Properties

Label 648.3.m.d.377.2
Level $648$
Weight $3$
Character 648.377
Analytic conductor $17.657$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,3,Mod(377,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.377"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 648.m (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.6567211305\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 24)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 377.2
Root \(1.22474 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 648.377
Dual form 648.3.m.d.593.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.89898 + 2.82843i) q^{5} +(3.00000 + 5.19615i) q^{7} +(-4.89898 + 2.82843i) q^{11} +(-5.00000 + 8.66025i) q^{13} +22.6274i q^{17} +2.00000 q^{19} +(-9.79796 - 5.65685i) q^{23} +(3.50000 + 6.06218i) q^{25} +(-14.6969 + 8.48528i) q^{29} +(11.0000 - 19.0526i) q^{31} +33.9411i q^{35} -6.00000 q^{37} +(29.3939 + 16.9706i) q^{41} +(-41.0000 - 71.0141i) q^{43} +(-58.7878 + 33.9411i) q^{47} +(6.50000 - 11.2583i) q^{49} +62.2254i q^{53} -32.0000 q^{55} +(63.6867 + 36.7696i) q^{59} +(43.0000 + 74.4782i) q^{61} +(-48.9898 + 28.2843i) q^{65} +(-1.00000 + 1.73205i) q^{67} +124.451i q^{71} +82.0000 q^{73} +(-29.3939 - 16.9706i) q^{77} +(-5.00000 - 8.66025i) q^{79} +(63.6867 - 36.7696i) q^{83} +(-64.0000 + 110.851i) q^{85} +33.9411i q^{89} -60.0000 q^{91} +(9.79796 + 5.65685i) q^{95} +(47.0000 + 81.4064i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{7} - 20 q^{13} + 8 q^{19} + 14 q^{25} + 44 q^{31} - 24 q^{37} - 164 q^{43} + 26 q^{49} - 128 q^{55} + 172 q^{61} - 4 q^{67} + 328 q^{73} - 20 q^{79} - 256 q^{85} - 240 q^{91} + 188 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 4.89898 + 2.82843i 0.979796 + 0.565685i 0.902209 0.431300i \(-0.141945\pi\)
0.0775874 + 0.996986i \(0.475278\pi\)
\(6\) 0 0
\(7\) 3.00000 + 5.19615i 0.428571 + 0.742307i 0.996747 0.0806002i \(-0.0256837\pi\)
−0.568175 + 0.822908i \(0.692350\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.89898 + 2.82843i −0.445362 + 0.257130i −0.705869 0.708342i \(-0.749443\pi\)
0.260508 + 0.965472i \(0.416110\pi\)
\(12\) 0 0
\(13\) −5.00000 + 8.66025i −0.384615 + 0.666173i −0.991716 0.128452i \(-0.958999\pi\)
0.607100 + 0.794625i \(0.292333\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 22.6274i 1.33102i 0.746387 + 0.665512i \(0.231787\pi\)
−0.746387 + 0.665512i \(0.768213\pi\)
\(18\) 0 0
\(19\) 2.00000 0.105263 0.0526316 0.998614i \(-0.483239\pi\)
0.0526316 + 0.998614i \(0.483239\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −9.79796 5.65685i −0.425998 0.245950i 0.271642 0.962398i \(-0.412433\pi\)
−0.697640 + 0.716448i \(0.745767\pi\)
\(24\) 0 0
\(25\) 3.50000 + 6.06218i 0.140000 + 0.242487i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −14.6969 + 8.48528i −0.506791 + 0.292596i −0.731514 0.681827i \(-0.761186\pi\)
0.224723 + 0.974423i \(0.427852\pi\)
\(30\) 0 0
\(31\) 11.0000 19.0526i 0.354839 0.614599i −0.632252 0.774763i \(-0.717869\pi\)
0.987090 + 0.160164i \(0.0512024\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 33.9411i 0.969746i
\(36\) 0 0
\(37\) −6.00000 −0.162162 −0.0810811 0.996708i \(-0.525837\pi\)
−0.0810811 + 0.996708i \(0.525837\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 29.3939 + 16.9706i 0.716924 + 0.413916i 0.813619 0.581398i \(-0.197494\pi\)
−0.0966956 + 0.995314i \(0.530827\pi\)
\(42\) 0 0
\(43\) −41.0000 71.0141i −0.953488 1.65149i −0.737790 0.675030i \(-0.764131\pi\)
−0.215698 0.976460i \(-0.569203\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −58.7878 + 33.9411i −1.25080 + 0.722152i −0.971269 0.237984i \(-0.923513\pi\)
−0.279534 + 0.960136i \(0.590180\pi\)
\(48\) 0 0
\(49\) 6.50000 11.2583i 0.132653 0.229762i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 62.2254i 1.17406i 0.809564 + 0.587032i \(0.199704\pi\)
−0.809564 + 0.587032i \(0.800296\pi\)
\(54\) 0 0
\(55\) −32.0000 −0.581818
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 63.6867 + 36.7696i 1.07944 + 0.623213i 0.930744 0.365671i \(-0.119160\pi\)
0.148692 + 0.988884i \(0.452494\pi\)
\(60\) 0 0
\(61\) 43.0000 + 74.4782i 0.704918 + 1.22095i 0.966721 + 0.255833i \(0.0823496\pi\)
−0.261803 + 0.965121i \(0.584317\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −48.9898 + 28.2843i −0.753689 + 0.435143i
\(66\) 0 0
\(67\) −1.00000 + 1.73205i −0.0149254 + 0.0258515i −0.873392 0.487019i \(-0.838084\pi\)
0.858466 + 0.512870i \(0.171418\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 124.451i 1.75283i 0.481558 + 0.876414i \(0.340071\pi\)
−0.481558 + 0.876414i \(0.659929\pi\)
\(72\) 0 0
\(73\) 82.0000 1.12329 0.561644 0.827379i \(-0.310169\pi\)
0.561644 + 0.827379i \(0.310169\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −29.3939 16.9706i −0.381739 0.220397i
\(78\) 0 0
\(79\) −5.00000 8.66025i −0.0632911 0.109623i 0.832644 0.553809i \(-0.186826\pi\)
−0.895935 + 0.444186i \(0.853493\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 63.6867 36.7696i 0.767310 0.443007i −0.0646041 0.997911i \(-0.520578\pi\)
0.831914 + 0.554904i \(0.187245\pi\)
\(84\) 0 0
\(85\) −64.0000 + 110.851i −0.752941 + 1.30413i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 33.9411i 0.381361i 0.981652 + 0.190680i \(0.0610694\pi\)
−0.981652 + 0.190680i \(0.938931\pi\)
\(90\) 0 0
\(91\) −60.0000 −0.659341
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 9.79796 + 5.65685i 0.103136 + 0.0595458i
\(96\) 0 0
\(97\) 47.0000 + 81.4064i 0.484536 + 0.839241i 0.999842 0.0177651i \(-0.00565510\pi\)
−0.515306 + 0.857006i \(0.672322\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −44.0908 + 25.4558i −0.436543 + 0.252038i −0.702130 0.712049i \(-0.747767\pi\)
0.265587 + 0.964087i \(0.414434\pi\)
\(102\) 0 0
\(103\) 67.0000 116.047i 0.650485 1.12667i −0.332520 0.943096i \(-0.607899\pi\)
0.983005 0.183578i \(-0.0587678\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 50.9117i 0.475810i −0.971288 0.237905i \(-0.923539\pi\)
0.971288 0.237905i \(-0.0764607\pi\)
\(108\) 0 0
\(109\) 10.0000 0.0917431 0.0458716 0.998947i \(-0.485394\pi\)
0.0458716 + 0.998947i \(0.485394\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −58.7878 33.9411i −0.520246 0.300364i 0.216790 0.976218i \(-0.430441\pi\)
−0.737035 + 0.675854i \(0.763775\pi\)
\(114\) 0 0
\(115\) −32.0000 55.4256i −0.278261 0.481962i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −117.576 + 67.8823i −0.988029 + 0.570439i
\(120\) 0 0
\(121\) −44.5000 + 77.0763i −0.367769 + 0.636994i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 101.823i 0.814587i
\(126\) 0 0
\(127\) 106.000 0.834646 0.417323 0.908758i \(-0.362968\pi\)
0.417323 + 0.908758i \(0.362968\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −4.89898 2.82843i −0.0373968 0.0215910i 0.481185 0.876619i \(-0.340207\pi\)
−0.518582 + 0.855028i \(0.673540\pi\)
\(132\) 0 0
\(133\) 6.00000 + 10.3923i 0.0451128 + 0.0781376i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 88.1816 50.9117i 0.643662 0.371618i −0.142362 0.989815i \(-0.545470\pi\)
0.786024 + 0.618196i \(0.212136\pi\)
\(138\) 0 0
\(139\) 39.0000 67.5500i 0.280576 0.485971i −0.690951 0.722902i \(-0.742808\pi\)
0.971527 + 0.236930i \(0.0761413\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 56.5685i 0.395584i
\(144\) 0 0
\(145\) −96.0000 −0.662069
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 142.070 + 82.0244i 0.953493 + 0.550499i 0.894164 0.447739i \(-0.147771\pi\)
0.0593285 + 0.998239i \(0.481104\pi\)
\(150\) 0 0
\(151\) −109.000 188.794i −0.721854 1.25029i −0.960256 0.279122i \(-0.909957\pi\)
0.238401 0.971167i \(-0.423377\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 107.778 62.2254i 0.695339 0.401454i
\(156\) 0 0
\(157\) 43.0000 74.4782i 0.273885 0.474383i −0.695968 0.718073i \(-0.745024\pi\)
0.969853 + 0.243690i \(0.0783578\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 67.8823i 0.421629i
\(162\) 0 0
\(163\) −222.000 −1.36196 −0.680982 0.732301i \(-0.738447\pi\)
−0.680982 + 0.732301i \(0.738447\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −146.969 84.8528i −0.880056 0.508101i −0.00937926 0.999956i \(-0.502986\pi\)
−0.870677 + 0.491855i \(0.836319\pi\)
\(168\) 0 0
\(169\) 34.5000 + 59.7558i 0.204142 + 0.353584i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 161.666 93.3381i 0.934487 0.539527i 0.0462594 0.998929i \(-0.485270\pi\)
0.888228 + 0.459403i \(0.151937\pi\)
\(174\) 0 0
\(175\) −21.0000 + 36.3731i −0.120000 + 0.207846i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 152.735i 0.853269i −0.904424 0.426634i \(-0.859699\pi\)
0.904424 0.426634i \(-0.140301\pi\)
\(180\) 0 0
\(181\) 90.0000 0.497238 0.248619 0.968601i \(-0.420023\pi\)
0.248619 + 0.968601i \(0.420023\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −29.3939 16.9706i −0.158886 0.0917328i
\(186\) 0 0
\(187\) −64.0000 110.851i −0.342246 0.592787i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 235.151 135.765i 1.23116 0.710809i 0.263886 0.964554i \(-0.414996\pi\)
0.967271 + 0.253745i \(0.0816624\pi\)
\(192\) 0 0
\(193\) −1.00000 + 1.73205i −0.00518135 + 0.00897436i −0.868604 0.495506i \(-0.834983\pi\)
0.863423 + 0.504480i \(0.168316\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 84.8528i 0.430725i 0.976534 + 0.215362i \(0.0690933\pi\)
−0.976534 + 0.215362i \(0.930907\pi\)
\(198\) 0 0
\(199\) 250.000 1.25628 0.628141 0.778100i \(-0.283816\pi\)
0.628141 + 0.778100i \(0.283816\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −88.1816 50.9117i −0.434392 0.250796i
\(204\) 0 0
\(205\) 96.0000 + 166.277i 0.468293 + 0.811107i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −9.79796 + 5.65685i −0.0468802 + 0.0270663i
\(210\) 0 0
\(211\) −17.0000 + 29.4449i −0.0805687 + 0.139549i −0.903494 0.428600i \(-0.859007\pi\)
0.822926 + 0.568149i \(0.192340\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 463.862i 2.15750i
\(216\) 0 0
\(217\) 132.000 0.608295
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −195.959 113.137i −0.886693 0.511933i
\(222\) 0 0
\(223\) 139.000 + 240.755i 0.623318 + 1.07962i 0.988863 + 0.148825i \(0.0475493\pi\)
−0.365545 + 0.930794i \(0.619117\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −191.060 + 110.309i −0.841675 + 0.485941i −0.857833 0.513928i \(-0.828190\pi\)
0.0161583 + 0.999869i \(0.494856\pi\)
\(228\) 0 0
\(229\) −29.0000 + 50.2295i −0.126638 + 0.219343i −0.922372 0.386303i \(-0.873752\pi\)
0.795734 + 0.605646i \(0.207085\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 395.980i 1.69948i −0.527199 0.849742i \(-0.676758\pi\)
0.527199 0.849742i \(-0.323242\pi\)
\(234\) 0 0
\(235\) −384.000 −1.63404
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −19.5959 11.3137i −0.0819913 0.0473377i 0.458444 0.888723i \(-0.348407\pi\)
−0.540435 + 0.841386i \(0.681740\pi\)
\(240\) 0 0
\(241\) 15.0000 + 25.9808i 0.0622407 + 0.107804i 0.895467 0.445129i \(-0.146842\pi\)
−0.833226 + 0.552933i \(0.813509\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 63.6867 36.7696i 0.259946 0.150080i
\(246\) 0 0
\(247\) −10.0000 + 17.3205i −0.0404858 + 0.0701235i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 107.480i 0.428208i 0.976811 + 0.214104i \(0.0686832\pi\)
−0.976811 + 0.214104i \(0.931317\pi\)
\(252\) 0 0
\(253\) 64.0000 0.252964
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 156.767 + 90.5097i 0.609990 + 0.352178i 0.772961 0.634453i \(-0.218775\pi\)
−0.162972 + 0.986631i \(0.552108\pi\)
\(258\) 0 0
\(259\) −18.0000 31.1769i −0.0694981 0.120374i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 186.161 107.480i 0.707837 0.408670i −0.102422 0.994741i \(-0.532659\pi\)
0.810260 + 0.586071i \(0.199326\pi\)
\(264\) 0 0
\(265\) −176.000 + 304.841i −0.664151 + 1.15034i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 401.637i 1.49307i −0.665344 0.746537i \(-0.731715\pi\)
0.665344 0.746537i \(-0.268285\pi\)
\(270\) 0 0
\(271\) 266.000 0.981550 0.490775 0.871286i \(-0.336714\pi\)
0.490775 + 0.871286i \(0.336714\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −34.2929 19.7990i −0.124701 0.0719963i
\(276\) 0 0
\(277\) −173.000 299.645i −0.624549 1.08175i −0.988628 0.150382i \(-0.951950\pi\)
0.364079 0.931368i \(-0.381384\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 107.778 62.2254i 0.383550 0.221443i −0.295812 0.955246i \(-0.595590\pi\)
0.679362 + 0.733804i \(0.262257\pi\)
\(282\) 0 0
\(283\) 23.0000 39.8372i 0.0812721 0.140767i −0.822525 0.568730i \(-0.807435\pi\)
0.903797 + 0.427962i \(0.140768\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 203.647i 0.709571i
\(288\) 0 0
\(289\) −223.000 −0.771626
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −191.060 110.309i −0.652083 0.376480i 0.137171 0.990547i \(-0.456199\pi\)
−0.789254 + 0.614067i \(0.789532\pi\)
\(294\) 0 0
\(295\) 208.000 + 360.267i 0.705085 + 1.22124i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 97.9796 56.5685i 0.327691 0.189192i
\(300\) 0 0
\(301\) 246.000 426.084i 0.817276 1.41556i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 486.489i 1.59505i
\(306\) 0 0
\(307\) −30.0000 −0.0977199 −0.0488599 0.998806i \(-0.515559\pi\)
−0.0488599 + 0.998806i \(0.515559\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 499.696 + 288.500i 1.60674 + 0.927651i 0.990093 + 0.140411i \(0.0448423\pi\)
0.616646 + 0.787241i \(0.288491\pi\)
\(312\) 0 0
\(313\) −105.000 181.865i −0.335463 0.581039i 0.648110 0.761546i \(-0.275560\pi\)
−0.983574 + 0.180507i \(0.942226\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −132.272 + 76.3675i −0.417263 + 0.240907i −0.693906 0.720066i \(-0.744112\pi\)
0.276642 + 0.960973i \(0.410778\pi\)
\(318\) 0 0
\(319\) 48.0000 83.1384i 0.150470 0.260622i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 45.2548i 0.140108i
\(324\) 0 0
\(325\) −70.0000 −0.215385
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −352.727 203.647i −1.07212 0.618987i
\(330\) 0 0
\(331\) −217.000 375.855i −0.655589 1.13551i −0.981746 0.190198i \(-0.939087\pi\)
0.326157 0.945316i \(-0.394246\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −9.79796 + 5.65685i −0.0292476 + 0.0168861i
\(336\) 0 0
\(337\) 255.000 441.673i 0.756677 1.31060i −0.187860 0.982196i \(-0.560155\pi\)
0.944537 0.328406i \(-0.106512\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 124.451i 0.364958i
\(342\) 0 0
\(343\) 372.000 1.08455
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −132.272 76.3675i −0.381189 0.220079i 0.297147 0.954832i \(-0.403965\pi\)
−0.678335 + 0.734752i \(0.737298\pi\)
\(348\) 0 0
\(349\) −213.000 368.927i −0.610315 1.05710i −0.991187 0.132469i \(-0.957709\pi\)
0.380872 0.924628i \(-0.375624\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −39.1918 + 22.6274i −0.111025 + 0.0641003i −0.554484 0.832194i \(-0.687084\pi\)
0.443459 + 0.896295i \(0.353751\pi\)
\(354\) 0 0
\(355\) −352.000 + 609.682i −0.991549 + 1.71741i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 441.235i 1.22907i 0.788891 + 0.614533i \(0.210655\pi\)
−0.788891 + 0.614533i \(0.789345\pi\)
\(360\) 0 0
\(361\) −357.000 −0.988920
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 401.716 + 231.931i 1.10059 + 0.635427i
\(366\) 0 0
\(367\) 283.000 + 490.170i 0.771117 + 1.33561i 0.936951 + 0.349460i \(0.113635\pi\)
−0.165834 + 0.986154i \(0.553032\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −323.333 + 186.676i −0.871517 + 0.503170i
\(372\) 0 0
\(373\) −109.000 + 188.794i −0.292225 + 0.506149i −0.974336 0.225100i \(-0.927729\pi\)
0.682110 + 0.731249i \(0.261062\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 169.706i 0.450148i
\(378\) 0 0
\(379\) −142.000 −0.374670 −0.187335 0.982296i \(-0.559985\pi\)
−0.187335 + 0.982296i \(0.559985\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(384\) 0 0
\(385\) −96.0000 166.277i −0.249351 0.431888i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −475.201 + 274.357i −1.22160 + 0.705289i −0.965258 0.261298i \(-0.915849\pi\)
−0.256338 + 0.966587i \(0.582516\pi\)
\(390\) 0 0
\(391\) 128.000 221.703i 0.327366 0.567014i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 56.5685i 0.143211i
\(396\) 0 0
\(397\) −310.000 −0.780856 −0.390428 0.920633i \(-0.627673\pi\)
−0.390428 + 0.920633i \(0.627673\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 293.939 + 169.706i 0.733014 + 0.423206i 0.819524 0.573045i \(-0.194238\pi\)
−0.0865095 + 0.996251i \(0.527571\pi\)
\(402\) 0 0
\(403\) 110.000 + 190.526i 0.272953 + 0.472768i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 29.3939 16.9706i 0.0722208 0.0416967i
\(408\) 0 0
\(409\) 135.000 233.827i 0.330073 0.571704i −0.652453 0.757830i \(-0.726260\pi\)
0.982526 + 0.186126i \(0.0595932\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 441.235i 1.06836i
\(414\) 0 0
\(415\) 416.000 1.00241
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −44.0908 25.4558i −0.105229 0.0607538i 0.446462 0.894803i \(-0.352684\pi\)
−0.551691 + 0.834049i \(0.686017\pi\)
\(420\) 0 0
\(421\) 227.000 + 393.176i 0.539192 + 0.933909i 0.998948 + 0.0458630i \(0.0146038\pi\)
−0.459755 + 0.888046i \(0.652063\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −137.171 + 79.1960i −0.322756 + 0.186343i
\(426\) 0 0
\(427\) −258.000 + 446.869i −0.604215 + 1.04653i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 248.902i 0.577498i −0.957405 0.288749i \(-0.906761\pi\)
0.957405 0.288749i \(-0.0932393\pi\)
\(432\) 0 0
\(433\) 706.000 1.63048 0.815242 0.579120i \(-0.196604\pi\)
0.815242 + 0.579120i \(0.196604\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −19.5959 11.3137i −0.0448419 0.0258895i
\(438\) 0 0
\(439\) 243.000 + 420.888i 0.553531 + 0.958743i 0.998016 + 0.0629573i \(0.0200532\pi\)
−0.444485 + 0.895786i \(0.646613\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −612.372 + 353.553i −1.38233 + 0.798089i −0.992435 0.122770i \(-0.960822\pi\)
−0.389895 + 0.920859i \(0.627489\pi\)
\(444\) 0 0
\(445\) −96.0000 + 166.277i −0.215730 + 0.373656i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 724.077i 1.61264i 0.591477 + 0.806322i \(0.298545\pi\)
−0.591477 + 0.806322i \(0.701455\pi\)
\(450\) 0 0
\(451\) −192.000 −0.425721
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −293.939 169.706i −0.646019 0.372979i
\(456\) 0 0
\(457\) −169.000 292.717i −0.369803 0.640518i 0.619731 0.784814i \(-0.287242\pi\)
−0.989535 + 0.144296i \(0.953908\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 671.160 387.495i 1.45588 0.840552i 0.457074 0.889429i \(-0.348897\pi\)
0.998805 + 0.0488765i \(0.0155641\pi\)
\(462\) 0 0
\(463\) −37.0000 + 64.0859i −0.0799136 + 0.138414i −0.903212 0.429194i \(-0.858798\pi\)
0.823299 + 0.567608i \(0.192131\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 797.616i 1.70796i 0.520307 + 0.853979i \(0.325817\pi\)
−0.520307 + 0.853979i \(0.674183\pi\)
\(468\) 0 0
\(469\) −12.0000 −0.0255864
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 401.716 + 231.931i 0.849295 + 0.490340i
\(474\) 0 0
\(475\) 7.00000 + 12.1244i 0.0147368 + 0.0255250i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −274.343 + 158.392i −0.572741 + 0.330672i −0.758243 0.651972i \(-0.773942\pi\)
0.185502 + 0.982644i \(0.440609\pi\)
\(480\) 0 0
\(481\) 30.0000 51.9615i 0.0623701 0.108028i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 531.744i 1.09638i
\(486\) 0 0
\(487\) −134.000 −0.275154 −0.137577 0.990491i \(-0.543931\pi\)
−0.137577 + 0.990491i \(0.543931\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 44.0908 + 25.4558i 0.0897980 + 0.0518449i 0.544227 0.838938i \(-0.316823\pi\)
−0.454429 + 0.890783i \(0.650157\pi\)
\(492\) 0 0
\(493\) −192.000 332.554i −0.389452 0.674551i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −646.665 + 373.352i −1.30114 + 0.751212i
\(498\) 0 0
\(499\) 15.0000 25.9808i 0.0300601 0.0520657i −0.850604 0.525807i \(-0.823763\pi\)
0.880664 + 0.473741i \(0.157097\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 237.588i 0.472342i 0.971712 + 0.236171i \(0.0758925\pi\)
−0.971712 + 0.236171i \(0.924107\pi\)
\(504\) 0 0
\(505\) −288.000 −0.570297
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −102.879 59.3970i −0.202119 0.116693i 0.395524 0.918455i \(-0.370563\pi\)
−0.597643 + 0.801762i \(0.703896\pi\)
\(510\) 0 0
\(511\) 246.000 + 426.084i 0.481409 + 0.833825i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 656.463 379.009i 1.27469 0.735940i
\(516\) 0 0
\(517\) 192.000 332.554i 0.371373 0.643237i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 79.1960i 0.152008i −0.997108 0.0760038i \(-0.975784\pi\)
0.997108 0.0760038i \(-0.0242161\pi\)
\(522\) 0 0
\(523\) −494.000 −0.944551 −0.472275 0.881451i \(-0.656567\pi\)
−0.472275 + 0.881451i \(0.656567\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 431.110 + 248.902i 0.818046 + 0.472299i
\(528\) 0 0
\(529\) −200.500 347.276i −0.379017 0.656477i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −293.939 + 169.706i −0.551480 + 0.318397i
\(534\) 0 0
\(535\) 144.000 249.415i 0.269159 0.466197i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 73.5391i 0.136436i
\(540\) 0 0
\(541\) 234.000 0.432532 0.216266 0.976334i \(-0.430612\pi\)
0.216266 + 0.976334i \(0.430612\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 48.9898 + 28.2843i 0.0898895 + 0.0518977i
\(546\) 0 0
\(547\) −145.000 251.147i −0.265082 0.459136i 0.702503 0.711681i \(-0.252066\pi\)
−0.967585 + 0.252545i \(0.918732\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −29.3939 + 16.9706i −0.0533464 + 0.0307996i
\(552\) 0 0
\(553\) 30.0000 51.9615i 0.0542495 0.0939630i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 175.362i 0.314834i −0.987532 0.157417i \(-0.949683\pi\)
0.987532 0.157417i \(-0.0503167\pi\)
\(558\) 0 0
\(559\) 820.000 1.46691
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 210.656 + 121.622i 0.374167 + 0.216026i 0.675277 0.737564i \(-0.264024\pi\)
−0.301110 + 0.953589i \(0.597357\pi\)
\(564\) 0 0
\(565\) −192.000 332.554i −0.339823 0.588591i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 538.888 311.127i 0.947079 0.546796i 0.0549064 0.998492i \(-0.482514\pi\)
0.892172 + 0.451695i \(0.149181\pi\)
\(570\) 0 0
\(571\) −201.000 + 348.142i −0.352014 + 0.609706i −0.986602 0.163144i \(-0.947836\pi\)
0.634588 + 0.772850i \(0.281170\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 79.1960i 0.137732i
\(576\) 0 0
\(577\) 98.0000 0.169844 0.0849220 0.996388i \(-0.472936\pi\)
0.0849220 + 0.996388i \(0.472936\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 382.120 + 220.617i 0.657694 + 0.379720i
\(582\) 0 0
\(583\) −176.000 304.841i −0.301887 0.522883i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −475.201 + 274.357i −0.809542 + 0.467389i −0.846797 0.531917i \(-0.821472\pi\)
0.0372550 + 0.999306i \(0.488139\pi\)
\(588\) 0 0
\(589\) 22.0000 38.1051i 0.0373514 0.0646946i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 701.450i 1.18288i −0.806348 0.591442i \(-0.798559\pi\)
0.806348 0.591442i \(-0.201441\pi\)
\(594\) 0 0
\(595\) −768.000 −1.29076
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −558.484 322.441i −0.932360 0.538298i −0.0448028 0.998996i \(-0.514266\pi\)
−0.887557 + 0.460698i \(0.847599\pi\)
\(600\) 0 0
\(601\) 199.000 + 344.678i 0.331115 + 0.573508i 0.982731 0.185041i \(-0.0592419\pi\)
−0.651616 + 0.758549i \(0.725909\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −436.009 + 251.730i −0.720676 + 0.416083i
\(606\) 0 0
\(607\) −85.0000 + 147.224i −0.140033 + 0.242544i −0.927509 0.373801i \(-0.878054\pi\)
0.787476 + 0.616346i \(0.211388\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 678.823i 1.11100i
\(612\) 0 0
\(613\) −1030.00 −1.68026 −0.840131 0.542384i \(-0.817522\pi\)
−0.840131 + 0.542384i \(0.817522\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −911.210 526.087i −1.47684 0.852654i −0.477182 0.878805i \(-0.658342\pi\)
−0.999658 + 0.0261507i \(0.991675\pi\)
\(618\) 0 0
\(619\) 7.00000 + 12.1244i 0.0113086 + 0.0195870i 0.871624 0.490175i \(-0.163067\pi\)
−0.860316 + 0.509762i \(0.829734\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −176.363 + 101.823i −0.283087 + 0.163440i
\(624\) 0 0
\(625\) 375.500 650.385i 0.600800 1.04062i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 135.765i 0.215842i
\(630\) 0 0
\(631\) 1114.00 1.76545 0.882726 0.469888i \(-0.155706\pi\)
0.882726 + 0.469888i \(0.155706\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 519.292 + 299.813i 0.817782 + 0.472147i
\(636\) 0 0
\(637\) 65.0000 + 112.583i 0.102041 + 0.176740i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 391.918 226.274i 0.611417 0.353002i −0.162103 0.986774i \(-0.551828\pi\)
0.773520 + 0.633772i \(0.218494\pi\)
\(642\) 0 0
\(643\) 399.000 691.088i 0.620529 1.07479i −0.368859 0.929486i \(-0.620251\pi\)
0.989387 0.145302i \(-0.0464153\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 147.078i 0.227323i −0.993520 0.113662i \(-0.963742\pi\)
0.993520 0.113662i \(-0.0362580\pi\)
\(648\) 0 0
\(649\) −416.000 −0.640986
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −279.242 161.220i −0.427629 0.246892i 0.270707 0.962662i \(-0.412743\pi\)
−0.698336 + 0.715770i \(0.746076\pi\)
\(654\) 0 0
\(655\) −16.0000 27.7128i −0.0244275 0.0423096i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 690.756 398.808i 1.04819 0.605172i 0.126047 0.992024i \(-0.459771\pi\)
0.922142 + 0.386852i \(0.126438\pi\)
\(660\) 0 0
\(661\) −493.000 + 853.901i −0.745840 + 1.29183i 0.203962 + 0.978979i \(0.434618\pi\)
−0.949801 + 0.312853i \(0.898715\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 67.8823i 0.102079i
\(666\) 0 0
\(667\) 192.000 0.287856
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −421.312 243.245i −0.627887 0.362511i
\(672\) 0 0
\(673\) −17.0000 29.4449i −0.0252600 0.0437517i 0.853119 0.521716i \(-0.174708\pi\)
−0.878379 + 0.477965i \(0.841375\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 347.828 200.818i 0.513778 0.296630i −0.220607 0.975363i \(-0.570804\pi\)
0.734385 + 0.678733i \(0.237471\pi\)
\(678\) 0 0
\(679\) −282.000 + 488.438i −0.415317 + 0.719350i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 130.108i 0.190494i 0.995454 + 0.0952472i \(0.0303641\pi\)
−0.995454 + 0.0952472i \(0.969636\pi\)
\(684\) 0 0
\(685\) 576.000 0.840876
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −538.888 311.127i −0.782130 0.451563i
\(690\) 0 0
\(691\) −289.000 500.563i −0.418234 0.724403i 0.577528 0.816371i \(-0.304018\pi\)
−0.995762 + 0.0919679i \(0.970684\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 382.120 220.617i 0.549814 0.317435i
\(696\) 0 0
\(697\) −384.000 + 665.108i −0.550933 + 0.954243i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1238.85i 1.76726i −0.468183 0.883631i \(-0.655091\pi\)
0.468183 0.883631i \(-0.344909\pi\)
\(702\) 0 0
\(703\) −12.0000 −0.0170697
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −264.545 152.735i −0.374179 0.216033i
\(708\) 0 0
\(709\) 611.000 + 1058.28i 0.861777 + 1.49264i 0.870212 + 0.492677i \(0.163982\pi\)
−0.00843489 + 0.999964i \(0.502685\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −215.555 + 124.451i −0.302321 + 0.174545i
\(714\) 0 0
\(715\) 160.000 277.128i 0.223776 0.387592i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 248.902i 0.346177i 0.984906 + 0.173089i \(0.0553747\pi\)
−0.984906 + 0.173089i \(0.944625\pi\)
\(720\) 0 0
\(721\) 804.000 1.11512
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −102.879 59.3970i −0.141901 0.0819269i
\(726\) 0 0
\(727\) 435.000 + 753.442i 0.598349 + 1.03637i 0.993065 + 0.117568i \(0.0375098\pi\)
−0.394715 + 0.918803i \(0.629157\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1606.87 927.724i 2.19817 1.26912i
\(732\) 0 0
\(733\) 107.000 185.329i 0.145975 0.252837i −0.783761 0.621063i \(-0.786701\pi\)
0.929736 + 0.368226i \(0.120035\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 11.3137i 0.0153510i
\(738\) 0 0
\(739\) −958.000 −1.29635 −0.648173 0.761493i \(-0.724467\pi\)
−0.648173 + 0.761493i \(0.724467\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 872.018 + 503.460i 1.17365 + 0.677604i 0.954536 0.298096i \(-0.0963516\pi\)
0.219109 + 0.975700i \(0.429685\pi\)
\(744\) 0 0
\(745\) 464.000 + 803.672i 0.622819 + 1.07875i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 264.545 152.735i 0.353197 0.203919i
\(750\) 0 0
\(751\) 315.000 545.596i 0.419441 0.726493i −0.576443 0.817138i \(-0.695560\pi\)
0.995883 + 0.0906450i \(0.0288929\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1233.19i 1.63337i
\(756\) 0 0
\(757\) 602.000 0.795244 0.397622 0.917549i \(-0.369835\pi\)
0.397622 + 0.917549i \(0.369835\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 950.402 + 548.715i 1.24889 + 0.721044i 0.970887 0.239537i \(-0.0769956\pi\)
0.277998 + 0.960582i \(0.410329\pi\)
\(762\) 0 0
\(763\) 30.0000 + 51.9615i 0.0393185 + 0.0681016i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −636.867 + 367.696i −0.830336 + 0.479394i
\(768\) 0 0
\(769\) −385.000 + 666.840i −0.500650 + 0.867152i 0.499350 + 0.866401i \(0.333572\pi\)
−1.00000 0.000750943i \(0.999761\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 186.676i 0.241496i −0.992683 0.120748i \(-0.961471\pi\)
0.992683 0.120748i \(-0.0385293\pi\)
\(774\) 0 0
\(775\) 154.000 0.198710
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 58.7878 + 33.9411i 0.0754657 + 0.0435701i
\(780\) 0 0
\(781\) −352.000 609.682i −0.450704 0.780643i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 421.312 243.245i 0.536703 0.309866i
\(786\) 0 0
\(787\) −257.000 + 445.137i −0.326557 + 0.565613i −0.981826 0.189783i \(-0.939222\pi\)
0.655270 + 0.755395i \(0.272555\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 407.294i 0.514910i
\(792\) 0 0
\(793\) −860.000 −1.08449
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −612.372 353.553i −0.768347 0.443605i 0.0639377 0.997954i \(-0.479634\pi\)
−0.832285 + 0.554349i \(0.812967\pi\)
\(798\) 0 0
\(799\) −768.000 1330.22i −0.961202 1.66485i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −401.716 + 231.931i −0.500269 + 0.288831i
\(804\) 0 0
\(805\) 192.000 332.554i 0.238509 0.413110i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 758.018i 0.936982i −0.883468 0.468491i \(-0.844798\pi\)
0.883468 0.468491i \(-0.155202\pi\)
\(810\) 0 0
\(811\) −1454.00 −1.79285 −0.896424 0.443197i \(-0.853844\pi\)
−0.896424 + 0.443197i \(0.853844\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −1087.57 627.911i −1.33445 0.770443i
\(816\) 0 0
\(817\) −82.0000 142.028i −0.100367 0.173841i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 837.725 483.661i 1.02037 0.589112i 0.106160 0.994349i \(-0.466144\pi\)
0.914212 + 0.405237i \(0.132811\pi\)
\(822\) 0 0
\(823\) 83.0000 143.760i 0.100851 0.174678i −0.811185 0.584790i \(-0.801177\pi\)
0.912035 + 0.410112i \(0.134510\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 978.636i 1.18336i −0.806174 0.591678i \(-0.798466\pi\)
0.806174 0.591678i \(-0.201534\pi\)
\(828\) 0 0
\(829\) 1258.00 1.51749 0.758745 0.651387i \(-0.225813\pi\)
0.758745 + 0.651387i \(0.225813\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 254.747 + 147.078i 0.305819 + 0.176564i
\(834\) 0 0
\(835\) −480.000 831.384i −0.574850 0.995670i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −1146.36 + 661.852i −1.36634 + 0.788858i −0.990459 0.137809i \(-0.955994\pi\)
−0.375883 + 0.926667i \(0.622661\pi\)
\(840\) 0 0
\(841\) −276.500 + 478.912i −0.328775 + 0.569455i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 390.323i 0.461921i
\(846\) 0 0
\(847\) −534.000 −0.630460
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 58.7878 + 33.9411i 0.0690808 + 0.0398838i
\(852\) 0 0
\(853\) 371.000 + 642.591i 0.434936 + 0.753330i 0.997290 0.0735656i \(-0.0234378\pi\)
−0.562355 + 0.826896i \(0.690104\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −205.757 + 118.794i −0.240090 + 0.138616i −0.615218 0.788357i \(-0.710932\pi\)
0.375128 + 0.926973i \(0.377599\pi\)
\(858\) 0 0
\(859\) 615.000 1065.21i 0.715949 1.24006i −0.246644 0.969106i \(-0.579328\pi\)
0.962592 0.270953i \(-0.0873389\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 45.2548i 0.0524390i 0.999656 + 0.0262195i \(0.00834688\pi\)
−0.999656 + 0.0262195i \(0.991653\pi\)
\(864\) 0 0
\(865\) 1056.00 1.22081
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 48.9898 + 28.2843i 0.0563749 + 0.0325481i
\(870\) 0 0
\(871\) −10.0000 17.3205i −0.0114811 0.0198858i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 529.090 305.470i 0.604674 0.349109i
\(876\) 0 0
\(877\) 411.000 711.873i 0.468643 0.811714i −0.530715 0.847551i \(-0.678076\pi\)
0.999358 + 0.0358370i \(0.0114097\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 656.195i 0.744830i −0.928066 0.372415i \(-0.878530\pi\)
0.928066 0.372415i \(-0.121470\pi\)
\(882\) 0 0
\(883\) 962.000 1.08947 0.544734 0.838609i \(-0.316631\pi\)
0.544734 + 0.838609i \(0.316631\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −989.594 571.342i −1.11566 0.644129i −0.175373 0.984502i \(-0.556113\pi\)
−0.940290 + 0.340373i \(0.889447\pi\)
\(888\) 0 0
\(889\) 318.000 + 550.792i 0.357705 + 0.619564i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −117.576 + 67.8823i −0.131664 + 0.0760160i
\(894\) 0 0
\(895\) 432.000 748.246i 0.482682 0.836029i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 373.352i 0.415297i
\(900\) 0 0
\(901\) −1408.00 −1.56271
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 440.908 + 254.558i 0.487191 + 0.281280i
\(906\) 0 0
\(907\) −521.000 902.398i −0.574421 0.994927i −0.996104 0.0881834i \(-0.971894\pi\)
0.421683 0.906743i \(-0.361439\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1391.31 803.273i 1.52723 0.881749i 0.527758 0.849395i \(-0.323033\pi\)
0.999476 0.0323539i \(-0.0103004\pi\)
\(912\) 0 0
\(913\) −208.000 + 360.267i −0.227820 + 0.394596i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 33.9411i 0.0370132i
\(918\) 0 0
\(919\) −614.000 −0.668118 −0.334059 0.942552i \(-0.608418\pi\)
−0.334059 + 0.942552i \(0.608418\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1077.78 622.254i −1.16769 0.674165i
\(924\) 0 0
\(925\) −21.0000 36.3731i −0.0227027 0.0393222i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −39.1918 + 22.6274i −0.0421871 + 0.0243567i −0.520945 0.853590i \(-0.674420\pi\)
0.478758 + 0.877947i \(0.341087\pi\)
\(930\) 0 0
\(931\) 13.0000 22.5167i 0.0139635 0.0241855i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 724.077i 0.774414i
\(936\) 0 0
\(937\) −462.000 −0.493063 −0.246531 0.969135i \(-0.579291\pi\)
−0.246531 + 0.969135i \(0.579291\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 308.636 + 178.191i 0.327987 + 0.189363i 0.654947 0.755675i \(-0.272691\pi\)
−0.326960 + 0.945038i \(0.606024\pi\)
\(942\) 0 0
\(943\) −192.000 332.554i −0.203606 0.352655i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −602.574 + 347.897i −0.636298 + 0.367367i −0.783187 0.621786i \(-0.786407\pi\)
0.146889 + 0.989153i \(0.453074\pi\)
\(948\) 0 0
\(949\) −410.000 + 710.141i −0.432034 + 0.748304i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1527.35i 1.60268i 0.598212 + 0.801338i \(0.295878\pi\)
−0.598212 + 0.801338i \(0.704122\pi\)
\(954\) 0 0
\(955\) 1536.00 1.60838
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 529.090 + 305.470i 0.551710 + 0.318530i
\(960\) 0 0
\(961\) 238.500 + 413.094i 0.248179 + 0.429859i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −9.79796 + 5.65685i −0.0101533 + 0.00586203i
\(966\) 0 0
\(967\) 35.0000 60.6218i 0.0361944 0.0626906i −0.847361 0.531018i \(-0.821810\pi\)
0.883555 + 0.468327i \(0.155143\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 627.911i 0.646664i 0.946286 + 0.323332i \(0.104803\pi\)
−0.946286 + 0.323332i \(0.895197\pi\)
\(972\) 0 0
\(973\) 468.000 0.480987
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −881.816 509.117i −0.902576 0.521102i −0.0245406 0.999699i \(-0.507812\pi\)
−0.878035 + 0.478597i \(0.841146\pi\)
\(978\) 0 0
\(979\) −96.0000 166.277i −0.0980592 0.169844i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 558.484 322.441i 0.568142 0.328017i −0.188265 0.982118i \(-0.560286\pi\)
0.756407 + 0.654101i \(0.226953\pi\)
\(984\) 0 0
\(985\) −240.000 + 415.692i −0.243655 + 0.422023i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 927.724i 0.938043i
\(990\) 0 0
\(991\) −854.000 −0.861756 −0.430878 0.902410i \(-0.641796\pi\)
−0.430878 + 0.902410i \(0.641796\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1224.74 + 707.107i 1.23090 + 0.710660i
\(996\) 0 0
\(997\) 259.000 + 448.601i 0.259779 + 0.449951i 0.966183 0.257858i \(-0.0830168\pi\)
−0.706403 + 0.707810i \(0.749684\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.3.m.d.377.2 4
3.2 odd 2 inner 648.3.m.d.377.1 4
4.3 odd 2 1296.3.q.e.1025.2 4
9.2 odd 6 inner 648.3.m.d.593.2 4
9.4 even 3 24.3.e.a.17.2 yes 2
9.5 odd 6 24.3.e.a.17.1 2
9.7 even 3 inner 648.3.m.d.593.1 4
12.11 even 2 1296.3.q.e.1025.1 4
36.7 odd 6 1296.3.q.e.593.1 4
36.11 even 6 1296.3.q.e.593.2 4
36.23 even 6 48.3.e.b.17.2 2
36.31 odd 6 48.3.e.b.17.1 2
45.4 even 6 600.3.l.b.401.1 2
45.13 odd 12 600.3.c.a.449.2 4
45.14 odd 6 600.3.l.b.401.2 2
45.22 odd 12 600.3.c.a.449.3 4
45.23 even 12 600.3.c.a.449.4 4
45.32 even 12 600.3.c.a.449.1 4
63.13 odd 6 1176.3.d.a.785.1 2
63.41 even 6 1176.3.d.a.785.2 2
72.5 odd 6 192.3.e.c.65.2 2
72.13 even 6 192.3.e.c.65.1 2
72.59 even 6 192.3.e.d.65.1 2
72.67 odd 6 192.3.e.d.65.2 2
144.5 odd 12 768.3.h.d.641.1 4
144.13 even 12 768.3.h.d.641.2 4
144.59 even 12 768.3.h.c.641.4 4
144.67 odd 12 768.3.h.c.641.3 4
144.77 odd 12 768.3.h.d.641.4 4
144.85 even 12 768.3.h.d.641.3 4
144.131 even 12 768.3.h.c.641.1 4
144.139 odd 12 768.3.h.c.641.2 4
180.23 odd 12 1200.3.c.i.449.1 4
180.59 even 6 1200.3.l.n.401.1 2
180.67 even 12 1200.3.c.i.449.2 4
180.103 even 12 1200.3.c.i.449.3 4
180.139 odd 6 1200.3.l.n.401.2 2
180.167 odd 12 1200.3.c.i.449.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
24.3.e.a.17.1 2 9.5 odd 6
24.3.e.a.17.2 yes 2 9.4 even 3
48.3.e.b.17.1 2 36.31 odd 6
48.3.e.b.17.2 2 36.23 even 6
192.3.e.c.65.1 2 72.13 even 6
192.3.e.c.65.2 2 72.5 odd 6
192.3.e.d.65.1 2 72.59 even 6
192.3.e.d.65.2 2 72.67 odd 6
600.3.c.a.449.1 4 45.32 even 12
600.3.c.a.449.2 4 45.13 odd 12
600.3.c.a.449.3 4 45.22 odd 12
600.3.c.a.449.4 4 45.23 even 12
600.3.l.b.401.1 2 45.4 even 6
600.3.l.b.401.2 2 45.14 odd 6
648.3.m.d.377.1 4 3.2 odd 2 inner
648.3.m.d.377.2 4 1.1 even 1 trivial
648.3.m.d.593.1 4 9.7 even 3 inner
648.3.m.d.593.2 4 9.2 odd 6 inner
768.3.h.c.641.1 4 144.131 even 12
768.3.h.c.641.2 4 144.139 odd 12
768.3.h.c.641.3 4 144.67 odd 12
768.3.h.c.641.4 4 144.59 even 12
768.3.h.d.641.1 4 144.5 odd 12
768.3.h.d.641.2 4 144.13 even 12
768.3.h.d.641.3 4 144.85 even 12
768.3.h.d.641.4 4 144.77 odd 12
1176.3.d.a.785.1 2 63.13 odd 6
1176.3.d.a.785.2 2 63.41 even 6
1200.3.c.i.449.1 4 180.23 odd 12
1200.3.c.i.449.2 4 180.67 even 12
1200.3.c.i.449.3 4 180.103 even 12
1200.3.c.i.449.4 4 180.167 odd 12
1200.3.l.n.401.1 2 180.59 even 6
1200.3.l.n.401.2 2 180.139 odd 6
1296.3.q.e.593.1 4 36.7 odd 6
1296.3.q.e.593.2 4 36.11 even 6
1296.3.q.e.1025.1 4 12.11 even 2
1296.3.q.e.1025.2 4 4.3 odd 2