Defining parameters
Level: | \( N \) | \(=\) | \( 65 = 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 65.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(42\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(65))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 36 | 20 | 16 |
Cusp forms | 32 | 20 | 12 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(5\) | \(13\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(5\) |
\(+\) | \(-\) | \(-\) | \(6\) |
\(-\) | \(+\) | \(-\) | \(6\) |
\(-\) | \(-\) | \(+\) | \(3\) |
Plus space | \(+\) | \(8\) | |
Minus space | \(-\) | \(12\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(65))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 5 | 13 | |||||||
65.6.a.a | $1$ | $10.425$ | \(\Q\) | None | \(5\) | \(6\) | \(-25\) | \(-244\) | $+$ | $+$ | \(q+5q^{2}+6q^{3}-7q^{4}-5^{2}q^{5}+30q^{6}+\cdots\) | |
65.6.a.b | $3$ | $10.425$ | 3.3.49857.1 | None | \(-2\) | \(-16\) | \(75\) | \(-208\) | $-$ | $-$ | \(q+(-1+\beta _{1})q^{2}+(-5-\beta _{2})q^{3}+(-4+\cdots)q^{4}+\cdots\) | |
65.6.a.c | $4$ | $10.425$ | 4.4.1878612.1 | None | \(-9\) | \(-4\) | \(-100\) | \(-136\) | $+$ | $+$ | \(q+(-2+\beta _{1}+\beta _{2})q^{2}+(-1-\beta _{2}-\beta _{3})q^{3}+\cdots\) | |
65.6.a.d | $6$ | $10.425$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(0\) | \(38\) | \(-150\) | \(220\) | $+$ | $-$ | \(q+\beta _{1}q^{2}+(6+\beta _{1}+\beta _{2})q^{3}+(22+\beta _{2}+\cdots)q^{4}+\cdots\) | |
65.6.a.e | $6$ | $10.425$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(2\) | \(20\) | \(150\) | \(172\) | $-$ | $+$ | \(q+\beta _{1}q^{2}+(3-\beta _{2})q^{3}+(23-\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(65))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(65)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 2}\)