Properties

Label 648.3
Level 648
Weight 3
Dimension 10256
Nonzero newspaces 12
Sturm bound 69984
Trace bound 7

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 12 \)
Sturm bound: \(69984\)
Trace bound: \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(648))\).

Total New Old
Modular forms 23976 10480 13496
Cusp forms 22680 10256 12424
Eisenstein series 1296 224 1072

Trace form

\( 10256 q - 24 q^{2} - 36 q^{3} - 40 q^{4} - 36 q^{6} - 40 q^{7} - 24 q^{8} - 72 q^{9} - 58 q^{10} - 6 q^{11} - 36 q^{12} + 24 q^{13} - 24 q^{14} - 36 q^{15} - 40 q^{16} - 48 q^{17} - 36 q^{18} - 70 q^{19}+ \cdots + 1260 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(648))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
648.3.b \(\chi_{648}(163, \cdot)\) 648.3.b.a 2 1
648.3.b.b 2
648.3.b.c 12
648.3.b.d 12
648.3.b.e 20
648.3.b.f 20
648.3.b.g 24
648.3.e \(\chi_{648}(161, \cdot)\) 648.3.e.a 4 1
648.3.e.b 4
648.3.e.c 8
648.3.e.d 8
648.3.g \(\chi_{648}(487, \cdot)\) None 0 1
648.3.h \(\chi_{648}(485, \cdot)\) 648.3.h.a 44 1
648.3.h.b 48
648.3.j \(\chi_{648}(53, \cdot)\) n/a 188 2
648.3.k \(\chi_{648}(55, \cdot)\) None 0 2
648.3.m \(\chi_{648}(377, \cdot)\) 648.3.m.a 4 2
648.3.m.b 4
648.3.m.c 4
648.3.m.d 4
648.3.m.e 8
648.3.m.f 8
648.3.m.g 16
648.3.p \(\chi_{648}(379, \cdot)\) n/a 188 2
648.3.r \(\chi_{648}(19, \cdot)\) n/a 420 6
648.3.s \(\chi_{648}(127, \cdot)\) None 0 6
648.3.u \(\chi_{648}(17, \cdot)\) n/a 108 6
648.3.x \(\chi_{648}(125, \cdot)\) n/a 420 6
648.3.z \(\chi_{648}(5, \cdot)\) n/a 3852 18
648.3.ba \(\chi_{648}(7, \cdot)\) None 0 18
648.3.bc \(\chi_{648}(41, \cdot)\) n/a 972 18
648.3.bf \(\chi_{648}(43, \cdot)\) n/a 3852 18

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(648))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(648)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 20}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 15}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 16}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 9}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(54))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(81))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(108))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(162))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(216))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(324))\)\(^{\oplus 2}\)