Newspace parameters
Level: | \( N \) | \(=\) | \( 648 = 2^{3} \cdot 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 648.e (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(17.6567211305\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Coefficient field: | \(\Q(\sqrt{-2}, \sqrt{-3})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} - 2x^{2} + 4 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{11}]\) |
Coefficient ring index: | \( 2^{6} \) |
Twist minimal: | no (minimal twist has level 72) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} - 2x^{2} + 4 \)
:
\(\beta_{1}\) | \(=\) |
\( 2\nu^{3} \)
|
\(\beta_{2}\) | \(=\) |
\( \nu^{2} - 1 \)
|
\(\beta_{3}\) | \(=\) |
\( -2\nu^{3} + 8\nu \)
|
\(\nu\) | \(=\) |
\( ( \beta_{3} + \beta_1 ) / 8 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{2} + 1 \)
|
\(\nu^{3}\) | \(=\) |
\( ( \beta_1 ) / 2 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).
\(n\) | \(325\) | \(487\) | \(569\) |
\(\chi(n)\) | \(1\) | \(1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
161.1 |
|
0 | 0 | 0 | − | 7.38891i | 0 | −6.79796 | 0 | 0 | 0 | |||||||||||||||||||||||||||||
161.2 | 0 | 0 | 0 | − | 3.92480i | 0 | 12.7980 | 0 | 0 | 0 | ||||||||||||||||||||||||||||||
161.3 | 0 | 0 | 0 | 3.92480i | 0 | 12.7980 | 0 | 0 | 0 | |||||||||||||||||||||||||||||||
161.4 | 0 | 0 | 0 | 7.38891i | 0 | −6.79796 | 0 | 0 | 0 | |||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 648.3.e.b | 4 | |
3.b | odd | 2 | 1 | inner | 648.3.e.b | 4 | |
4.b | odd | 2 | 1 | 1296.3.e.c | 4 | ||
9.c | even | 3 | 1 | 72.3.m.a | ✓ | 4 | |
9.c | even | 3 | 1 | 216.3.m.a | 4 | ||
9.d | odd | 6 | 1 | 72.3.m.a | ✓ | 4 | |
9.d | odd | 6 | 1 | 216.3.m.a | 4 | ||
12.b | even | 2 | 1 | 1296.3.e.c | 4 | ||
36.f | odd | 6 | 1 | 144.3.q.d | 4 | ||
36.f | odd | 6 | 1 | 432.3.q.c | 4 | ||
36.h | even | 6 | 1 | 144.3.q.d | 4 | ||
36.h | even | 6 | 1 | 432.3.q.c | 4 | ||
72.j | odd | 6 | 1 | 576.3.q.h | 4 | ||
72.j | odd | 6 | 1 | 1728.3.q.e | 4 | ||
72.l | even | 6 | 1 | 576.3.q.c | 4 | ||
72.l | even | 6 | 1 | 1728.3.q.f | 4 | ||
72.n | even | 6 | 1 | 576.3.q.h | 4 | ||
72.n | even | 6 | 1 | 1728.3.q.e | 4 | ||
72.p | odd | 6 | 1 | 576.3.q.c | 4 | ||
72.p | odd | 6 | 1 | 1728.3.q.f | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
72.3.m.a | ✓ | 4 | 9.c | even | 3 | 1 | |
72.3.m.a | ✓ | 4 | 9.d | odd | 6 | 1 | |
144.3.q.d | 4 | 36.f | odd | 6 | 1 | ||
144.3.q.d | 4 | 36.h | even | 6 | 1 | ||
216.3.m.a | 4 | 9.c | even | 3 | 1 | ||
216.3.m.a | 4 | 9.d | odd | 6 | 1 | ||
432.3.q.c | 4 | 36.f | odd | 6 | 1 | ||
432.3.q.c | 4 | 36.h | even | 6 | 1 | ||
576.3.q.c | 4 | 72.l | even | 6 | 1 | ||
576.3.q.c | 4 | 72.p | odd | 6 | 1 | ||
576.3.q.h | 4 | 72.j | odd | 6 | 1 | ||
576.3.q.h | 4 | 72.n | even | 6 | 1 | ||
648.3.e.b | 4 | 1.a | even | 1 | 1 | trivial | |
648.3.e.b | 4 | 3.b | odd | 2 | 1 | inner | |
1296.3.e.c | 4 | 4.b | odd | 2 | 1 | ||
1296.3.e.c | 4 | 12.b | even | 2 | 1 | ||
1728.3.q.e | 4 | 72.j | odd | 6 | 1 | ||
1728.3.q.e | 4 | 72.n | even | 6 | 1 | ||
1728.3.q.f | 4 | 72.l | even | 6 | 1 | ||
1728.3.q.f | 4 | 72.p | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{4} + 70T_{5}^{2} + 841 \)
acting on \(S_{3}^{\mathrm{new}}(648, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} \)
$3$
\( T^{4} \)
$5$
\( T^{4} + 70T^{2} + 841 \)
$7$
\( (T^{2} - 6 T - 87)^{2} \)
$11$
\( T^{4} + 310 T^{2} + 10201 \)
$13$
\( (T^{2} - 14 T - 47)^{2} \)
$17$
\( T^{4} + 640T^{2} + 4096 \)
$19$
\( (T^{2} - 4 T - 380)^{2} \)
$23$
\( T^{4} + 214T^{2} + 1849 \)
$29$
\( T^{4} + 582 T^{2} + 81225 \)
$31$
\( (T^{2} + 74 T + 1273)^{2} \)
$37$
\( (T^{2} + 60 T + 516)^{2} \)
$41$
\( (T^{2} + 1587)^{2} \)
$43$
\( (T^{2} + 10 T - 1511)^{2} \)
$47$
\( T^{4} + 5622 T^{2} + \cdots + 4995225 \)
$53$
\( T^{4} + 10240 T^{2} + \cdots + 1048576 \)
$59$
\( T^{4} + 310 T^{2} + 10201 \)
$61$
\( (T^{2} - 62 T + 865)^{2} \)
$67$
\( (T^{2} - 22 T - 9479)^{2} \)
$71$
\( T^{4} + 3712 T^{2} + \cdots + 2560000 \)
$73$
\( (T^{2} - 20 T - 3356)^{2} \)
$79$
\( (T^{2} - 86 T - 2855)^{2} \)
$83$
\( T^{4} + 13270 T^{2} + \cdots + 34916281 \)
$89$
\( T^{4} + 5760 T^{2} + 331776 \)
$97$
\( (T^{2} + 242 T + 14257)^{2} \)
show more
show less