.355971 + 0.934497i \(0.384150\pi\)
\(282\) 2.16214e6 1.61905
\(283\) 1.05353e6 0.781951 0.390976 0.920401i \(-0.372138\pi\)
0.390976 + 0.920401i \(0.372138\pi\)
\(284\) −111902. −0.0823270
\(285\) −26173.5 −0.0190875
\(286\) 680414. 0.491879
\(287\) −21711.1 −0.0155588
\(288\) 243590. 0.173053
\(289\) −1.37564e6 −0.968856
\(290\) −1.40589e6 −0.981650
\(291\) −283363. −0.196160
\(292\) −1.23508e6 −0.847693
\(293\) −1.09067e6 −0.742206 −0.371103 0.928592i \(-0.621020\pi\)
−0.371103 + 0.928592i \(0.621020\pi\)
\(294\) 1.76339e6 1.18982
\(295\) 12944.4 0.00866021
\(296\) 533724. 0.354069
\(297\) −2.13081e6 −1.40169
\(298\) 3.49437e6 2.27944
\(299\) −129474. −0.0837539
\(300\) −227441. −0.145904
\(301\) −133819. −0.0851336
\(302\) 215368. 0.135883
\(303\) −1.25964e6 −0.788209
\(304\) 86477.1 0.0536682
\(305\) 388466. 0.239113
\(306\) 52453.2 0.0320234
\(307\) 1.21527e6 0.735912 0.367956 0.929843i \(-0.380058\pi\)
0.367956 + 0.929843i \(0.380058\pi\)
\(308\) −355220. −0.213364
\(309\) 1.86908e6 1.11361
\(310\) −53251.4 −0.0314722
\(311\) −706897. −0.414434 −0.207217 0.978295i \(-0.566441\pi\)
−0.207217 + 0.978295i \(0.566441\pi\)
\(312\) −127477. −0.0741386
\(313\) −2.44785e6 −1.41229 −0.706146 0.708066i \(-0.749568\pi\)
−0.706146 + 0.708066i \(0.749568\pi\)
\(314\) 381156. 0.218162
\(315\) 21909.2 0.0124408
\(316\) 136971. 0.0771632
\(317\) −1.77908e6 −0.994368 −0.497184 0.867645i \(-0.665633\pi\)
−0.497184 + 0.867645i \(0.665633\pi\)
\(318\) −3.57998e6 −1.98524
\(319\) −3.96432e6 −2.18118
\(320\) 436764. 0.238436
\(321\) 2.49254e6 1.35014
\(322\) 153727. 0.0826249
\(323\) 15192.5 0.00810257
\(324\) −1.25408e6 −0.663688
\(325\) −105625. −0.0554700
\(326\) 419430. 0.218583
\(327\) −2.89522e6 −1.49731
\(328\) 42563.1 0.0218448
\(329\) −524209. −0.267002
\(330\) −1.45858e6 −0.737301
\(331\) 108028. 0.0541960 0.0270980 0.999633i \(-0.491373\pi\)
0.0270980 + 0.999633i \(0.491373\pi\)
\(332\) −2.71451e6 −1.35160
\(333\) 338433. 0.167248
\(334\) −3.38851e6 −1.66204
\(335\) −491050. −0.239064
\(336\) 460548. 0.222549
\(337\) 1.58459e6 0.760051 0.380026 0.924976i \(-0.375915\pi\)
0.380026 + 0.924976i \(0.375915\pi\)
\(338\) 215843. 0.102765
\(339\) 2.65890e6 1.25662
\(340\) 132019. 0.0619354
\(341\) −150158. −0.0699298
\(342\) 18021.1 0.00833135
\(343\) −873785. −0.401023
\(344\) 262343. 0.119529
\(345\) 277549. 0.125543
\(346\) 4.95516e6 2.22519
\(347\) −2.45682e6 −1.09534 −0.547672 0.836693i \(-0.684486\pi\)
−0.547672 + 0.836693i \(0.684486\pi\)
\(348\) −2.70792e6 −1.19864
\(349\) −314003. −0.137997 −0.0689986 0.997617i \(-0.521980\pi\)
−0.0689986 + 0.997617i \(0.521980\pi\)
\(350\) 125411. 0.0547223
\(351\) −675941. −0.292847
\(352\) 3.93174e6 1.69133
\(353\) −61151.3 −0.0261197 −0.0130599 0.999915i \(-0.504157\pi\)
−0.0130599 + 0.999915i \(0.504157\pi\)
\(354\) 56703.7 0.0240493
\(355\) 111402. 0.0469160
\(356\) −839562. −0.351097
\(357\) 80910.1 0.0335994
\(358\) 1.43253e6 0.590738
\(359\) 2.81224e6 1.15164 0.575820 0.817577i \(-0.304683\pi\)
0.575820 + 0.817577i \(0.304683\pi\)
\(360\) −42951.5 −0.0174671
\(361\) −2.47088e6 −0.997892
\(362\) −3.16221e6 −1.26829
\(363\) −1.77907e6 −0.708640
\(364\) −112684. −0.0445768
\(365\) 1.22956e6 0.483078
\(366\) 1.70169e6 0.664016
\(367\) 4.31282e6 1.67146 0.835729 0.549141i \(-0.185045\pi\)
0.835729 + 0.549141i \(0.185045\pi\)
\(368\) −917019. −0.352987
\(369\) 26989.1 0.0103186
\(370\) 1.93723e6 0.735658
\(371\) 867965. 0.327392
\(372\) −102569. −0.0384289
\(373\) 3.14923e6 1.17201 0.586006 0.810307i \(-0.300700\pi\)
0.586006 + 0.810307i \(0.300700\pi\)
\(374\) 846635. 0.312981
\(375\) 226424. 0.0831467
\(376\) 1.02768e6 0.374875
\(377\) −1.25757e6 −0.455701
\(378\) 802558. 0.288899
\(379\) −1.39282e6 −0.498076 −0.249038 0.968494i \(-0.580114\pi\)
−0.249038 + 0.968494i \(0.580114\pi\)
\(380\) 45357.1 0.0161134
\(381\) 2.79739e6 0.987281
\(382\) 6.56431e6 2.30161
\(383\) −698424. −0.243289 −0.121644 0.992574i \(-0.538817\pi\)
−0.121644 + 0.992574i \(0.538817\pi\)
\(384\) −1.50902e6 −0.522237
\(385\) 353632. 0.121590
\(386\) 228473. 0.0780488
\(387\) 166351. 0.0564608
\(388\) 491051. 0.165595
\(389\) 5.50773e6 1.84543 0.922717 0.385479i \(-0.125964\pi\)
0.922717 + 0.385479i \(0.125964\pi\)
\(390\) −462695. −0.154040
\(391\) −161104. −0.0532923
\(392\) 838149. 0.275490
\(393\) −1.55160e6 −0.506755
\(394\) −3.62887e6 −1.17769
\(395\) −136358. −0.0439733
\(396\) 441575. 0.141503
\(397\) 1.05208e6 0.335022 0.167511 0.985870i \(-0.446427\pi\)
0.167511 + 0.985870i \(0.446427\pi\)
\(398\) 3.60688e6 1.14136
\(399\) 27797.9 0.00874137
\(400\) −748104. −0.233783
\(401\) 2.03732e6 0.632700 0.316350 0.948643i \(-0.397543\pi\)
0.316350 + 0.948643i \(0.397543\pi\)
\(402\) −2.15107e6 −0.663879
\(403\) −47633.6 −0.0146100
\(404\) 2.18289e6 0.665392
\(405\) 1.24848e6 0.378218
\(406\) 1.49314e6 0.449558
\(407\) 5.46257e6 1.63460
\(408\) −158619. −0.0471741
\(409\) 5.53708e6 1.63671 0.818356 0.574711i \(-0.194886\pi\)
0.818356 + 0.574711i \(0.194886\pi\)
\(410\) 154489. 0.0453875
\(411\) −2.92211e6 −0.853280
\(412\) −3.23900e6 −0.940087
\(413\) −13747.8 −0.00396605
\(414\) −191099. −0.0547970
\(415\) 2.70238e6 0.770239
\(416\) 1.24724e6 0.353359
\(417\) 2.28207e6 0.642671
\(418\) 290874. 0.0814263
\(419\) −4.95515e6 −1.37886 −0.689432 0.724350i \(-0.742140\pi\)
−0.689432 + 0.724350i \(0.742140\pi\)
\(420\) 241556. 0.0668183
\(421\) −3.53335e6 −0.971587 −0.485794 0.874074i \(-0.661469\pi\)
−0.485794 + 0.874074i \(0.661469\pi\)
\(422\) −8.02124e6 −2.19260
\(423\) 651646. 0.177076
\(424\) −1.70159e6 −0.459663
\(425\) −131429. −0.0352954
\(426\) 488000. 0.130285
\(427\) −412575. −0.109505
\(428\) −4.31942e6 −1.13977
\(429\) −1.30470e6 −0.342270
\(430\) 952210. 0.248348
\(431\) −6.97008e6 −1.80736 −0.903680 0.428208i \(-0.859145\pi\)
−0.903680 + 0.428208i \(0.859145\pi\)
\(432\) −4.78745e6 −1.23423
\(433\) 6.19127e6 1.58694 0.793469 0.608611i \(-0.208273\pi\)
0.793469 + 0.608611i \(0.208273\pi\)
\(434\) 56556.2 0.0144131
\(435\) 2.69581e6 0.683072
\(436\) 5.01723e6 1.26400
\(437\) −55349.7 −0.0138647
\(438\) 5.38614e6 1.34150
\(439\) −7.67941e6 −1.90181 −0.950903 0.309488i \(-0.899842\pi\)
−0.950903 + 0.309488i \(0.899842\pi\)
\(440\) −693271. −0.170715
\(441\) 531468. 0.130131
\(442\) 268572. 0.0653892
\(443\) −5.75772e6 −1.39393 −0.696966 0.717104i \(-0.745467\pi\)
−0.696966 + 0.717104i \(0.745467\pi\)
\(444\) 3.73134e6 0.898271
\(445\) 835808. 0.200081
\(446\) −1.03002e7 −2.45194
\(447\) −6.70051e6 −1.58613
\(448\) −463870. −0.109195
\(449\) −5.88895e6 −1.37855 −0.689274 0.724500i \(-0.742071\pi\)
−0.689274 + 0.724500i \(0.742071\pi\)
\(450\) −155898. −0.0362919
\(451\) 435626. 0.100849
\(452\) −4.60771e6 −1.06081
\(453\) −412972. −0.0945529
\(454\) −2.09912e6 −0.477967
\(455\) 112180. 0.0254032
\(456\) −54495.8 −0.0122730
\(457\) −6.89569e6 −1.54450 −0.772249 0.635320i \(-0.780868\pi\)
−0.772249 + 0.635320i \(0.780868\pi\)
\(458\) 4.26994e6 0.951171
\(459\) −841070. −0.186338
\(460\) −480975. −0.105981
\(461\) 5.06460e6 1.10992 0.554962 0.831876i \(-0.312733\pi\)
0.554962 + 0.831876i \(0.312733\pi\)
\(462\) 1.54910e6 0.337656
\(463\) −6.76624e6 −1.46688 −0.733441 0.679753i \(-0.762087\pi\)
−0.733441 + 0.679753i \(0.762087\pi\)
\(464\) −8.90695e6 −1.92059
\(465\) 102110. 0.0218996
\(466\) 1.09027e7 2.32579
\(467\) 1.09528e6 0.232398 0.116199 0.993226i \(-0.462929\pi\)
0.116199 + 0.993226i \(0.462929\pi\)
\(468\) 140078. 0.0295634
\(469\) 521526. 0.109482
\(470\) 3.73009e6 0.778888
\(471\) −730872. −0.151806
\(472\) 26951.6 0.00556839
\(473\) 2.68503e6 0.551819
\(474\) −597324. −0.122114
\(475\) −45154.3 −0.00918259
\(476\) −140212. −0.0283640
\(477\) −1.07897e6 −0.217127
\(478\) 7.33020e6 1.46739
\(479\) 386228. 0.0769139 0.0384569 0.999260i \(-0.487756\pi\)
0.0384569 + 0.999260i \(0.487756\pi\)
\(480\) −2.67366e6 −0.529667
\(481\) 1.73286e6 0.341507
\(482\) −7.65643e6 −1.50110
\(483\) −294774. −0.0574938
\(484\) 3.08301e6 0.598221
\(485\) −488855. −0.0943683
\(486\) −1.87602e6 −0.360285
\(487\) 3.84993e6 0.735581 0.367791 0.929909i \(-0.380114\pi\)
0.367791 + 0.929909i \(0.380114\pi\)
\(488\) 808825. 0.153746
\(489\) −804264. −0.152099
\(490\) 3.04218e6 0.572394
\(491\) 5.23475e6 0.979924 0.489962 0.871744i \(-0.337011\pi\)
0.489962 + 0.871744i \(0.337011\pi\)
\(492\) 297564. 0.0554202
\(493\) −1.56479e6 −0.289961
\(494\) 92272.1 0.0170119
\(495\) −439601. −0.0806391
\(496\) −337372. −0.0615750
\(497\) −118315. −0.0214857
\(498\) 1.18379e7 2.13895
\(499\) 4.55781e6 0.819418 0.409709 0.912216i \(-0.365630\pi\)
0.409709 + 0.912216i \(0.365630\pi\)
\(500\) −392379. −0.0701909
\(501\) 6.49751e6 1.15652
\(502\) −9.16327e6 −1.62290
\(503\) 6.80611e6 1.19944 0.599720 0.800210i \(-0.295278\pi\)
0.599720 + 0.800210i \(0.295278\pi\)
\(504\) 45617.1 0.00799928
\(505\) −2.17313e6 −0.379190
\(506\) −3.08449e6 −0.535558
\(507\) −413882. −0.0715083
\(508\) −4.84771e6 −0.833445
\(509\) 1.12204e7 1.91962 0.959808 0.280656i \(-0.0905521\pi\)
0.959808 + 0.280656i \(0.0905521\pi\)
\(510\) −575729. −0.0980150
\(511\) −1.30587e6 −0.221231
\(512\) 6.83999e6 1.15314
\(513\) −288962. −0.0484784
\(514\) −367696. −0.0613877
\(515\) 3.22452e6 0.535732
\(516\) 1.83407e6 0.303244
\(517\) 1.05181e7 1.73065
\(518\) −2.05745e6 −0.336903
\(519\) −9.50158e6 −1.54838
\(520\) −219922. −0.0356664
\(521\) −8.41292e6 −1.35785 −0.678926 0.734207i \(-0.737554\pi\)
−0.678926 + 0.734207i \(0.737554\pi\)
\(522\) −1.85613e6 −0.298148
\(523\) −8.26955e6 −1.32199 −0.660994 0.750391i \(-0.729865\pi\)
−0.660994 + 0.750391i \(0.729865\pi\)
\(524\) 2.68882e6 0.427793
\(525\) −240476. −0.0380780
\(526\) −4.60311e6 −0.725415
\(527\) −59270.2 −0.00929630
\(528\) −9.24074e6 −1.44252
\(529\) −5.84940e6 −0.908809
\(530\) −6.17615e6 −0.955054
\(531\) 17089.9 0.00263029
\(532\) −48172.0 −0.00737930
\(533\) 138191. 0.0210698
\(534\) 3.66129e6 0.555624
\(535\) 4.30011e6 0.649523
\(536\) −1.02242e6 −0.153715
\(537\) −2.74689e6 −0.411060
\(538\) 9.03229e6 1.34537
\(539\) 8.57831e6 1.27183
\(540\) −2.51101e6 −0.370564
\(541\) −8.90138e6 −1.30757 −0.653784 0.756681i \(-0.726819\pi\)
−0.653784 + 0.756681i \(0.726819\pi\)
\(542\) −8.10928e6 −1.18572
\(543\) 6.06358e6 0.882531
\(544\) 1.55193e6 0.224841
\(545\) −4.99480e6 −0.720323
\(546\) 491410. 0.0705444
\(547\) 2.63555e6 0.376619 0.188310 0.982110i \(-0.439699\pi\)
0.188310 + 0.982110i \(0.439699\pi\)
\(548\) 5.06383e6 0.720324
\(549\) 512873. 0.0726239
\(550\) −2.51632e6 −0.354699
\(551\) −537608. −0.0754374
\(552\) 577884. 0.0807222
\(553\) 144821. 0.0201381
\(554\) 3.96429e6 0.548770
\(555\) −3.71466e6 −0.511902
\(556\) −3.95469e6 −0.542531
\(557\) 1.16688e7 1.59364 0.796819 0.604218i \(-0.206515\pi\)
0.796819 + 0.604218i \(0.206515\pi\)
\(558\) −70305.3 −0.00955878
\(559\) 851755. 0.115288
\(560\) 794532. 0.107063
\(561\) −1.62343e6 −0.217785
\(562\) 7.12156e6 0.951118
\(563\) 4.77448e6 0.634826 0.317413 0.948287i \(-0.397186\pi\)
0.317413 + 0.948287i \(0.397186\pi\)
\(564\) 7.18462e6 0.951056
\(565\) 4.58711e6 0.604531
\(566\) 7.96179e6 1.04465
\(567\) −1.32596e6 −0.173210
\(568\) 231949. 0.0301663
\(569\) 8.02617e6 1.03927 0.519634 0.854389i \(-0.326068\pi\)
0.519634 + 0.854389i \(0.326068\pi\)
\(570\) −197800. −0.0255000
\(571\) 1.13893e7 1.46187 0.730933 0.682449i \(-0.239085\pi\)
0.730933 + 0.682449i \(0.239085\pi\)
\(572\) 2.26097e6 0.288938
\(573\) −1.25872e7 −1.60155
\(574\) −164076. −0.0207858
\(575\) 478825. 0.0603958
\(576\) 576639. 0.0724182
\(577\) 4.99875e6 0.625060 0.312530 0.949908i \(-0.398824\pi\)
0.312530 + 0.949908i \(0.398824\pi\)
\(578\) −1.03961e7 −1.29434
\(579\) −438100. −0.0543096
\(580\) −4.67168e6 −0.576637
\(581\) −2.87009e6 −0.352740
\(582\) −2.14145e6 −0.262060
\(583\) −1.74154e7 −2.12209
\(584\) 2.56006e6 0.310612
\(585\) −139452. −0.0168474
\(586\) −8.24248e6 −0.991549
\(587\) 6.86767e6 0.822649 0.411324 0.911489i \(-0.365066\pi\)
0.411324 + 0.911489i \(0.365066\pi\)
\(588\) 5.85962e6 0.698918
\(589\) −20363.2 −0.00241856
\(590\) 97824.6 0.0115696
\(591\) 6.95841e6 0.819486
\(592\) 1.22732e7 1.43931
\(593\) −1.58920e7 −1.85585 −0.927926 0.372765i \(-0.878410\pi\)
−0.927926 + 0.372765i \(0.878410\pi\)
\(594\) −1.61031e7 −1.87259
\(595\) 139585. 0.0161639
\(596\) 1.16116e7 1.33898
\(597\) −6.91624e6 −0.794208
\(598\) −978471. −0.111891
\(599\) 1.59662e7 1.81817 0.909085 0.416610i \(-0.136782\pi\)
0.909085 + 0.416610i \(0.136782\pi\)
\(600\) 471438. 0.0534621
\(601\) 7.05052e6 0.796223 0.398112 0.917337i \(-0.369666\pi\)
0.398112 + 0.917337i \(0.369666\pi\)
\(602\) −1.01130e6 −0.113734
\(603\) −648310. −0.0726089
\(604\) 715654. 0.0798198
\(605\) −3.06923e6 −0.340911
\(606\) −9.51947e6 −1.05301
\(607\) 2.47889e6 0.273078 0.136539 0.990635i \(-0.456402\pi\)
0.136539 + 0.990635i \(0.456402\pi\)
\(608\) 533190. 0.0584956
\(609\) −2.86312e6 −0.312821
\(610\) 2.93574e6 0.319443
\(611\) 3.33658e6 0.361575
\(612\) 174298. 0.0188111
\(613\) −4.89084e6 −0.525693 −0.262846 0.964838i \(-0.584661\pi\)
−0.262846 + 0.964838i \(0.584661\pi\)
\(614\) 9.18410e6 0.983141
\(615\) −296234. −0.0315825
\(616\) 736296. 0.0781809
\(617\) 2.68229e6 0.283657 0.141828 0.989891i \(-0.454702\pi\)
0.141828 + 0.989891i \(0.454702\pi\)
\(618\) 1.41252e7 1.48772
\(619\) −1.01074e7 −1.06026 −0.530128 0.847917i \(-0.677856\pi\)
−0.530128 + 0.847917i \(0.677856\pi\)
\(620\) −176951. −0.0184873
\(621\) 3.06421e6 0.318852
\(622\) −5.34221e6 −0.553662
\(623\) −887679. −0.0916296
\(624\) −2.93138e6 −0.301377
\(625\) 390625. 0.0400000
\(626\) −1.84991e7 −1.88675
\(627\) −557756. −0.0566598
\(628\) 1.26656e6 0.128152
\(629\) 2.15618e6 0.217300
\(630\) 165574. 0.0166203
\(631\) 6.78829e6 0.678714 0.339357 0.940658i \(-0.389791\pi\)
0.339357 + 0.940658i \(0.389791\pi\)
\(632\) −283911. −0.0282742
\(633\) 1.53808e7 1.52570
\(634\) −1.34450e7 −1.32842
\(635\) 4.82603e6 0.474959
\(636\) −1.18960e7 −1.16616
\(637\) 2.72124e6 0.265716
\(638\) −2.99594e7 −2.91395
\(639\) 147078. 0.0142494
\(640\) −2.60335e6 −0.251236
\(641\) −6.16985e6 −0.593102 −0.296551 0.955017i \(-0.595837\pi\)
−0.296551 + 0.955017i \(0.595837\pi\)
\(642\) 1.88368e7 1.80372
\(643\) −3.69735e6 −0.352665 −0.176333 0.984331i \(-0.556423\pi\)
−0.176333 + 0.984331i \(0.556423\pi\)
\(644\) 510825. 0.0485352
\(645\) −1.82588e6 −0.172811
\(646\) 114814. 0.0108246
\(647\) 1.58526e7 1.48881 0.744406 0.667727i \(-0.232733\pi\)
0.744406 + 0.667727i \(0.232733\pi\)
\(648\) 2.59945e6 0.243189
\(649\) 275845. 0.0257071
\(650\) −798236. −0.0741051
\(651\) −108447. −0.0100292
\(652\) 1.39374e6 0.128399
\(653\) 3.85176e6 0.353489 0.176745 0.984257i \(-0.443443\pi\)
0.176745 + 0.984257i \(0.443443\pi\)
\(654\) −2.18799e7 −2.00033
\(655\) −2.67680e6 −0.243788
\(656\) 978754. 0.0888002
\(657\) 1.62333e6 0.146721
\(658\) −3.96159e6 −0.356701
\(659\) 2.64699e6 0.237432 0.118716 0.992928i \(-0.462122\pi\)
0.118716 + 0.992928i \(0.462122\pi\)
\(660\) −4.84675e6 −0.433103
\(661\) −1.38401e7 −1.23207 −0.616034 0.787719i \(-0.711262\pi\)
−0.616034 + 0.787719i \(0.711262\pi\)
\(662\) 816397. 0.0724030
\(663\) −514991. −0.0455005
\(664\) 5.62661e6 0.495253
\(665\) 47956.6 0.00420528
\(666\) 2.55763e6 0.223435
\(667\) 5.70090e6 0.496168
\(668\) −1.12598e7 −0.976312
\(669\) 1.97508e7 1.70616
\(670\) −3.71100e6 −0.319377
\(671\) 8.27818e6 0.709788
\(672\) 2.83959e6 0.242568
\(673\) −1.64904e7 −1.40344 −0.701721 0.712452i \(-0.747585\pi\)
−0.701721 + 0.712452i \(0.747585\pi\)
\(674\) 1.19752e7 1.01539
\(675\) 2.49978e6 0.211175
\(676\) 717231. 0.0603660
\(677\) −9.13772e6 −0.766242 −0.383121 0.923698i \(-0.625151\pi\)
−0.383121 + 0.923698i \(0.625151\pi\)
\(678\) 2.00940e7 1.67878
\(679\) 519194. 0.0432171
\(680\) −273647. −0.0226944
\(681\) 4.02509e6 0.332589
\(682\) −1.13478e6 −0.0934226
\(683\) 1.34711e7 1.10498 0.552488 0.833521i \(-0.313679\pi\)
0.552488 + 0.833521i \(0.313679\pi\)
\(684\) 59882.8 0.00489397
\(685\) −5.04119e6 −0.410494
\(686\) −6.60342e6 −0.535746
\(687\) −8.18767e6 −0.661864
\(688\) 6.03268e6 0.485891
\(689\) −5.52458e6 −0.443355
\(690\) 2.09751e6 0.167719
\(691\) −1.06017e7 −0.844659 −0.422329 0.906442i \(-0.638787\pi\)
−0.422329 + 0.906442i \(0.638787\pi\)
\(692\) 1.64656e7 1.30711
\(693\) 466883. 0.0369296
\(694\) −1.85669e7 −1.46332
\(695\) 3.93701e6 0.309175
\(696\) 5.61295e6 0.439206
\(697\) 171950. 0.0134066
\(698\) −2.37301e6 −0.184357
\(699\) −2.09061e7 −1.61838
\(700\) 416731. 0.0321448
\(701\) −2.46173e7 −1.89211 −0.946053 0.324011i \(-0.894969\pi\)
−0.946053 + 0.324011i \(0.894969\pi\)
\(702\) −5.10827e6 −0.391229
\(703\) 740790. 0.0565336
\(704\) 9.30741e6 0.707778
\(705\) −7.15251e6 −0.541983
\(706\) −462136. −0.0348946
\(707\) 2.30799e6 0.173654
\(708\) 188422. 0.0141270
\(709\) −1.27065e7 −0.949317 −0.474658 0.880170i \(-0.657428\pi\)
−0.474658 + 0.880170i \(0.657428\pi\)
\(710\) 841893. 0.0626774
\(711\) −180027. −0.0133556
\(712\) 1.74023e6 0.128649
\(713\) 215935. 0.0159074
\(714\) 611459. 0.0448871
\(715\) −2.25086e6 −0.164658
\(716\) 4.76018e6 0.347009
\(717\) −1.40558e7 −1.02107
\(718\) 2.12529e7 1.53853
\(719\) −4.89738e6 −0.353299 −0.176649 0.984274i \(-0.556526\pi\)
−0.176649 + 0.984274i \(0.556526\pi\)
\(720\) −987686. −0.0710048
\(721\) −3.42464e6 −0.245345
\(722\) −1.86731e7 −1.33313
\(723\) 1.46813e7 1.04453
\(724\) −1.05078e7 −0.745016
\(725\) 4.65079e6 0.328611
\(726\) −1.34449e7 −0.946707
\(727\) −1.16983e7 −0.820892 −0.410446 0.911885i \(-0.634627\pi\)
−0.410446 + 0.911885i \(0.634627\pi\)
\(728\) 233570. 0.0163339
\(729\) 1.57325e7 1.09642
\(730\) 9.29211e6 0.645368
\(731\) 1.05983e6 0.0733575
\(732\) 5.65461e6 0.390054
\(733\) 955290. 0.0656713 0.0328356 0.999461i \(-0.489546\pi\)
0.0328356 + 0.999461i \(0.489546\pi\)
\(734\) 3.25931e7 2.23298
\(735\) −5.83342e6 −0.398295
\(736\) −5.65405e6 −0.384738
\(737\) −1.04642e7 −0.709642
\(738\) 203964. 0.0137852
\(739\) −2.92010e6 −0.196692 −0.0983461 0.995152i \(-0.531355\pi\)
−0.0983461 + 0.995152i \(0.531355\pi\)
\(740\) 6.43727e6 0.432138
\(741\) −176933. −0.0118376
\(742\) 6.55944e6 0.437378
\(743\) −1.66149e7 −1.10415 −0.552073 0.833796i \(-0.686163\pi\)
−0.552073 + 0.833796i \(0.686163\pi\)
\(744\) 212604. 0.0140812
\(745\) −1.15597e7 −0.763052
\(746\) 2.37995e7 1.56575
\(747\) 3.56782e6 0.233938
\(748\) 2.81331e6 0.183850
\(749\) −4.56697e6 −0.297457
\(750\) 1.71115e6 0.111080
\(751\) 2.21810e6 0.143509 0.0717547 0.997422i \(-0.477140\pi\)
0.0717547 + 0.997422i \(0.477140\pi\)
\(752\) 2.36318e7 1.52389
\(753\) 1.75707e7 1.12928
\(754\) −9.50382e6 −0.608793
\(755\) −712455. −0.0454873
\(756\) 2.66684e6 0.169704
\(757\) −1.10448e7 −0.700515 −0.350257 0.936654i \(-0.613906\pi\)
−0.350257 + 0.936654i \(0.613906\pi\)
\(758\) −1.05259e7 −0.665404
\(759\) 5.91454e6 0.372663
\(760\) −94015.7 −0.00590427
\(761\) −2.91615e7 −1.82536 −0.912680 0.408674i \(-0.865991\pi\)
−0.912680 + 0.408674i \(0.865991\pi\)
\(762\) 2.11406e7 1.31896
\(763\) 5.30478e6 0.329880
\(764\) 2.18128e7 1.35200
\(765\) −173519. −0.0107200
\(766\) −5.27818e6 −0.325021
\(767\) 87504.5 0.00537083
\(768\) −1.95055e7 −1.19331
\(769\) −1.13504e7 −0.692144 −0.346072 0.938208i \(-0.612485\pi\)
−0.346072 + 0.938208i \(0.612485\pi\)
\(770\) 2.67249e6 0.162438
\(771\) 705062. 0.0427161
\(772\) 759199. 0.0458472
\(773\) −4.87794e6 −0.293621 −0.146811 0.989165i \(-0.546901\pi\)
−0.146811 + 0.989165i \(0.546901\pi\)
\(774\) 1.25716e6 0.0754288
\(775\) 176160. 0.0105354
\(776\) −1.01784e6 −0.0606774
\(777\) 3.94519e6 0.234431
\(778\) 4.16234e7 2.46540
\(779\) 59076.0 0.00348793
\(780\) −1.53750e6 −0.0904856
\(781\) 2.37396e6 0.139266
\(782\) −1.21751e6 −0.0711958
\(783\) 2.97625e7 1.73486
\(784\) 1.92736e7 1.11988
\(785\) −1.26089e6 −0.0730305
\(786\) −1.17258e7 −0.676998
\(787\) −2.27090e7 −1.30696 −0.653478 0.756946i \(-0.726691\pi\)
−0.653478 + 0.756946i \(0.726691\pi\)
\(788\) −1.20585e7 −0.691795
\(789\) 8.82652e6 0.504774
\(790\) −1.03050e6 −0.0587461
\(791\) −4.87179e6 −0.276852
\(792\) −915292. −0.0518497
\(793\) 2.62603e6 0.148292
\(794\) 7.95086e6 0.447572
\(795\) 1.18428e7 0.664566
\(796\) 1.19854e7 0.670456
\(797\) −2.03178e7 −1.13300 −0.566500 0.824062i \(-0.691703\pi\)
−0.566500 + 0.824062i \(0.691703\pi\)
\(798\) 210076. 0.0116780
\(799\) 4.15169e6 0.230069
\(800\) −4.61257e6 −0.254811
\(801\) 1.10348e6 0.0607690
\(802\) 1.53966e7 0.845255
\(803\) 2.62018e7 1.43398
\(804\) −7.14785e6 −0.389973
\(805\) −508541. −0.0276590
\(806\) −359980. −0.0195182
\(807\) −1.73195e7 −0.936166
\(808\) −4.52466e6 −0.243813
\(809\) 1.28692e6 0.0691321 0.0345661 0.999402i \(-0.488995\pi\)
0.0345661 + 0.999402i \(0.488995\pi\)
\(810\) 9.43507e6 0.505280
\(811\) 1.70128e7 0.908286 0.454143 0.890929i \(-0.349946\pi\)
0.454143 + 0.890929i \(0.349946\pi\)
\(812\) 4.96160e6 0.264078
\(813\) 1.55496e7 0.825076
\(814\) 4.12821e7 2.18374
\(815\) −1.38751e6 −0.0731714
\(816\) −3.64750e6 −0.191765
\(817\) 364122. 0.0190850
\(818\) 4.18452e7 2.18656
\(819\) 148106. 0.00771548
\(820\) 513355. 0.0266614
\(821\) −9.80056e6 −0.507450 −0.253725 0.967276i \(-0.581656\pi\)
−0.253725 + 0.967276i \(0.581656\pi\)
\(822\) −2.20831e7 −1.13994
\(823\) 2.17586e7 1.11977 0.559887 0.828569i \(-0.310844\pi\)
0.559887 + 0.828569i \(0.310844\pi\)
\(824\) 6.71377e6 0.344468
\(825\) 4.82508e6 0.246814
\(826\) −103896. −0.00529843
\(827\) 8.35521e6 0.424809 0.212404 0.977182i \(-0.431871\pi\)
0.212404 + 0.977182i \(0.431871\pi\)
\(828\) −635008. −0.0321887
\(829\) −2.68021e7 −1.35451 −0.677255 0.735748i \(-0.736831\pi\)
−0.677255 + 0.735748i \(0.736831\pi\)
\(830\) 2.04226e7 1.02900
\(831\) −7.60158e6 −0.381857
\(832\) 2.95253e6 0.147872
\(833\) 3.38603e6 0.169074
\(834\) 1.72462e7 0.858576
\(835\) 1.12094e7 0.556375
\(836\) 966555. 0.0478312
\(837\) 1.12732e6 0.0556205
\(838\) −3.74474e7 −1.84209
\(839\) −3.73402e7 −1.83135 −0.915675 0.401919i \(-0.868343\pi\)
−0.915675 + 0.401919i \(0.868343\pi\)
\(840\) −500695. −0.0244836
\(841\) 3.48613e7 1.69963
\(842\) −2.67025e7 −1.29799
\(843\) −1.36557e7 −0.661827
\(844\) −2.66540e7 −1.28797
\(845\) −714025. −0.0344010
\(846\) 4.92466e6 0.236565
\(847\) 3.25971e6 0.156124
\(848\) −3.91287e7 −1.86855
\(849\) −1.52668e7 −0.726908
\(850\) −993241. −0.0471528
\(851\) −7.85547e6 −0.371833
\(852\) 1.62159e6 0.0765318
\(853\) −7.51191e6 −0.353490 −0.176745 0.984257i \(-0.556557\pi\)
−0.176745 + 0.984257i \(0.556557\pi\)
\(854\) −3.11794e6 −0.146293
\(855\) −59615.1 −0.00278895
\(856\) 8.95324e6 0.417634
\(857\) −3.45535e7 −1.60709 −0.803545 0.595243i \(-0.797056\pi\)
−0.803545 + 0.595243i \(0.797056\pi\)
\(858\) −9.85998e6 −0.457254
\(859\) 3.29796e7 1.52498 0.762488 0.647003i \(-0.223978\pi\)
0.762488 + 0.647003i \(0.223978\pi\)
\(860\) 3.16413e6 0.145884
\(861\) 314619. 0.0144636
\(862\) −5.26748e7 −2.41454
\(863\) −3.10299e7 −1.41825 −0.709126 0.705081i \(-0.750910\pi\)
−0.709126 + 0.705081i \(0.750910\pi\)
\(864\) −2.95179e7 −1.34524
\(865\) −1.63920e7 −0.744891
\(866\) 4.67890e7 2.12007
\(867\) 1.99346e7 0.900657
\(868\) 187932. 0.00846647
\(869\) −2.90578e6 −0.130531
\(870\) 2.03730e7 0.912550
\(871\) −3.31950e6 −0.148261
\(872\) −1.03997e7 −0.463157
\(873\) −645412. −0.0286617
\(874\) −418293. −0.0185226
\(875\) −414868. −0.0183185
\(876\) 1.78978e7 0.788022
\(877\) 6.39006e6 0.280547 0.140274 0.990113i \(-0.455202\pi\)
0.140274 + 0.990113i \(0.455202\pi\)
\(878\) −5.80353e7 −2.54072
\(879\) 1.58051e7 0.689961
\(880\) −1.59420e7 −0.693964
\(881\) 3.21882e7 1.39719 0.698597 0.715515i \(-0.253808\pi\)
0.698597 + 0.715515i \(0.253808\pi\)
\(882\) 4.01644e6 0.173848
\(883\) 2.21100e7 0.954305 0.477153 0.878820i \(-0.341669\pi\)
0.477153 + 0.878820i \(0.341669\pi\)
\(884\) 892447. 0.0384107
\(885\) −187580. −0.00805060
\(886\) −4.35126e7 −1.86222
\(887\) −2.19233e7 −0.935614 −0.467807 0.883831i \(-0.654956\pi\)
−0.467807 + 0.883831i \(0.654956\pi\)
\(888\) −7.73428e6 −0.329145
\(889\) −5.12554e6 −0.217513
\(890\) 6.31643e6 0.267298
\(891\) 2.66049e7 1.12271
\(892\) −3.42269e7 −1.44031
\(893\) 1.42638e6 0.0598557
\(894\) −5.06375e7 −2.11899
\(895\) −4.73890e6 −0.197752
\(896\) 2.76492e6 0.115057
\(897\) 1.87623e6 0.0778583
\(898\) −4.45044e7 −1.84167
\(899\) 2.09736e6 0.0865514
\(900\) −518039. −0.0213185
\(901\) −6.87421e6 −0.282105
\(902\) 3.29214e6 0.134729
\(903\) 1.93919e6 0.0791409
\(904\) 9.55082e6 0.388704
\(905\) 1.04608e7 0.424566
\(906\) −3.12094e6 −0.126318
\(907\) 1.61222e7 0.650738 0.325369 0.945587i \(-0.394512\pi\)
0.325369 + 0.945587i \(0.394512\pi\)
\(908\) −6.97523e6 −0.280765
\(909\) −2.86907e6 −0.115168
\(910\) 847775. 0.0339373
\(911\) 2.05000e7 0.818385 0.409192 0.912448i \(-0.365810\pi\)
0.409192 + 0.912448i \(0.365810\pi\)
\(912\) −1.25315e6 −0.0498904
\(913\) 5.75874e7 2.28639
\(914\) −5.21126e7 −2.06337
\(915\) −5.62933e6 −0.222282
\(916\) 1.41887e7 0.558733
\(917\) 2.84292e6 0.111646
\(918\) −6.35619e6 −0.248937
\(919\) −3.26676e7 −1.27593 −0.637967 0.770064i \(-0.720224\pi\)
−0.637967 + 0.770064i \(0.720224\pi\)
\(920\) 996960. 0.0388336
\(921\) −1.76106e7 −0.684110
\(922\) 3.82746e7 1.48280
\(923\) 753076. 0.0290961
\(924\) 5.14754e6 0.198345
\(925\) −6.40849e6 −0.246264
\(926\) −5.11343e7 −1.95968
\(927\) 4.25718e6 0.162713
\(928\) −5.49174e7 −2.09334
\(929\) 1.19596e7 0.454651 0.227326 0.973819i \(-0.427002\pi\)
0.227326 + 0.973819i \(0.427002\pi\)
\(930\) 771675. 0.0292568
\(931\) 1.16332e6 0.0439871
\(932\) 3.62290e7 1.36621
\(933\) 1.02438e7 0.385261
\(934\) 8.27730e6 0.310471
\(935\) −2.80073e6 −0.104771
\(936\) −290352. −0.0108327
\(937\) −5.90932e6 −0.219882 −0.109941 0.993938i \(-0.535066\pi\)
−0.109941 + 0.993938i \(0.535066\pi\)
\(938\) 3.94131e6 0.146263
\(939\) 3.54722e7 1.31288
\(940\) 1.23948e7 0.457532
\(941\) 1.51152e7 0.556466 0.278233 0.960514i \(-0.410251\pi\)
0.278233 + 0.960514i \(0.410251\pi\)
\(942\) −5.52339e6 −0.202805
\(943\) −626452. −0.0229408
\(944\) 619763. 0.0226358
\(945\) −2.65492e6 −0.0967101
\(946\) 2.02915e7 0.737202
\(947\) −2.44913e6 −0.0887435 −0.0443718 0.999015i \(-0.514129\pi\)
−0.0443718 + 0.999015i \(0.514129\pi\)
\(948\) −1.98486e6 −0.0717315
\(949\) 8.31182e6 0.299592
\(950\) −341243. −0.0122675
\(951\) 2.57809e7 0.924372
\(952\) 290630. 0.0103932
\(953\) 2.21998e7 0.791801 0.395900 0.918293i \(-0.370433\pi\)
0.395900 + 0.918293i \(0.370433\pi\)
\(954\) −8.15407e6 −0.290070
\(955\) −2.17152e7 −0.770471
\(956\) 2.43577e7 0.861971
\(957\) 5.74476e7 2.02764
\(958\) 2.91882e6 0.102753
\(959\) 5.35405e6 0.187991
\(960\) −6.32922e6 −0.221652
\(961\) −2.85497e7 −0.997225
\(962\) 1.30957e7 0.456236
\(963\) 5.67722e6 0.197274
\(964\) −2.54418e7 −0.881770
\(965\) −755805. −0.0261271
\(966\) −2.22768e6 −0.0768088
\(967\) −4.81604e7 −1.65624 −0.828121 0.560549i \(-0.810590\pi\)
−0.828121 + 0.560549i \(0.810590\pi\)
\(968\) −6.39044e6 −0.219201
\(969\) −220157. −0.00753222
\(970\) −3.69441e6 −0.126071
\(971\) 4.34935e7 1.48039 0.740194 0.672393i \(-0.234733\pi\)
0.740194 + 0.672393i \(0.234733\pi\)
\(972\) −6.23388e6 −0.211638
\(973\) −4.18134e6 −0.141590
\(974\) 2.90950e7 0.982699
\(975\) 1.53063e6 0.0515654
\(976\) 1.85992e7 0.624987
\(977\) 2.55776e7 0.857281 0.428640 0.903475i \(-0.358993\pi\)
0.428640 + 0.903475i \(0.358993\pi\)
\(978\) −6.07803e6 −0.203196
\(979\) 1.78110e7 0.593925
\(980\) 1.01090e7 0.336233
\(981\) −6.59440e6 −0.218777
\(982\) 3.95604e7 1.30913
\(983\) −3.90936e7 −1.29039 −0.645197 0.764016i \(-0.723225\pi\)
−0.645197 + 0.764016i \(0.723225\pi\)
\(984\) −616788. −0.0203071
\(985\) 1.20046e7 0.394236
\(986\) −1.18256e7 −0.387373
\(987\) 7.59640e6 0.248207
\(988\) 306614. 0.00999308
\(989\) −3.86122e6 −0.125526
\(990\) −3.32218e6 −0.107730
\(991\) 2.39821e7 0.775716 0.387858 0.921719i \(-0.373215\pi\)
0.387858 + 0.921719i \(0.373215\pi\)
\(992\) −2.08013e6 −0.0671136
\(993\) −1.56545e6 −0.0503810
\(994\) −894141. −0.0287039
\(995\) −1.19318e7 −0.382076
\(996\) 3.93364e7 1.25645
\(997\) 537946. 0.0171396 0.00856981 0.999963i \(-0.497272\pi\)
0.00856981 + 0.999963i \(0.497272\pi\)
\(998\) 3.44446e7 1.09470
\(999\) −4.10108e7 −1.30012
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 65.6.a.c.1.4 4
3.2 odd 2 585.6.a.g.1.1 4
4.3 odd 2 1040.6.a.o.1.3 4
5.2 odd 4 325.6.b.e.274.6 8
5.3 odd 4 325.6.b.e.274.3 8
5.4 even 2 325.6.a.e.1.1 4
13.12 even 2 845.6.a.f.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.a.c.1.4 4 1.1 even 1 trivial
325.6.a.e.1.1 4 5.4 even 2
325.6.b.e.274.3 8 5.3 odd 4
325.6.b.e.274.6 8 5.2 odd 4
585.6.a.g.1.1 4 3.2 odd 2
845.6.a.f.1.1 4 13.12 even 2
1040.6.a.o.1.3 4 4.3 odd 2