Properties

Label 648.2.t.a.613.31
Level $648$
Weight $2$
Character 648.613
Analytic conductor $5.174$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,2,Mod(37,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.t (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 613.31
Character \(\chi\) \(=\) 648.613
Dual form 648.2.t.a.37.31

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.35161 + 0.416109i) q^{2} +(1.65371 + 1.12483i) q^{4} +(1.34802 - 3.70366i) q^{5} +(0.00177522 - 0.0100678i) q^{7} +(1.76712 + 2.20846i) q^{8} +(3.36313 - 4.44499i) q^{10} +(0.343808 + 0.944604i) q^{11} +(-2.57400 - 3.06757i) q^{13} +(0.00658870 - 0.0128690i) q^{14} +(1.46950 + 3.72029i) q^{16} +(0.948987 + 1.64369i) q^{17} +(3.76245 + 2.17225i) q^{19} +(6.39524 - 4.60847i) q^{20} +(0.0716366 + 1.41980i) q^{22} +(-1.19728 - 6.79010i) q^{23} +(-8.06972 - 6.77130i) q^{25} +(-2.20260 - 5.21723i) q^{26} +(0.0142603 - 0.0146523i) q^{28} +(3.82827 - 4.56236i) q^{29} +(1.38501 + 7.85480i) q^{31} +(0.438140 + 5.63986i) q^{32} +(0.598707 + 2.61652i) q^{34} +(-0.0348946 - 0.0201464i) q^{35} +(-6.65823 + 3.84413i) q^{37} +(4.18148 + 4.50163i) q^{38} +(10.5615 - 3.56775i) q^{40} +(-4.44753 + 3.73192i) q^{41} +(1.42511 + 3.91546i) q^{43} +(-0.493966 + 1.94882i) q^{44} +(1.20716 - 9.67577i) q^{46} +(-1.37530 + 7.79973i) q^{47} +(6.57775 + 2.39411i) q^{49} +(-8.08953 - 12.5100i) q^{50} +(-0.806130 - 7.96819i) q^{52} -2.25567i q^{53} +3.96195 q^{55} +(0.0253713 - 0.0138704i) q^{56} +(7.07277 - 4.57356i) q^{58} +(2.24610 - 6.17111i) q^{59} +(0.106836 + 0.0188381i) q^{61} +(-1.39645 + 11.1930i) q^{62} +(-1.75460 + 7.80522i) q^{64} +(-14.8311 + 5.39806i) q^{65} +(-2.47342 - 2.94771i) q^{67} +(-0.279537 + 3.78564i) q^{68} +(-0.0387808 - 0.0417500i) q^{70} +(-0.442665 - 0.766718i) q^{71} +(-7.26116 + 12.5767i) q^{73} +(-10.5989 + 2.42523i) q^{74} +(3.77857 + 7.82441i) q^{76} +(0.0101204 - 0.00178450i) q^{77} +(2.46319 + 2.06686i) q^{79} +(15.7596 - 0.427473i) q^{80} +(-7.56422 + 3.19345i) q^{82} +(-9.76904 + 11.6423i) q^{83} +(7.36694 - 1.29899i) q^{85} +(0.296940 + 5.88518i) q^{86} +(-1.47857 + 2.42851i) q^{88} +(1.45362 - 2.51775i) q^{89} +(-0.0354530 + 0.0204688i) q^{91} +(5.65779 - 12.5756i) q^{92} +(-5.10441 + 9.96993i) q^{94} +(13.1172 - 11.0066i) q^{95} +(-12.0217 + 4.37554i) q^{97} +(7.89435 + 5.97296i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 6 q^{2} - 6 q^{4} - 12 q^{7} + 3 q^{8} - 3 q^{10} + 21 q^{14} - 6 q^{16} + 6 q^{17} - 15 q^{20} - 6 q^{22} + 12 q^{23} - 12 q^{25} + 30 q^{26} - 12 q^{28} - 12 q^{31} + 36 q^{32} + 42 q^{38} - 21 q^{40}+ \cdots - 54 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{2}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.35161 + 0.416109i 0.955734 + 0.294233i
\(3\) 0 0
\(4\) 1.65371 + 1.12483i 0.826854 + 0.562417i
\(5\) 1.34802 3.70366i 0.602854 1.65633i −0.142608 0.989779i \(-0.545549\pi\)
0.745462 0.666548i \(-0.232229\pi\)
\(6\) 0 0
\(7\) 0.00177522 0.0100678i 0.000670970 0.00380526i −0.984470 0.175550i \(-0.943829\pi\)
0.985141 + 0.171745i \(0.0549406\pi\)
\(8\) 1.76712 + 2.20846i 0.624770 + 0.780809i
\(9\) 0 0
\(10\) 3.36313 4.44499i 1.06351 1.40563i
\(11\) 0.343808 + 0.944604i 0.103662 + 0.284809i 0.980671 0.195666i \(-0.0626867\pi\)
−0.877009 + 0.480474i \(0.840465\pi\)
\(12\) 0 0
\(13\) −2.57400 3.06757i −0.713899 0.850792i 0.280124 0.959964i \(-0.409624\pi\)
−0.994023 + 0.109172i \(0.965180\pi\)
\(14\) 0.00658870 0.0128690i 0.00176090 0.00343939i
\(15\) 0 0
\(16\) 1.46950 + 3.72029i 0.367374 + 0.930073i
\(17\) 0.948987 + 1.64369i 0.230163 + 0.398654i 0.957856 0.287249i \(-0.0927407\pi\)
−0.727693 + 0.685903i \(0.759407\pi\)
\(18\) 0 0
\(19\) 3.76245 + 2.17225i 0.863166 + 0.498349i 0.865071 0.501649i \(-0.167273\pi\)
−0.00190536 + 0.999998i \(0.500606\pi\)
\(20\) 6.39524 4.60847i 1.43002 1.03049i
\(21\) 0 0
\(22\) 0.0716366 + 1.41980i 0.0152730 + 0.302702i
\(23\) −1.19728 6.79010i −0.249650 1.41583i −0.809442 0.587200i \(-0.800230\pi\)
0.559792 0.828633i \(-0.310881\pi\)
\(24\) 0 0
\(25\) −8.06972 6.77130i −1.61394 1.35426i
\(26\) −2.20260 5.21723i −0.431966 1.02318i
\(27\) 0 0
\(28\) 0.0142603 0.0146523i 0.00269494 0.00276903i
\(29\) 3.82827 4.56236i 0.710892 0.847208i −0.282820 0.959173i \(-0.591270\pi\)
0.993712 + 0.111965i \(0.0357143\pi\)
\(30\) 0 0
\(31\) 1.38501 + 7.85480i 0.248756 + 1.41076i 0.811606 + 0.584205i \(0.198594\pi\)
−0.562850 + 0.826559i \(0.690295\pi\)
\(32\) 0.438140 + 5.63986i 0.0774530 + 0.996996i
\(33\) 0 0
\(34\) 0.598707 + 2.61652i 0.102677 + 0.448729i
\(35\) −0.0348946 0.0201464i −0.00589826 0.00340536i
\(36\) 0 0
\(37\) −6.65823 + 3.84413i −1.09461 + 0.631971i −0.934799 0.355177i \(-0.884421\pi\)
−0.159807 + 0.987148i \(0.551087\pi\)
\(38\) 4.18148 + 4.50163i 0.678326 + 0.730261i
\(39\) 0 0
\(40\) 10.5615 3.56775i 1.66992 0.564110i
\(41\) −4.44753 + 3.73192i −0.694588 + 0.582828i −0.920228 0.391382i \(-0.871997\pi\)
0.225641 + 0.974211i \(0.427553\pi\)
\(42\) 0 0
\(43\) 1.42511 + 3.91546i 0.217327 + 0.597102i 0.999668 0.0257481i \(-0.00819679\pi\)
−0.782341 + 0.622850i \(0.785975\pi\)
\(44\) −0.493966 + 1.94882i −0.0744681 + 0.293796i
\(45\) 0 0
\(46\) 1.20716 9.67577i 0.177987 1.42661i
\(47\) −1.37530 + 7.79973i −0.200608 + 1.13771i 0.703594 + 0.710602i \(0.251578\pi\)
−0.904202 + 0.427105i \(0.859534\pi\)
\(48\) 0 0
\(49\) 6.57775 + 2.39411i 0.939679 + 0.342015i
\(50\) −8.08953 12.5100i −1.14403 1.76919i
\(51\) 0 0
\(52\) −0.806130 7.96819i −0.111790 1.10499i
\(53\) 2.25567i 0.309840i −0.987927 0.154920i \(-0.950488\pi\)
0.987927 0.154920i \(-0.0495120\pi\)
\(54\) 0 0
\(55\) 3.96195 0.534230
\(56\) 0.0253713 0.0138704i 0.00339038 0.00185351i
\(57\) 0 0
\(58\) 7.07277 4.57356i 0.928701 0.600537i
\(59\) 2.24610 6.17111i 0.292417 0.803410i −0.703294 0.710899i \(-0.748288\pi\)
0.995712 0.0925111i \(-0.0294894\pi\)
\(60\) 0 0
\(61\) 0.106836 + 0.0188381i 0.0136789 + 0.00241197i 0.180483 0.983578i \(-0.442234\pi\)
−0.166805 + 0.985990i \(0.553345\pi\)
\(62\) −1.39645 + 11.1930i −0.177349 + 1.42151i
\(63\) 0 0
\(64\) −1.75460 + 7.80522i −0.219325 + 0.975652i
\(65\) −14.8311 + 5.39806i −1.83957 + 0.669547i
\(66\) 0 0
\(67\) −2.47342 2.94771i −0.302177 0.360120i 0.593494 0.804839i \(-0.297748\pi\)
−0.895670 + 0.444718i \(0.853304\pi\)
\(68\) −0.279537 + 3.78564i −0.0338988 + 0.459076i
\(69\) 0 0
\(70\) −0.0387808 0.0417500i −0.00463520 0.00499009i
\(71\) −0.442665 0.766718i −0.0525346 0.0909926i 0.838562 0.544806i \(-0.183397\pi\)
−0.891097 + 0.453813i \(0.850063\pi\)
\(72\) 0 0
\(73\) −7.26116 + 12.5767i −0.849854 + 1.47199i 0.0314838 + 0.999504i \(0.489977\pi\)
−0.881338 + 0.472486i \(0.843357\pi\)
\(74\) −10.5989 + 2.42523i −1.23210 + 0.281927i
\(75\) 0 0
\(76\) 3.77857 + 7.82441i 0.433432 + 0.897521i
\(77\) 0.0101204 0.00178450i 0.00115333 0.000203362i
\(78\) 0 0
\(79\) 2.46319 + 2.06686i 0.277131 + 0.232540i 0.770750 0.637138i \(-0.219882\pi\)
−0.493619 + 0.869678i \(0.664326\pi\)
\(80\) 15.7596 0.427473i 1.76198 0.0477930i
\(81\) 0 0
\(82\) −7.56422 + 3.19345i −0.835328 + 0.352658i
\(83\) −9.76904 + 11.6423i −1.07229 + 1.27791i −0.113579 + 0.993529i \(0.536232\pi\)
−0.958712 + 0.284378i \(0.908213\pi\)
\(84\) 0 0
\(85\) 7.36694 1.29899i 0.799057 0.140895i
\(86\) 0.296940 + 5.88518i 0.0320198 + 0.634616i
\(87\) 0 0
\(88\) −1.47857 + 2.42851i −0.157616 + 0.258880i
\(89\) 1.45362 2.51775i 0.154084 0.266881i −0.778641 0.627469i \(-0.784091\pi\)
0.932725 + 0.360588i \(0.117424\pi\)
\(90\) 0 0
\(91\) −0.0354530 + 0.0204688i −0.00371649 + 0.00214572i
\(92\) 5.65779 12.5756i 0.589865 1.31109i
\(93\) 0 0
\(94\) −5.10441 + 9.96993i −0.526480 + 1.02832i
\(95\) 13.1172 11.0066i 1.34579 1.12925i
\(96\) 0 0
\(97\) −12.0217 + 4.37554i −1.22062 + 0.444269i −0.870375 0.492389i \(-0.836124\pi\)
−0.350244 + 0.936658i \(0.613901\pi\)
\(98\) 7.89435 + 5.97296i 0.797450 + 0.603360i
\(99\) 0 0
\(100\) −5.72836 20.2748i −0.572836 2.02748i
\(101\) −8.25225 1.45509i −0.821129 0.144787i −0.252727 0.967538i \(-0.581327\pi\)
−0.568403 + 0.822751i \(0.692438\pi\)
\(102\) 0 0
\(103\) 6.53199 + 2.37745i 0.643617 + 0.234257i 0.643147 0.765743i \(-0.277628\pi\)
0.000469418 1.00000i \(0.499851\pi\)
\(104\) 2.22606 11.1053i 0.218283 1.08897i
\(105\) 0 0
\(106\) 0.938605 3.04879i 0.0911653 0.296125i
\(107\) 14.2756i 1.38007i −0.723776 0.690035i \(-0.757595\pi\)
0.723776 0.690035i \(-0.242405\pi\)
\(108\) 0 0
\(109\) 4.88426i 0.467827i −0.972257 0.233914i \(-0.924847\pi\)
0.972257 0.233914i \(-0.0751533\pi\)
\(110\) 5.35502 + 1.64860i 0.510581 + 0.157188i
\(111\) 0 0
\(112\) 0.0400638 0.00819021i 0.00378567 0.000773902i
\(113\) −4.20463 1.53036i −0.395538 0.143964i 0.136591 0.990628i \(-0.456386\pi\)
−0.532129 + 0.846663i \(0.678608\pi\)
\(114\) 0 0
\(115\) −26.7622 4.71889i −2.49559 0.440039i
\(116\) 11.4627 3.23863i 1.06429 0.300699i
\(117\) 0 0
\(118\) 5.60371 7.40632i 0.515863 0.681807i
\(119\) 0.0182330 0.00663627i 0.00167142 0.000608346i
\(120\) 0 0
\(121\) 7.65242 6.42114i 0.695674 0.583740i
\(122\) 0.136562 + 0.0699171i 0.0123638 + 0.00633000i
\(123\) 0 0
\(124\) −6.54495 + 14.5475i −0.587754 + 1.30640i
\(125\) −18.8902 + 10.9063i −1.68959 + 0.975485i
\(126\) 0 0
\(127\) −0.733337 + 1.27018i −0.0650731 + 0.112710i −0.896726 0.442585i \(-0.854061\pi\)
0.831653 + 0.555295i \(0.187395\pi\)
\(128\) −5.61935 + 9.81951i −0.496685 + 0.867931i
\(129\) 0 0
\(130\) −22.2920 + 1.12475i −1.95514 + 0.0986474i
\(131\) −11.2373 + 1.98143i −0.981805 + 0.173119i −0.641439 0.767174i \(-0.721662\pi\)
−0.340366 + 0.940293i \(0.610551\pi\)
\(132\) 0 0
\(133\) 0.0285489 0.0340233i 0.00247551 0.00295019i
\(134\) −2.11654 5.01337i −0.182841 0.433089i
\(135\) 0 0
\(136\) −1.95306 + 5.00040i −0.167474 + 0.428781i
\(137\) −3.27137 2.74501i −0.279492 0.234522i 0.492255 0.870451i \(-0.336173\pi\)
−0.771748 + 0.635929i \(0.780617\pi\)
\(138\) 0 0
\(139\) −1.04893 + 0.184955i −0.0889693 + 0.0156877i −0.217956 0.975959i \(-0.569939\pi\)
0.128986 + 0.991646i \(0.458828\pi\)
\(140\) −0.0350441 0.0725669i −0.00296176 0.00613302i
\(141\) 0 0
\(142\) −0.279273 1.22050i −0.0234360 0.102422i
\(143\) 2.01268 3.48606i 0.168309 0.291519i
\(144\) 0 0
\(145\) −11.7368 20.3288i −0.974690 1.68821i
\(146\) −15.0475 + 13.9774i −1.24534 + 1.15678i
\(147\) 0 0
\(148\) −15.3348 1.13234i −1.26051 0.0930777i
\(149\) 1.34236 + 1.59976i 0.109970 + 0.131058i 0.818222 0.574903i \(-0.194960\pi\)
−0.708251 + 0.705960i \(0.750516\pi\)
\(150\) 0 0
\(151\) 9.89970 3.60320i 0.805626 0.293224i 0.0938105 0.995590i \(-0.470095\pi\)
0.711816 + 0.702366i \(0.247873\pi\)
\(152\) 1.85136 + 12.1479i 0.150165 + 0.985321i
\(153\) 0 0
\(154\) 0.0144214 + 0.00179923i 0.00116211 + 0.000144986i
\(155\) 30.9586 + 5.45883i 2.48665 + 0.438464i
\(156\) 0 0
\(157\) 7.61747 20.9288i 0.607940 1.67030i −0.126779 0.991931i \(-0.540464\pi\)
0.734720 0.678371i \(-0.237314\pi\)
\(158\) 2.46924 + 3.81855i 0.196442 + 0.303788i
\(159\) 0 0
\(160\) 21.4788 + 5.97993i 1.69804 + 0.472755i
\(161\) −0.0704866 −0.00555512
\(162\) 0 0
\(163\) 8.64571i 0.677184i −0.940933 0.338592i \(-0.890049\pi\)
0.940933 0.338592i \(-0.109951\pi\)
\(164\) −11.5527 + 1.16877i −0.902115 + 0.0912656i
\(165\) 0 0
\(166\) −18.0484 + 11.6709i −1.40083 + 0.905835i
\(167\) 7.93163 + 2.88688i 0.613768 + 0.223393i 0.630151 0.776473i \(-0.282993\pi\)
−0.0163833 + 0.999866i \(0.505215\pi\)
\(168\) 0 0
\(169\) −0.527105 + 2.98936i −0.0405465 + 0.229951i
\(170\) 10.4978 + 1.30972i 0.805142 + 0.100451i
\(171\) 0 0
\(172\) −2.04753 + 8.07804i −0.156123 + 0.615945i
\(173\) 4.65008 + 12.7760i 0.353539 + 0.971340i 0.981224 + 0.192872i \(0.0617803\pi\)
−0.627685 + 0.778467i \(0.715997\pi\)
\(174\) 0 0
\(175\) −0.0824974 + 0.0692236i −0.00623622 + 0.00523281i
\(176\) −3.00898 + 2.66716i −0.226810 + 0.201044i
\(177\) 0 0
\(178\) 3.01239 2.79815i 0.225788 0.209731i
\(179\) −0.257187 + 0.148487i −0.0192231 + 0.0110985i −0.509581 0.860423i \(-0.670199\pi\)
0.490358 + 0.871521i \(0.336866\pi\)
\(180\) 0 0
\(181\) 1.63626 + 0.944694i 0.121622 + 0.0702186i 0.559577 0.828778i \(-0.310964\pi\)
−0.437955 + 0.898997i \(0.644297\pi\)
\(182\) −0.0564360 + 0.0129136i −0.00418332 + 0.000957218i
\(183\) 0 0
\(184\) 12.8799 14.6430i 0.949521 1.07950i
\(185\) 5.26192 + 29.8418i 0.386864 + 2.19401i
\(186\) 0 0
\(187\) −1.22637 + 1.46153i −0.0896811 + 0.106878i
\(188\) −11.0477 + 11.3515i −0.805740 + 0.827892i
\(189\) 0 0
\(190\) 22.3092 9.41849i 1.61848 0.683289i
\(191\) −10.6897 8.96976i −0.773483 0.649029i 0.168116 0.985767i \(-0.446232\pi\)
−0.941598 + 0.336738i \(0.890676\pi\)
\(192\) 0 0
\(193\) 1.65530 + 9.38768i 0.119151 + 0.675740i 0.984611 + 0.174761i \(0.0559153\pi\)
−0.865460 + 0.500979i \(0.832974\pi\)
\(194\) −18.0694 + 0.911699i −1.29731 + 0.0654562i
\(195\) 0 0
\(196\) 8.18470 + 11.3580i 0.584622 + 0.811288i
\(197\) −7.61046 4.39390i −0.542223 0.313052i 0.203757 0.979022i \(-0.434685\pi\)
−0.745979 + 0.665969i \(0.768018\pi\)
\(198\) 0 0
\(199\) 4.70991 + 8.15780i 0.333876 + 0.578291i 0.983268 0.182163i \(-0.0583098\pi\)
−0.649392 + 0.760454i \(0.724977\pi\)
\(200\) 0.694014 29.7873i 0.0490742 2.10628i
\(201\) 0 0
\(202\) −10.5484 5.40055i −0.742180 0.379982i
\(203\) −0.0391368 0.0466414i −0.00274686 0.00327358i
\(204\) 0 0
\(205\) 7.82640 + 21.5029i 0.546619 + 1.50182i
\(206\) 7.83944 + 5.93141i 0.546200 + 0.413261i
\(207\) 0 0
\(208\) 7.62979 14.0838i 0.529031 0.976537i
\(209\) −0.758358 + 4.30086i −0.0524567 + 0.297497i
\(210\) 0 0
\(211\) −4.12560 + 11.3350i −0.284018 + 0.780333i 0.712855 + 0.701311i \(0.247402\pi\)
−0.996873 + 0.0790214i \(0.974820\pi\)
\(212\) 2.53726 3.73022i 0.174260 0.256193i
\(213\) 0 0
\(214\) 5.94018 19.2950i 0.406062 1.31898i
\(215\) 16.4226 1.12001
\(216\) 0 0
\(217\) 0.0815391 0.00553524
\(218\) 2.03238 6.60162i 0.137650 0.447118i
\(219\) 0 0
\(220\) 6.55191 + 4.45654i 0.441730 + 0.300460i
\(221\) 2.59946 7.14195i 0.174858 0.480420i
\(222\) 0 0
\(223\) 0.616341 3.49544i 0.0412732 0.234072i −0.957192 0.289454i \(-0.906526\pi\)
0.998465 + 0.0553815i \(0.0176375\pi\)
\(224\) 0.0575587 + 0.00560090i 0.00384580 + 0.000374226i
\(225\) 0 0
\(226\) −5.04623 3.81803i −0.335670 0.253972i
\(227\) 3.72066 + 10.2224i 0.246949 + 0.678486i 0.999794 + 0.0202886i \(0.00645849\pi\)
−0.752846 + 0.658197i \(0.771319\pi\)
\(228\) 0 0
\(229\) −5.05083 6.01935i −0.333769 0.397770i 0.572892 0.819631i \(-0.305821\pi\)
−0.906661 + 0.421861i \(0.861377\pi\)
\(230\) −34.2085 17.5141i −2.25564 1.15484i
\(231\) 0 0
\(232\) 16.8408 + 0.392373i 1.10565 + 0.0257606i
\(233\) −12.0985 20.9553i −0.792602 1.37283i −0.924351 0.381544i \(-0.875392\pi\)
0.131749 0.991283i \(-0.457941\pi\)
\(234\) 0 0
\(235\) 27.0336 + 15.6079i 1.76348 + 1.01814i
\(236\) 10.6559 7.67872i 0.693638 0.499842i
\(237\) 0 0
\(238\) 0.0274053 0.00138275i 0.00177642 8.96303e-5i
\(239\) 5.23764 + 29.7041i 0.338795 + 1.92140i 0.385963 + 0.922514i \(0.373869\pi\)
−0.0471684 + 0.998887i \(0.515020\pi\)
\(240\) 0 0
\(241\) −1.91756 1.60903i −0.123521 0.103647i 0.578935 0.815374i \(-0.303469\pi\)
−0.702456 + 0.711727i \(0.747913\pi\)
\(242\) 13.0150 5.49465i 0.836635 0.353209i
\(243\) 0 0
\(244\) 0.155486 + 0.151325i 0.00995396 + 0.00968762i
\(245\) 17.7339 21.1344i 1.13298 1.35023i
\(246\) 0 0
\(247\) −3.02101 17.1330i −0.192222 1.09015i
\(248\) −14.8995 + 16.9391i −0.946122 + 1.07563i
\(249\) 0 0
\(250\) −30.0704 + 6.88065i −1.90182 + 0.435170i
\(251\) 14.5027 + 8.37314i 0.915402 + 0.528508i 0.882165 0.470940i \(-0.156085\pi\)
0.0332368 + 0.999448i \(0.489418\pi\)
\(252\) 0 0
\(253\) 6.00232 3.46544i 0.377363 0.217870i
\(254\) −1.51972 + 1.41164i −0.0953556 + 0.0885741i
\(255\) 0 0
\(256\) −11.6812 + 10.9339i −0.730073 + 0.683369i
\(257\) 20.4870 17.1907i 1.27795 1.07232i 0.284423 0.958699i \(-0.408198\pi\)
0.993524 0.113626i \(-0.0362465\pi\)
\(258\) 0 0
\(259\) 0.0268820 + 0.0738578i 0.00167037 + 0.00458930i
\(260\) −30.5982 7.75567i −1.89762 0.480986i
\(261\) 0 0
\(262\) −16.0129 1.99780i −0.989281 0.123424i
\(263\) 0.762315 4.32330i 0.0470064 0.266586i −0.952242 0.305343i \(-0.901229\pi\)
0.999249 + 0.0387571i \(0.0123398\pi\)
\(264\) 0 0
\(265\) −8.35424 3.04070i −0.513197 0.186788i
\(266\) 0.0527445 0.0341068i 0.00323397 0.00209122i
\(267\) 0 0
\(268\) −0.774631 7.65684i −0.0473181 0.467716i
\(269\) 0.741050i 0.0451826i 0.999745 + 0.0225913i \(0.00719165\pi\)
−0.999745 + 0.0225913i \(0.992808\pi\)
\(270\) 0 0
\(271\) −14.1450 −0.859245 −0.429622 0.903009i \(-0.641353\pi\)
−0.429622 + 0.903009i \(0.641353\pi\)
\(272\) −4.72049 + 5.94591i −0.286222 + 0.360524i
\(273\) 0 0
\(274\) −3.27940 5.07143i −0.198116 0.306376i
\(275\) 3.62176 9.95071i 0.218400 0.600050i
\(276\) 0 0
\(277\) −8.42697 1.48590i −0.506327 0.0892792i −0.0853514 0.996351i \(-0.527201\pi\)
−0.420976 + 0.907072i \(0.638312\pi\)
\(278\) −1.49471 0.186482i −0.0896468 0.0111845i
\(279\) 0 0
\(280\) −0.0171703 0.112664i −0.00102612 0.00673298i
\(281\) 17.6483 6.42344i 1.05281 0.383191i 0.243086 0.970005i \(-0.421840\pi\)
0.809722 + 0.586814i \(0.199618\pi\)
\(282\) 0 0
\(283\) 16.5234 + 19.6918i 0.982214 + 1.17056i 0.985347 + 0.170562i \(0.0545582\pi\)
−0.00313343 + 0.999995i \(0.500997\pi\)
\(284\) 0.130393 1.76585i 0.00773738 0.104784i
\(285\) 0 0
\(286\) 4.17094 3.87431i 0.246633 0.229093i
\(287\) 0.0296768 + 0.0514017i 0.00175177 + 0.00303415i
\(288\) 0 0
\(289\) 6.69885 11.6027i 0.394050 0.682514i
\(290\) −7.40465 32.3604i −0.434816 1.90027i
\(291\) 0 0
\(292\) −26.1545 + 12.6306i −1.53058 + 0.739148i
\(293\) 14.3663 2.53317i 0.839288 0.147989i 0.262550 0.964918i \(-0.415436\pi\)
0.576738 + 0.816929i \(0.304325\pi\)
\(294\) 0 0
\(295\) −19.8279 16.6376i −1.15442 0.968678i
\(296\) −20.2555 7.91142i −1.17733 0.459842i
\(297\) 0 0
\(298\) 1.14868 + 2.72083i 0.0665410 + 0.157613i
\(299\) −17.7473 + 21.1504i −1.02635 + 1.22316i
\(300\) 0 0
\(301\) 0.0419499 0.00739689i 0.00241795 0.000426350i
\(302\) 14.8799 0.750771i 0.856241 0.0432020i
\(303\) 0 0
\(304\) −2.55251 + 17.1895i −0.146397 + 0.985888i
\(305\) 0.213787 0.370290i 0.0122414 0.0212028i
\(306\) 0 0
\(307\) 8.07578 4.66255i 0.460909 0.266106i −0.251517 0.967853i \(-0.580930\pi\)
0.712426 + 0.701747i \(0.247596\pi\)
\(308\) 0.0187434 + 0.00843273i 0.00106801 + 0.000480499i
\(309\) 0 0
\(310\) 39.5725 + 20.2603i 2.24757 + 1.15071i
\(311\) 6.15253 5.16259i 0.348878 0.292743i −0.451461 0.892291i \(-0.649097\pi\)
0.800339 + 0.599547i \(0.204653\pi\)
\(312\) 0 0
\(313\) 31.0694 11.3083i 1.75615 0.639185i 0.756261 0.654269i \(-0.227024\pi\)
0.999886 + 0.0150840i \(0.00480156\pi\)
\(314\) 19.0045 25.1179i 1.07249 1.41749i
\(315\) 0 0
\(316\) 1.74852 + 6.18867i 0.0983619 + 0.348140i
\(317\) −25.6721 4.52669i −1.44189 0.254244i −0.602650 0.798006i \(-0.705888\pi\)
−0.839240 + 0.543762i \(0.817000\pi\)
\(318\) 0 0
\(319\) 5.62581 + 2.04763i 0.314985 + 0.114645i
\(320\) 26.5426 + 17.0200i 1.48378 + 0.951449i
\(321\) 0 0
\(322\) −0.0952705 0.0293301i −0.00530922 0.00163450i
\(323\) 8.24576i 0.458806i
\(324\) 0 0
\(325\) 42.1838i 2.33993i
\(326\) 3.59755 11.6856i 0.199250 0.647207i
\(327\) 0 0
\(328\) −16.1011 3.22746i −0.889035 0.178207i
\(329\) 0.0760844 + 0.0276925i 0.00419467 + 0.00152674i
\(330\) 0 0
\(331\) 2.73256 + 0.481823i 0.150195 + 0.0264834i 0.248240 0.968699i \(-0.420148\pi\)
−0.0980451 + 0.995182i \(0.531259\pi\)
\(332\) −29.2508 + 8.26439i −1.60535 + 0.453567i
\(333\) 0 0
\(334\) 9.51922 + 7.20235i 0.520869 + 0.394095i
\(335\) −14.2516 + 5.18714i −0.778645 + 0.283404i
\(336\) 0 0
\(337\) −10.0326 + 8.41837i −0.546512 + 0.458578i −0.873758 0.486361i \(-0.838324\pi\)
0.327246 + 0.944939i \(0.393879\pi\)
\(338\) −1.95634 + 3.82112i −0.106411 + 0.207841i
\(339\) 0 0
\(340\) 13.6439 + 6.13844i 0.739945 + 0.332904i
\(341\) −6.94350 + 4.00883i −0.376012 + 0.217090i
\(342\) 0 0
\(343\) 0.0715611 0.123947i 0.00386393 0.00669253i
\(344\) −6.12880 + 10.0664i −0.330443 + 0.542743i
\(345\) 0 0
\(346\) 0.968901 + 19.2031i 0.0520885 + 1.03236i
\(347\) −14.2864 + 2.51907i −0.766932 + 0.135231i −0.543409 0.839468i \(-0.682867\pi\)
−0.223523 + 0.974699i \(0.571756\pi\)
\(348\) 0 0
\(349\) 15.0245 17.9055i 0.804242 0.958459i −0.195510 0.980702i \(-0.562636\pi\)
0.999753 + 0.0222430i \(0.00708074\pi\)
\(350\) −0.140309 + 0.0592355i −0.00749983 + 0.00316627i
\(351\) 0 0
\(352\) −5.17680 + 2.35290i −0.275924 + 0.125410i
\(353\) 26.1780 + 21.9660i 1.39332 + 1.16913i 0.963976 + 0.265988i \(0.0856981\pi\)
0.429340 + 0.903143i \(0.358746\pi\)
\(354\) 0 0
\(355\) −3.43638 + 0.605927i −0.182384 + 0.0321593i
\(356\) 5.23592 2.52854i 0.277503 0.134012i
\(357\) 0 0
\(358\) −0.409404 + 0.0936791i −0.0216377 + 0.00495110i
\(359\) 13.5391 23.4504i 0.714565 1.23766i −0.248562 0.968616i \(-0.579958\pi\)
0.963127 0.269047i \(-0.0867088\pi\)
\(360\) 0 0
\(361\) −0.0626343 0.108486i −0.00329654 0.00570978i
\(362\) 1.81849 + 1.95772i 0.0955777 + 0.102896i
\(363\) 0 0
\(364\) −0.0816530 0.00602936i −0.00427978 0.000316024i
\(365\) 36.7916 + 43.8465i 1.92576 + 2.29503i
\(366\) 0 0
\(367\) 4.30354 1.56636i 0.224643 0.0817633i −0.227247 0.973837i \(-0.572972\pi\)
0.451890 + 0.892074i \(0.350750\pi\)
\(368\) 23.5018 14.4322i 1.22511 0.752332i
\(369\) 0 0
\(370\) −5.30537 + 42.5241i −0.275813 + 2.21072i
\(371\) −0.0227096 0.00400432i −0.00117902 0.000207894i
\(372\) 0 0
\(373\) 5.86591 16.1165i 0.303725 0.834479i −0.690119 0.723696i \(-0.742442\pi\)
0.993845 0.110783i \(-0.0353359\pi\)
\(374\) −2.26573 + 1.46512i −0.117158 + 0.0757595i
\(375\) 0 0
\(376\) −19.6557 + 10.7457i −1.01367 + 0.554168i
\(377\) −23.8493 −1.22830
\(378\) 0 0
\(379\) 0.380673i 0.0195538i −0.999952 0.00977692i \(-0.996888\pi\)
0.999952 0.00977692i \(-0.00311214\pi\)
\(380\) 34.0725 3.44707i 1.74788 0.176831i
\(381\) 0 0
\(382\) −10.7160 16.5717i −0.548278 0.847883i
\(383\) −34.6697 12.6187i −1.77154 0.644788i −0.999963 0.00865253i \(-0.997246\pi\)
−0.771578 0.636135i \(-0.780532\pi\)
\(384\) 0 0
\(385\) 0.00703334 0.0398880i 0.000358452 0.00203288i
\(386\) −1.66897 + 13.3773i −0.0849483 + 0.680885i
\(387\) 0 0
\(388\) −24.8021 6.28656i −1.25914 0.319152i
\(389\) −2.44660 6.72197i −0.124047 0.340817i 0.862088 0.506758i \(-0.169156\pi\)
−0.986136 + 0.165941i \(0.946934\pi\)
\(390\) 0 0
\(391\) 10.0246 8.41167i 0.506968 0.425397i
\(392\) 6.33636 + 18.7574i 0.320035 + 0.947390i
\(393\) 0 0
\(394\) −8.45804 9.10562i −0.426110 0.458735i
\(395\) 10.9754 6.33665i 0.552233 0.318832i
\(396\) 0 0
\(397\) −22.6986 13.1051i −1.13921 0.657724i −0.192976 0.981203i \(-0.561814\pi\)
−0.946235 + 0.323479i \(0.895147\pi\)
\(398\) 2.97143 + 12.9860i 0.148945 + 0.650930i
\(399\) 0 0
\(400\) 13.3328 39.9721i 0.666640 1.99861i
\(401\) −3.00071 17.0179i −0.149848 0.849832i −0.963346 0.268263i \(-0.913550\pi\)
0.813497 0.581569i \(-0.197561\pi\)
\(402\) 0 0
\(403\) 20.5302 24.4669i 1.02268 1.21878i
\(404\) −12.0101 11.6887i −0.597523 0.581535i
\(405\) 0 0
\(406\) −0.0334898 0.0793262i −0.00166207 0.00393689i
\(407\) −5.92033 4.96775i −0.293460 0.246242i
\(408\) 0 0
\(409\) −4.27076 24.2207i −0.211176 1.19764i −0.887421 0.460960i \(-0.847505\pi\)
0.676245 0.736677i \(-0.263606\pi\)
\(410\) 1.63073 + 32.3201i 0.0805359 + 1.59618i
\(411\) 0 0
\(412\) 8.12777 + 11.2790i 0.400426 + 0.555677i
\(413\) −0.0581420 0.0335683i −0.00286098 0.00165179i
\(414\) 0 0
\(415\) 29.9502 + 51.8753i 1.47020 + 2.54646i
\(416\) 16.1729 15.8610i 0.792942 0.777651i
\(417\) 0 0
\(418\) −2.81463 + 5.49754i −0.137668 + 0.268893i
\(419\) −8.86909 10.5698i −0.433283 0.516367i 0.504583 0.863363i \(-0.331646\pi\)
−0.937867 + 0.346996i \(0.887202\pi\)
\(420\) 0 0
\(421\) 12.5029 + 34.3515i 0.609355 + 1.67419i 0.731637 + 0.681695i \(0.238757\pi\)
−0.122281 + 0.992496i \(0.539021\pi\)
\(422\) −10.2928 + 13.6038i −0.501045 + 0.662223i
\(423\) 0 0
\(424\) 4.98156 3.98604i 0.241926 0.193579i
\(425\) 3.47188 19.6900i 0.168411 0.955106i
\(426\) 0 0
\(427\) 0.000379315 0.00104216i 1.83563e−5 5.04336e-5i
\(428\) 16.0576 23.6076i 0.776175 1.14112i
\(429\) 0 0
\(430\) 22.1970 + 6.83359i 1.07043 + 0.329545i
\(431\) −7.44743 −0.358730 −0.179365 0.983783i \(-0.557404\pi\)
−0.179365 + 0.983783i \(0.557404\pi\)
\(432\) 0 0
\(433\) 20.9407 1.00634 0.503172 0.864186i \(-0.332166\pi\)
0.503172 + 0.864186i \(0.332166\pi\)
\(434\) 0.110209 + 0.0339291i 0.00529021 + 0.00162865i
\(435\) 0 0
\(436\) 5.49398 8.07713i 0.263114 0.386824i
\(437\) 10.2451 28.1482i 0.490090 1.34651i
\(438\) 0 0
\(439\) 4.88555 27.7073i 0.233174 1.32240i −0.613250 0.789889i \(-0.710138\pi\)
0.846424 0.532509i \(-0.178751\pi\)
\(440\) 7.00123 + 8.74982i 0.333771 + 0.417131i
\(441\) 0 0
\(442\) 6.48529 8.57149i 0.308474 0.407704i
\(443\) −5.98423 16.4415i −0.284319 0.781161i −0.996835 0.0795043i \(-0.974666\pi\)
0.712515 0.701657i \(-0.247556\pi\)
\(444\) 0 0
\(445\) −7.36537 8.77771i −0.349152 0.416103i
\(446\) 2.28754 4.46801i 0.108318 0.211567i
\(447\) 0 0
\(448\) 0.0754664 + 0.0315209i 0.00356545 + 0.00148922i
\(449\) 2.99357 + 5.18501i 0.141275 + 0.244696i 0.927977 0.372637i \(-0.121546\pi\)
−0.786702 + 0.617333i \(0.788213\pi\)
\(450\) 0 0
\(451\) −5.05428 2.91809i −0.237997 0.137408i
\(452\) −5.23182 7.26028i −0.246084 0.341495i
\(453\) 0 0
\(454\) 0.775245 + 15.3649i 0.0363841 + 0.721112i
\(455\) 0.0280181 + 0.158899i 0.00131351 + 0.00744928i
\(456\) 0 0
\(457\) 18.6279 + 15.6306i 0.871375 + 0.731170i 0.964387 0.264495i \(-0.0852052\pi\)
−0.0930125 + 0.995665i \(0.529650\pi\)
\(458\) −4.32206 10.2375i −0.201957 0.478368i
\(459\) 0 0
\(460\) −38.9488 37.9067i −1.81600 1.76741i
\(461\) −10.3010 + 12.2762i −0.479764 + 0.571761i −0.950584 0.310469i \(-0.899514\pi\)
0.470819 + 0.882230i \(0.343958\pi\)
\(462\) 0 0
\(463\) 0.124840 + 0.708003i 0.00580181 + 0.0329037i 0.987571 0.157172i \(-0.0502377\pi\)
−0.981769 + 0.190076i \(0.939127\pi\)
\(464\) 22.5989 + 7.53793i 1.04913 + 0.349940i
\(465\) 0 0
\(466\) −7.63285 33.3577i −0.353585 1.54527i
\(467\) −16.8793 9.74528i −0.781082 0.450958i 0.0557318 0.998446i \(-0.482251\pi\)
−0.836814 + 0.547488i \(0.815584\pi\)
\(468\) 0 0
\(469\) −0.0340678 + 0.0196690i −0.00157310 + 0.000908231i
\(470\) 30.0444 + 32.3447i 1.38584 + 1.49195i
\(471\) 0 0
\(472\) 17.5978 5.94464i 0.810003 0.273624i
\(473\) −3.20859 + 2.69233i −0.147531 + 0.123794i
\(474\) 0 0
\(475\) −15.6530 43.0062i −0.718207 1.97326i
\(476\) 0.0376168 + 0.00953466i 0.00172416 + 0.000437020i
\(477\) 0 0
\(478\) −5.28089 + 42.3279i −0.241542 + 1.93603i
\(479\) −1.69552 + 9.61575i −0.0774701 + 0.439355i 0.921259 + 0.388950i \(0.127162\pi\)
−0.998729 + 0.0504046i \(0.983949\pi\)
\(480\) 0 0
\(481\) 28.9304 + 10.5298i 1.31911 + 0.480118i
\(482\) −1.92227 2.97269i −0.0875571 0.135403i
\(483\) 0 0
\(484\) 19.8776 2.01098i 0.903526 0.0914084i
\(485\) 50.4227i 2.28958i
\(486\) 0 0
\(487\) −40.7197 −1.84519 −0.922594 0.385773i \(-0.873935\pi\)
−0.922594 + 0.385773i \(0.873935\pi\)
\(488\) 0.147189 + 0.269232i 0.00666291 + 0.0121876i
\(489\) 0 0
\(490\) 32.7636 21.1863i 1.48011 0.957101i
\(491\) 4.27622 11.7488i 0.192983 0.530217i −0.805029 0.593235i \(-0.797850\pi\)
0.998012 + 0.0630180i \(0.0200726\pi\)
\(492\) 0 0
\(493\) 11.1321 + 1.96289i 0.501365 + 0.0884041i
\(494\) 3.04595 24.4142i 0.137044 1.09845i
\(495\) 0 0
\(496\) −27.1869 + 16.6953i −1.22073 + 0.749639i
\(497\) −0.00850497 + 0.00309555i −0.000381500 + 0.000138855i
\(498\) 0 0
\(499\) −2.94192 3.50604i −0.131698 0.156952i 0.696165 0.717882i \(-0.254888\pi\)
−0.827863 + 0.560930i \(0.810444\pi\)
\(500\) −43.5066 3.21258i −1.94567 0.143671i
\(501\) 0 0
\(502\) 16.1179 + 17.3519i 0.719376 + 0.774454i
\(503\) 9.68900 + 16.7818i 0.432011 + 0.748265i 0.997046 0.0768015i \(-0.0244708\pi\)
−0.565035 + 0.825067i \(0.691137\pi\)
\(504\) 0 0
\(505\) −16.5134 + 28.6020i −0.734836 + 1.27277i
\(506\) 9.55480 2.18631i 0.424763 0.0971934i
\(507\) 0 0
\(508\) −2.64146 + 1.27562i −0.117196 + 0.0565964i
\(509\) 2.30682 0.406755i 0.102248 0.0180291i −0.122290 0.992494i \(-0.539024\pi\)
0.224538 + 0.974465i \(0.427913\pi\)
\(510\) 0 0
\(511\) 0.113729 + 0.0954301i 0.00503108 + 0.00422158i
\(512\) −20.3381 + 9.91776i −0.898825 + 0.438307i
\(513\) 0 0
\(514\) 34.8437 14.7103i 1.53689 0.648842i
\(515\) 17.6105 20.9874i 0.776014 0.924817i
\(516\) 0 0
\(517\) −7.84049 + 1.38249i −0.344824 + 0.0608018i
\(518\) 0.00560121 + 0.111013i 0.000246103 + 0.00487762i
\(519\) 0 0
\(520\) −38.1296 23.2148i −1.67209 1.01804i
\(521\) 3.33988 5.78485i 0.146323 0.253439i −0.783543 0.621338i \(-0.786589\pi\)
0.929866 + 0.367899i \(0.119923\pi\)
\(522\) 0 0
\(523\) 25.4719 14.7062i 1.11381 0.643057i 0.173994 0.984747i \(-0.444333\pi\)
0.939813 + 0.341690i \(0.110999\pi\)
\(524\) −20.8119 9.36336i −0.909174 0.409040i
\(525\) 0 0
\(526\) 2.82932 5.52622i 0.123364 0.240955i
\(527\) −11.5965 + 9.73065i −0.505153 + 0.423874i
\(528\) 0 0
\(529\) −23.0590 + 8.39280i −1.00257 + 0.364904i
\(530\) −10.0264 7.58611i −0.435520 0.329520i
\(531\) 0 0
\(532\) 0.0854822 0.0241517i 0.00370612 0.00104711i
\(533\) 22.8959 + 4.03716i 0.991731 + 0.174869i
\(534\) 0 0
\(535\) −52.8718 19.2438i −2.28585 0.831980i
\(536\) 2.13908 10.6714i 0.0923941 0.460935i
\(537\) 0 0
\(538\) −0.308357 + 1.00161i −0.0132942 + 0.0431826i
\(539\) 7.03648i 0.303083i
\(540\) 0 0
\(541\) 1.09392i 0.0470312i 0.999723 + 0.0235156i \(0.00748594\pi\)
−0.999723 + 0.0235156i \(0.992514\pi\)
\(542\) −19.1185 5.88584i −0.821209 0.252818i
\(543\) 0 0
\(544\) −8.85442 + 6.07232i −0.379630 + 0.260349i
\(545\) −18.0896 6.58409i −0.774875 0.282031i
\(546\) 0 0
\(547\) −11.4033 2.01070i −0.487568 0.0859714i −0.0755403 0.997143i \(-0.524068\pi\)
−0.412028 + 0.911171i \(0.635179\pi\)
\(548\) −2.32221 8.21919i −0.0992001 0.351107i
\(549\) 0 0
\(550\) 9.03579 11.9424i 0.385287 0.509228i
\(551\) 24.3143 8.84968i 1.03582 0.377009i
\(552\) 0 0
\(553\) 0.0251814 0.0211297i 0.00107082 0.000898528i
\(554\) −10.7717 5.51490i −0.457645 0.234305i
\(555\) 0 0
\(556\) −1.94267 0.874014i −0.0823876 0.0370665i
\(557\) 11.9979 6.92697i 0.508366 0.293505i −0.223796 0.974636i \(-0.571845\pi\)
0.732162 + 0.681131i \(0.238512\pi\)
\(558\) 0 0
\(559\) 8.34273 14.4500i 0.352860 0.611171i
\(560\) 0.0236731 0.159423i 0.00100037 0.00673686i
\(561\) 0 0
\(562\) 26.5264 1.33840i 1.11895 0.0564572i
\(563\) −29.5384 + 5.20841i −1.24489 + 0.219508i −0.757012 0.653401i \(-0.773341\pi\)
−0.487882 + 0.872910i \(0.662230\pi\)
\(564\) 0 0
\(565\) −11.3359 + 13.5096i −0.476903 + 0.568351i
\(566\) 14.1393 + 33.4912i 0.594318 + 1.40774i
\(567\) 0 0
\(568\) 0.911026 2.33249i 0.0382258 0.0978690i
\(569\) 13.1491 + 11.0334i 0.551241 + 0.462546i 0.875361 0.483470i \(-0.160624\pi\)
−0.324120 + 0.946016i \(0.605068\pi\)
\(570\) 0 0
\(571\) −16.7116 + 2.94670i −0.699357 + 0.123316i −0.512012 0.858978i \(-0.671100\pi\)
−0.187346 + 0.982294i \(0.559988\pi\)
\(572\) 7.24963 3.50100i 0.303122 0.146384i
\(573\) 0 0
\(574\) 0.0187228 + 0.0818239i 0.000781475 + 0.00341526i
\(575\) −36.3161 + 62.9013i −1.51449 + 2.62317i
\(576\) 0 0
\(577\) −4.49809 7.79092i −0.187258 0.324340i 0.757077 0.653326i \(-0.226627\pi\)
−0.944335 + 0.328985i \(0.893293\pi\)
\(578\) 13.8822 12.8950i 0.577425 0.536359i
\(579\) 0 0
\(580\) 3.45724 46.8198i 0.143554 1.94409i
\(581\) 0.0998698 + 0.119020i 0.00414330 + 0.00493779i
\(582\) 0 0
\(583\) 2.13072 0.775517i 0.0882453 0.0321186i
\(584\) −40.6064 + 6.18850i −1.68031 + 0.256082i
\(585\) 0 0
\(586\) 20.4717 + 2.55408i 0.845679 + 0.105508i
\(587\) −29.2734 5.16169i −1.20824 0.213046i −0.466984 0.884266i \(-0.654660\pi\)
−0.741258 + 0.671220i \(0.765771\pi\)
\(588\) 0 0
\(589\) −11.8516 + 32.5619i −0.488336 + 1.34169i
\(590\) −19.8766 30.7381i −0.818306 1.26547i
\(591\) 0 0
\(592\) −24.0855 19.1216i −0.989909 0.785895i
\(593\) 21.5451 0.884750 0.442375 0.896830i \(-0.354136\pi\)
0.442375 + 0.896830i \(0.354136\pi\)
\(594\) 0 0
\(595\) 0.0764747i 0.00313516i
\(596\) 0.420403 + 4.15547i 0.0172204 + 0.170215i
\(597\) 0 0
\(598\) −32.7884 + 21.2024i −1.34082 + 0.867029i
\(599\) 10.2586 + 3.73384i 0.419156 + 0.152560i 0.542983 0.839743i \(-0.317295\pi\)
−0.123827 + 0.992304i \(0.539517\pi\)
\(600\) 0 0
\(601\) −2.62710 + 14.8990i −0.107162 + 0.607744i 0.883173 + 0.469047i \(0.155403\pi\)
−0.990335 + 0.138697i \(0.955709\pi\)
\(602\) 0.0597778 + 0.00745798i 0.00243636 + 0.000303964i
\(603\) 0 0
\(604\) 20.4242 + 5.17689i 0.831049 + 0.210645i
\(605\) −13.4661 36.9978i −0.547475 1.50417i
\(606\) 0 0
\(607\) −18.8283 + 15.7988i −0.764216 + 0.641253i −0.939221 0.343314i \(-0.888450\pi\)
0.175005 + 0.984568i \(0.444006\pi\)
\(608\) −10.6027 + 22.1715i −0.429997 + 0.899171i
\(609\) 0 0
\(610\) 0.443038 0.411530i 0.0179381 0.0166624i
\(611\) 27.4663 15.8577i 1.11117 0.641532i
\(612\) 0 0
\(613\) −15.6018 9.00768i −0.630149 0.363817i 0.150661 0.988586i \(-0.451860\pi\)
−0.780810 + 0.624769i \(0.785193\pi\)
\(614\) 12.8554 2.94156i 0.518804 0.118712i
\(615\) 0 0
\(616\) 0.0218249 + 0.0191971i 0.000879351 + 0.000773472i
\(617\) 4.06887 + 23.0757i 0.163807 + 0.928994i 0.950286 + 0.311378i \(0.100790\pi\)
−0.786480 + 0.617616i \(0.788098\pi\)
\(618\) 0 0
\(619\) −21.6871 + 25.8457i −0.871679 + 1.03883i 0.127219 + 0.991875i \(0.459395\pi\)
−0.998897 + 0.0469514i \(0.985049\pi\)
\(620\) 45.0561 + 43.8506i 1.80950 + 1.76108i
\(621\) 0 0
\(622\) 10.4640 4.41769i 0.419569 0.177133i
\(623\) −0.0227676 0.0191043i −0.000912166 0.000765398i
\(624\) 0 0
\(625\) 5.78239 + 32.7936i 0.231296 + 1.31174i
\(626\) 46.6993 2.35623i 1.86648 0.0941741i
\(627\) 0 0
\(628\) 36.1385 26.0418i 1.44208 1.03918i
\(629\) −12.6372 7.29606i −0.503876 0.290913i
\(630\) 0 0
\(631\) −3.55095 6.15043i −0.141361 0.244845i 0.786648 0.617401i \(-0.211815\pi\)
−0.928009 + 0.372557i \(0.878481\pi\)
\(632\) −0.211840 + 9.09226i −0.00842655 + 0.361671i
\(633\) 0 0
\(634\) −32.8151 16.8007i −1.30326 0.667241i
\(635\) 3.71575 + 4.42826i 0.147455 + 0.175730i
\(636\) 0 0
\(637\) −9.58703 26.3402i −0.379852 1.04363i
\(638\) 6.75187 + 5.10854i 0.267309 + 0.202249i
\(639\) 0 0
\(640\) 28.7931 + 34.0491i 1.13815 + 1.34591i
\(641\) 0.826096 4.68502i 0.0326288 0.185047i −0.964137 0.265404i \(-0.914495\pi\)
0.996766 + 0.0803565i \(0.0256059\pi\)
\(642\) 0 0
\(643\) −5.88956 + 16.1814i −0.232262 + 0.638134i −0.999997 0.00263392i \(-0.999162\pi\)
0.767735 + 0.640768i \(0.221384\pi\)
\(644\) −0.116564 0.0792858i −0.00459327 0.00312430i
\(645\) 0 0
\(646\) −3.43113 + 11.1451i −0.134996 + 0.438497i
\(647\) −38.9704 −1.53208 −0.766042 0.642791i \(-0.777776\pi\)
−0.766042 + 0.642791i \(0.777776\pi\)
\(648\) 0 0
\(649\) 6.60148 0.259131
\(650\) −17.5530 + 57.0161i −0.688486 + 2.23635i
\(651\) 0 0
\(652\) 9.72499 14.2975i 0.380860 0.559932i
\(653\) −7.50821 + 20.6286i −0.293819 + 0.807261i 0.701680 + 0.712492i \(0.252434\pi\)
−0.995499 + 0.0947692i \(0.969789\pi\)
\(654\) 0 0
\(655\) −7.80953 + 44.2901i −0.305144 + 1.73056i
\(656\) −20.4195 11.0621i −0.797246 0.431902i
\(657\) 0 0
\(658\) 0.0913135 + 0.0690889i 0.00355977 + 0.00269336i
\(659\) 10.8064 + 29.6905i 0.420960 + 1.15658i 0.951158 + 0.308703i \(0.0998950\pi\)
−0.530199 + 0.847873i \(0.677883\pi\)
\(660\) 0 0
\(661\) −0.564964 0.673298i −0.0219746 0.0261883i 0.754945 0.655788i \(-0.227663\pi\)
−0.776920 + 0.629600i \(0.783219\pi\)
\(662\) 3.49286 + 1.78828i 0.135754 + 0.0695034i
\(663\) 0 0
\(664\) −42.9746 1.00126i −1.66774 0.0388566i
\(665\) −0.0875262 0.151600i −0.00339412 0.00587879i
\(666\) 0 0
\(667\) −35.5624 20.5319i −1.37698 0.795000i
\(668\) 9.86933 + 13.6958i 0.381856 + 0.529907i
\(669\) 0 0
\(670\) −21.4210 + 1.08081i −0.827564 + 0.0417552i
\(671\) 0.0189365 + 0.107394i 0.000731036 + 0.00414591i
\(672\) 0 0
\(673\) 2.60760 + 2.18804i 0.100516 + 0.0843426i 0.691661 0.722223i \(-0.256879\pi\)
−0.591145 + 0.806565i \(0.701324\pi\)
\(674\) −17.0632 + 7.20371i −0.657249 + 0.277477i
\(675\) 0 0
\(676\) −4.23421 + 4.35062i −0.162854 + 0.167331i
\(677\) 12.0910 14.4095i 0.464695 0.553802i −0.481900 0.876226i \(-0.660053\pi\)
0.946595 + 0.322424i \(0.104498\pi\)
\(678\) 0 0
\(679\) 0.0227108 + 0.128799i 0.000871561 + 0.00494287i
\(680\) 15.8870 + 13.9741i 0.609239 + 0.535884i
\(681\) 0 0
\(682\) −11.0530 + 2.52913i −0.423242 + 0.0968455i
\(683\) −19.4488 11.2288i −0.744188 0.429657i 0.0794021 0.996843i \(-0.474699\pi\)
−0.823590 + 0.567186i \(0.808032\pi\)
\(684\) 0 0
\(685\) −14.5765 + 8.41573i −0.556938 + 0.321548i
\(686\) 0.148298 0.137752i 0.00566206 0.00525938i
\(687\) 0 0
\(688\) −12.4725 + 11.0556i −0.475508 + 0.421490i
\(689\) −6.91944 + 5.80610i −0.263610 + 0.221195i
\(690\) 0 0
\(691\) 14.6665 + 40.2960i 0.557941 + 1.53293i 0.822618 + 0.568594i \(0.192512\pi\)
−0.264677 + 0.964337i \(0.585265\pi\)
\(692\) −6.68100 + 26.3583i −0.253973 + 1.00199i
\(693\) 0 0
\(694\) −20.3578 2.53987i −0.772773 0.0964123i
\(695\) −0.728974 + 4.13422i −0.0276515 + 0.156820i
\(696\) 0 0
\(697\) −10.3548 3.76883i −0.392215 0.142755i
\(698\) 27.7579 17.9494i 1.05065 0.679396i
\(699\) 0 0
\(700\) −0.214292 + 0.0216796i −0.00809946 + 0.000819410i
\(701\) 30.9274i 1.16811i −0.811714 0.584055i \(-0.801465\pi\)
0.811714 0.584055i \(-0.198535\pi\)
\(702\) 0 0
\(703\) −33.4017 −1.25977
\(704\) −7.97608 + 1.02609i −0.300610 + 0.0386723i
\(705\) 0 0
\(706\) 26.2423 + 40.5824i 0.987642 + 1.52734i
\(707\) −0.0292991 + 0.0804987i −0.00110191 + 0.00302746i
\(708\) 0 0
\(709\) −10.5402 1.85852i −0.395845 0.0697982i −0.0278175 0.999613i \(-0.508856\pi\)
−0.368028 + 0.929815i \(0.619967\pi\)
\(710\) −4.89679 0.610931i −0.183773 0.0229278i
\(711\) 0 0
\(712\) 8.12907 1.23889i 0.304650 0.0464292i
\(713\) 51.6766 18.8088i 1.93531 0.704394i
\(714\) 0 0
\(715\) −10.1981 12.1536i −0.381386 0.454518i
\(716\) −0.592336 0.0437388i −0.0221366 0.00163460i
\(717\) 0 0
\(718\) 28.0575 26.0621i 1.04710 0.972628i
\(719\) −7.98318 13.8273i −0.297723 0.515671i 0.677892 0.735161i \(-0.262894\pi\)
−0.975615 + 0.219491i \(0.929560\pi\)
\(720\) 0 0
\(721\) 0.0355314 0.0615422i 0.00132326 0.00229195i
\(722\) −0.0395154 0.172693i −0.00147061 0.00642698i
\(723\) 0 0
\(724\) 1.64327 + 3.40277i 0.0610716 + 0.126463i
\(725\) −61.7861 + 10.8946i −2.29468 + 0.404614i
\(726\) 0 0
\(727\) 18.0652 + 15.1585i 0.670002 + 0.562198i 0.913066 0.407812i \(-0.133708\pi\)
−0.243064 + 0.970010i \(0.578153\pi\)
\(728\) −0.107854 0.0421259i −0.00399735 0.00156129i
\(729\) 0 0
\(730\) 31.4830 + 74.5728i 1.16524 + 2.76006i
\(731\) −5.08341 + 6.05817i −0.188017 + 0.224069i
\(732\) 0 0
\(733\) −5.12011 + 0.902813i −0.189115 + 0.0333462i −0.267404 0.963585i \(-0.586166\pi\)
0.0782882 + 0.996931i \(0.475055\pi\)
\(734\) 6.46849 0.326371i 0.238756 0.0120466i
\(735\) 0 0
\(736\) 37.7706 9.72749i 1.39224 0.358560i
\(737\) 1.93404 3.34985i 0.0712412 0.123393i
\(738\) 0 0
\(739\) −10.5638 + 6.09903i −0.388596 + 0.224356i −0.681552 0.731770i \(-0.738695\pi\)
0.292955 + 0.956126i \(0.405361\pi\)
\(740\) −24.8654 + 55.2684i −0.914071 + 2.03171i
\(741\) 0 0
\(742\) −0.0290283 0.0148619i −0.00106566 0.000545599i
\(743\) 11.5486 9.69040i 0.423676 0.355506i −0.405883 0.913925i \(-0.633036\pi\)
0.829559 + 0.558419i \(0.188592\pi\)
\(744\) 0 0
\(745\) 7.73451 2.81513i 0.283371 0.103138i
\(746\) 14.6346 19.3423i 0.535812 0.708173i
\(747\) 0 0
\(748\) −3.67204 + 1.03748i −0.134263 + 0.0379341i
\(749\) −0.143723 0.0253422i −0.00525153 0.000925986i
\(750\) 0 0
\(751\) −1.35242 0.492239i −0.0493504 0.0179621i 0.317227 0.948350i \(-0.397248\pi\)
−0.366577 + 0.930388i \(0.619471\pi\)
\(752\) −31.0383 + 6.34513i −1.13185 + 0.231383i
\(753\) 0 0
\(754\) −32.2350 9.92391i −1.17393 0.361408i
\(755\) 41.5223i 1.51115i
\(756\) 0 0
\(757\) 15.3476i 0.557818i −0.960318 0.278909i \(-0.910027\pi\)
0.960318 0.278909i \(-0.0899727\pi\)
\(758\) 0.158401 0.514521i 0.00575339 0.0186883i
\(759\) 0 0
\(760\) 47.4872 + 9.51878i 1.72254 + 0.345283i
\(761\) 3.86991 + 1.40853i 0.140284 + 0.0510593i 0.411208 0.911541i \(-0.365107\pi\)
−0.270924 + 0.962601i \(0.587329\pi\)
\(762\) 0 0
\(763\) −0.0491736 0.00867063i −0.00178020 0.000313898i
\(764\) −7.58821 26.8576i −0.274532 0.971672i
\(765\) 0 0
\(766\) −41.6092 31.4820i −1.50340 1.13749i
\(767\) −24.7118 + 8.99435i −0.892291 + 0.324767i
\(768\) 0 0
\(769\) 36.4911 30.6197i 1.31590 1.10417i 0.328748 0.944418i \(-0.393373\pi\)
0.987156 0.159757i \(-0.0510710\pi\)
\(770\) 0.0261041 0.0509865i 0.000940727 0.00183743i
\(771\) 0 0
\(772\) −7.82220 + 17.3864i −0.281527 + 0.625751i
\(773\) 4.04314 2.33431i 0.145422 0.0839592i −0.425524 0.904947i \(-0.639910\pi\)
0.570945 + 0.820988i \(0.306577\pi\)
\(774\) 0 0
\(775\) 42.0105 72.7644i 1.50906 2.61377i
\(776\) −30.9070 18.8174i −1.10950 0.675504i
\(777\) 0 0
\(778\) −0.509779 10.1035i −0.0182765 0.362229i
\(779\) −24.8403 + 4.38001i −0.889996 + 0.156930i
\(780\) 0 0
\(781\) 0.572053 0.681746i 0.0204697 0.0243948i
\(782\) 17.0496 7.19797i 0.609692 0.257399i
\(783\) 0 0
\(784\) 0.759198 + 27.9893i 0.0271142 + 0.999617i
\(785\) −67.2447 56.4250i −2.40007 2.01390i
\(786\) 0 0
\(787\) 16.1106 2.84073i 0.574279 0.101261i 0.121037 0.992648i \(-0.461378\pi\)
0.453243 + 0.891387i \(0.350267\pi\)
\(788\) −7.64306 15.8267i −0.272273 0.563804i
\(789\) 0 0
\(790\) 17.4712 3.99773i 0.621598 0.142233i
\(791\) −0.0228715 + 0.0396145i −0.000813215 + 0.00140853i
\(792\) 0 0
\(793\) −0.217209 0.376216i −0.00771330 0.0133598i
\(794\) −25.2266 27.1580i −0.895258 0.963803i
\(795\) 0 0
\(796\) −1.38736 + 18.7885i −0.0491738 + 0.665940i
\(797\) −6.71611 8.00395i −0.237897 0.283514i 0.633866 0.773443i \(-0.281467\pi\)
−0.871762 + 0.489929i \(0.837023\pi\)
\(798\) 0 0
\(799\) −14.1255 + 5.14126i −0.499725 + 0.181885i
\(800\) 34.6535 48.4789i 1.22519 1.71399i
\(801\) 0 0
\(802\) 3.02549 24.2502i 0.106834 0.856303i
\(803\) −14.3764 2.53495i −0.507333 0.0894566i
\(804\) 0 0
\(805\) −0.0950175 + 0.261058i −0.00334893 + 0.00920110i
\(806\) 37.9297 24.5270i 1.33602 0.863925i
\(807\) 0 0
\(808\) −11.3692 20.7961i −0.399966 0.731604i
\(809\) −5.87774 −0.206650 −0.103325 0.994648i \(-0.532948\pi\)
−0.103325 + 0.994648i \(0.532948\pi\)
\(810\) 0 0
\(811\) 40.3341i 1.41632i −0.706052 0.708160i \(-0.749525\pi\)
0.706052 0.708160i \(-0.250475\pi\)
\(812\) −0.0122569 0.121154i −0.000430134 0.00425166i
\(813\) 0 0
\(814\) −5.93487 9.17797i −0.208017 0.321688i
\(815\) −32.0208 11.6546i −1.12164 0.408243i
\(816\) 0 0
\(817\) −3.14346 + 17.8274i −0.109976 + 0.623703i
\(818\) 4.30603 34.5141i 0.150557 1.20676i
\(819\) 0 0
\(820\) −11.2446 + 44.3628i −0.392678 + 1.54922i
\(821\) −8.31903 22.8563i −0.290336 0.797692i −0.996017 0.0891622i \(-0.971581\pi\)
0.705681 0.708530i \(-0.250641\pi\)
\(822\) 0 0
\(823\) −22.0384 + 18.4924i −0.768211 + 0.644605i −0.940250 0.340485i \(-0.889409\pi\)
0.172039 + 0.985090i \(0.444964\pi\)
\(824\) 6.29229 + 18.6269i 0.219202 + 0.648898i
\(825\) 0 0
\(826\) −0.0646173 0.0695647i −0.00224833 0.00242047i
\(827\) 12.6598 7.30915i 0.440225 0.254164i −0.263468 0.964668i \(-0.584866\pi\)
0.703693 + 0.710504i \(0.251533\pi\)
\(828\) 0 0
\(829\) −38.2098 22.0604i −1.32708 0.766191i −0.342234 0.939615i \(-0.611184\pi\)
−0.984847 + 0.173424i \(0.944517\pi\)
\(830\) 18.8953 + 82.5778i 0.655865 + 2.86632i
\(831\) 0 0
\(832\) 28.4594 14.7083i 0.986652 0.509917i
\(833\) 2.30702 + 13.0838i 0.0799336 + 0.453326i
\(834\) 0 0
\(835\) 21.3840 25.4845i 0.740025 0.881927i
\(836\) −6.09186 + 6.25934i −0.210691 + 0.216484i
\(837\) 0 0
\(838\) −7.58939 17.9767i −0.262171 0.620995i
\(839\) 28.2388 + 23.6951i 0.974911 + 0.818047i 0.983314 0.181917i \(-0.0582303\pi\)
−0.00840301 + 0.999965i \(0.502675\pi\)
\(840\) 0 0
\(841\) −1.12364 6.37246i −0.0387461 0.219740i
\(842\) 2.60514 + 51.6325i 0.0897791 + 1.77937i
\(843\) 0 0
\(844\) −19.5725 + 14.1041i −0.673714 + 0.485484i
\(845\) 10.3610 + 5.98194i 0.356430 + 0.205785i
\(846\) 0 0
\(847\) −0.0510619 0.0884417i −0.00175451 0.00303889i
\(848\) 8.39176 3.31470i 0.288174 0.113827i
\(849\) 0 0
\(850\) 12.8858 25.1686i 0.441980 0.863275i
\(851\) 34.0738 + 40.6075i 1.16803 + 1.39201i
\(852\) 0 0
\(853\) −12.7574 35.0506i −0.436804 1.20011i −0.941560 0.336846i \(-0.890640\pi\)
0.504756 0.863262i \(-0.331583\pi\)
\(854\) 0.000946338 0.00125076i 3.23830e−5 4.28001e-5i
\(855\) 0 0
\(856\) 31.5270 25.2266i 1.07757 0.862226i
\(857\) 2.38265 13.5127i 0.0813899 0.461585i −0.916687 0.399605i \(-0.869147\pi\)
0.998077 0.0619803i \(-0.0197416\pi\)
\(858\) 0 0
\(859\) −10.4655 + 28.7538i −0.357079 + 0.981067i 0.622958 + 0.782255i \(0.285931\pi\)
−0.980038 + 0.198812i \(0.936292\pi\)
\(860\) 27.1582 + 18.4727i 0.926087 + 0.629915i
\(861\) 0 0
\(862\) −10.0660 3.09894i −0.342850 0.105550i
\(863\) 7.80840 0.265801 0.132900 0.991129i \(-0.457571\pi\)
0.132900 + 0.991129i \(0.457571\pi\)
\(864\) 0 0
\(865\) 53.5863 1.82199
\(866\) 28.3037 + 8.71360i 0.961797 + 0.296100i
\(867\) 0 0
\(868\) 0.134842 + 0.0917180i 0.00457683 + 0.00311311i
\(869\) −1.10550 + 3.03735i −0.0375016 + 0.103035i
\(870\) 0 0
\(871\) −2.67573 + 15.1748i −0.0906636 + 0.514179i
\(872\) 10.7867 8.63105i 0.365283 0.292284i
\(873\) 0 0
\(874\) 25.5601 33.7824i 0.864584 1.14271i
\(875\) 0.0762675 + 0.209543i 0.00257831 + 0.00708385i
\(876\) 0 0
\(877\) 22.5373 + 26.8589i 0.761029 + 0.906959i 0.997913 0.0645787i \(-0.0205703\pi\)
−0.236883 + 0.971538i \(0.576126\pi\)
\(878\) 18.1326 35.4166i 0.611946 1.19525i
\(879\) 0 0
\(880\) 5.82207 + 14.7396i 0.196262 + 0.496873i
\(881\) 17.3596 + 30.0677i 0.584859 + 1.01301i 0.994893 + 0.100936i \(0.0321836\pi\)
−0.410034 + 0.912070i \(0.634483\pi\)
\(882\) 0 0
\(883\) 48.4749 + 27.9870i 1.63131 + 0.941837i 0.983690 + 0.179874i \(0.0575690\pi\)
0.647620 + 0.761963i \(0.275764\pi\)
\(884\) 12.3323 8.88674i 0.414779 0.298893i
\(885\) 0 0
\(886\) −1.24689 24.7127i −0.0418901 0.830238i
\(887\) −5.13500 29.1221i −0.172417 0.977823i −0.941084 0.338174i \(-0.890191\pi\)
0.768667 0.639649i \(-0.220920\pi\)
\(888\) 0 0
\(889\) 0.0114860 + 0.00963792i 0.000385229 + 0.000323245i
\(890\) −6.30264 14.9289i −0.211265 0.500416i
\(891\) 0 0
\(892\) 4.95104 5.08716i 0.165773 0.170331i
\(893\) −22.1175 + 26.3586i −0.740134 + 0.882057i
\(894\) 0 0
\(895\) 0.203252 + 1.15270i 0.00679396 + 0.0385305i
\(896\) 0.0888851 + 0.0740062i 0.00296944 + 0.00247237i
\(897\) 0 0
\(898\) 1.88861 + 8.25377i 0.0630239 + 0.275432i
\(899\) 41.1386 + 23.7514i 1.37205 + 0.792154i
\(900\) 0 0
\(901\) 3.70763 2.14060i 0.123519 0.0713138i
\(902\) −5.61718 6.04726i −0.187032 0.201352i
\(903\) 0 0
\(904\) −4.05033 11.9901i −0.134712 0.398784i
\(905\) 5.70454 4.78668i 0.189625 0.159115i
\(906\) 0 0
\(907\) −11.8324 32.5093i −0.392889 1.07945i −0.965676 0.259749i \(-0.916360\pi\)
0.572787 0.819704i \(-0.305862\pi\)
\(908\) −5.34565 + 21.0900i −0.177402 + 0.699897i
\(909\) 0 0
\(910\) −0.0282495 + 0.226428i −0.000936461 + 0.00750600i
\(911\) 2.10465 11.9361i 0.0697303 0.395460i −0.929888 0.367842i \(-0.880097\pi\)
0.999619 0.0276180i \(-0.00879219\pi\)
\(912\) 0 0
\(913\) −14.3560 5.22516i −0.475115 0.172928i
\(914\) 18.6736 + 28.8778i 0.617668 + 0.955191i
\(915\) 0 0
\(916\) −1.58183 15.6356i −0.0522651 0.516615i
\(917\) 0.116652i 0.00385218i
\(918\) 0 0
\(919\) 11.2018 0.369514 0.184757 0.982784i \(-0.440850\pi\)
0.184757 + 0.982784i \(0.440850\pi\)
\(920\) −36.8704 67.4421i −1.21558 2.22350i
\(921\) 0 0
\(922\) −19.0312 + 12.3064i −0.626758 + 0.405288i
\(923\) −1.21254 + 3.33144i −0.0399114 + 0.109656i
\(924\) 0 0
\(925\) 79.7598 + 14.0638i 2.62249 + 0.462415i
\(926\) −0.125871 + 1.00889i −0.00413637 + 0.0331542i
\(927\) 0 0
\(928\) 27.4084 + 19.5920i 0.899724 + 0.643138i
\(929\) −33.5582 + 12.2142i −1.10101 + 0.400734i −0.827687 0.561189i \(-0.810344\pi\)
−0.273320 + 0.961923i \(0.588122\pi\)
\(930\) 0 0
\(931\) 19.5479 + 23.2962i 0.640656 + 0.763504i
\(932\) 3.56378 48.2628i 0.116736 1.58090i
\(933\) 0 0
\(934\) −18.7592 20.1955i −0.613819 0.660816i
\(935\) 3.75984 + 6.51224i 0.122960 + 0.212973i
\(936\) 0 0
\(937\) −13.9023 + 24.0795i −0.454169 + 0.786643i −0.998640 0.0521363i \(-0.983397\pi\)
0.544471 + 0.838779i \(0.316730\pi\)
\(938\) −0.0542308 + 0.0124090i −0.00177070 + 0.000405168i
\(939\) 0 0
\(940\) 27.1494 + 56.2192i 0.885516 + 1.83367i
\(941\) 17.4040 3.06880i 0.567355 0.100040i 0.117390 0.993086i \(-0.462547\pi\)
0.449965 + 0.893046i \(0.351436\pi\)
\(942\) 0 0
\(943\) 30.6650 + 25.7310i 0.998591 + 0.837917i
\(944\) 26.2590 0.712264i 0.854657 0.0231822i
\(945\) 0 0
\(946\) −5.45708 + 2.30386i −0.177425 + 0.0749050i
\(947\) 31.1472 37.1197i 1.01215 1.20623i 0.0337637 0.999430i \(-0.489251\pi\)
0.978383 0.206800i \(-0.0663049\pi\)
\(948\) 0 0
\(949\) 57.2701 10.0983i 1.85907 0.327804i
\(950\) −3.26149 64.6409i −0.105817 2.09723i
\(951\) 0 0
\(952\) 0.0468758 + 0.0285398i 0.00151925 + 0.000924981i
\(953\) −6.84000 + 11.8472i −0.221569 + 0.383770i −0.955285 0.295688i \(-0.904451\pi\)
0.733715 + 0.679457i \(0.237785\pi\)
\(954\) 0 0
\(955\) −47.6310 + 27.4998i −1.54130 + 0.889871i
\(956\) −24.7507 + 55.0134i −0.800495 + 1.77926i
\(957\) 0 0
\(958\) −6.29288 + 12.2912i −0.203314 + 0.397112i
\(959\) −0.0334435 + 0.0280625i −0.00107995 + 0.000906184i
\(960\) 0 0
\(961\) −30.6492 + 11.1554i −0.988684 + 0.359852i
\(962\) 34.7212 + 26.2704i 1.11946 + 0.846993i
\(963\) 0 0
\(964\) −1.36120 4.81780i −0.0438413 0.155171i
\(965\) 37.0002 + 6.52413i 1.19108 + 0.210019i
\(966\) 0 0
\(967\) 28.0120 + 10.1955i 0.900806 + 0.327867i 0.750576 0.660785i \(-0.229776\pi\)
0.150230 + 0.988651i \(0.451999\pi\)
\(968\) 27.7035 + 5.55316i 0.890426 + 0.178485i
\(969\) 0 0
\(970\) −20.9813 + 68.1518i −0.673669 + 2.18822i
\(971\) 31.5563i 1.01269i 0.862331 + 0.506345i \(0.169004\pi\)
−0.862331 + 0.506345i \(0.830996\pi\)
\(972\) 0 0
\(973\) 0.0108888i 0.000349078i
\(974\) −55.0373 16.9438i −1.76351 0.542916i
\(975\) 0 0
\(976\) 0.0869119 + 0.425144i 0.00278198 + 0.0136085i
\(977\) −26.2819 9.56585i −0.840834 0.306039i −0.114536 0.993419i \(-0.536538\pi\)
−0.726297 + 0.687381i \(0.758760\pi\)
\(978\) 0 0
\(979\) 2.87804 + 0.507477i 0.0919827 + 0.0162190i
\(980\) 53.0994 15.0025i 1.69620 0.479237i
\(981\) 0 0
\(982\) 10.6686 14.1005i 0.340448 0.449964i
\(983\) −23.5384 + 8.56727i −0.750758 + 0.273253i −0.688925 0.724833i \(-0.741917\pi\)
−0.0618331 + 0.998087i \(0.519695\pi\)
\(984\) 0 0
\(985\) −26.5326 + 22.2635i −0.845398 + 0.709373i
\(986\) 14.2295 + 7.28523i 0.453160 + 0.232009i
\(987\) 0 0
\(988\) 14.2759 31.7311i 0.454177 1.00950i
\(989\) 24.8801 14.3645i 0.791141 0.456766i
\(990\) 0 0
\(991\) 11.3147 19.5976i 0.359422 0.622537i −0.628442 0.777856i \(-0.716307\pi\)
0.987864 + 0.155319i \(0.0496405\pi\)
\(992\) −43.6932 + 11.2528i −1.38726 + 0.357277i
\(993\) 0 0
\(994\) −0.0127835 0.000644997i −0.000405468 2.04581e-5i
\(995\) 36.5628 6.44700i 1.15912 0.204384i
\(996\) 0 0
\(997\) 6.16806 7.35081i 0.195344 0.232802i −0.659477 0.751725i \(-0.729222\pi\)
0.854821 + 0.518922i \(0.173667\pi\)
\(998\) −2.51744 5.96297i −0.0796881 0.188754i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.t.a.613.31 204
3.2 odd 2 216.2.t.a.205.4 yes 204
8.5 even 2 inner 648.2.t.a.613.22 204
12.11 even 2 864.2.bf.a.529.19 204
24.5 odd 2 216.2.t.a.205.13 yes 204
24.11 even 2 864.2.bf.a.529.16 204
27.5 odd 18 216.2.t.a.157.13 yes 204
27.22 even 9 inner 648.2.t.a.37.22 204
108.59 even 18 864.2.bf.a.49.16 204
216.5 odd 18 216.2.t.a.157.4 204
216.59 even 18 864.2.bf.a.49.19 204
216.157 even 18 inner 648.2.t.a.37.31 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.157.4 204 216.5 odd 18
216.2.t.a.157.13 yes 204 27.5 odd 18
216.2.t.a.205.4 yes 204 3.2 odd 2
216.2.t.a.205.13 yes 204 24.5 odd 2
648.2.t.a.37.22 204 27.22 even 9 inner
648.2.t.a.37.31 204 216.157 even 18 inner
648.2.t.a.613.22 204 8.5 even 2 inner
648.2.t.a.613.31 204 1.1 even 1 trivial
864.2.bf.a.49.16 204 108.59 even 18
864.2.bf.a.49.19 204 216.59 even 18
864.2.bf.a.529.16 204 24.11 even 2
864.2.bf.a.529.19 204 12.11 even 2