Properties

Label 648.2.t.a.613.22
Level $648$
Weight $2$
Character 648.613
Analytic conductor $5.174$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,2,Mod(37,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.t (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 613.22
Character \(\chi\) \(=\) 648.613
Dual form 648.2.t.a.37.22

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.644492 + 1.25882i) q^{2} +(-1.16926 + 1.62260i) q^{4} +(-1.34802 + 3.70366i) q^{5} +(0.00177522 - 0.0100678i) q^{7} +(-2.79614 - 0.426137i) q^{8} +(-5.53104 + 0.690061i) q^{10} +(-0.343808 - 0.944604i) q^{11} +(2.57400 + 3.06757i) q^{13} +(0.0138176 - 0.00425391i) q^{14} +(-1.26566 - 3.79448i) q^{16} +(0.948987 + 1.64369i) q^{17} +(-3.76245 - 2.17225i) q^{19} +(-4.43337 - 6.51785i) q^{20} +(0.967506 - 1.04158i) q^{22} +(-1.19728 - 6.79010i) q^{23} +(-8.06972 - 6.77130i) q^{25} +(-2.20260 + 5.21723i) q^{26} +(0.0142603 + 0.0146523i) q^{28} +(-3.82827 + 4.56236i) q^{29} +(1.38501 + 7.85480i) q^{31} +(3.96087 - 4.03875i) q^{32} +(-1.45750 + 2.25395i) q^{34} +(0.0348946 + 0.0201464i) q^{35} +(6.65823 - 3.84413i) q^{37} +(0.309608 - 6.13625i) q^{38} +(5.34753 - 9.78152i) q^{40} +(-4.44753 + 3.73192i) q^{41} +(-1.42511 - 3.91546i) q^{43} +(1.93471 + 0.546626i) q^{44} +(7.77588 - 5.88332i) q^{46} +(-1.37530 + 7.79973i) q^{47} +(6.57775 + 2.39411i) q^{49} +(3.32298 - 14.5224i) q^{50} +(-7.98712 + 0.589779i) q^{52} +2.25567i q^{53} +3.96195 q^{55} +(-0.00925402 + 0.0273944i) q^{56} +(-8.21048 - 1.87871i) q^{58} +(-2.24610 + 6.17111i) q^{59} +(-0.106836 - 0.0188381i) q^{61} +(-8.99516 + 6.80584i) q^{62} +(7.63681 + 2.38308i) q^{64} +(-14.8311 + 5.39806i) q^{65} +(2.47342 + 2.94771i) q^{67} +(-3.77667 - 0.382080i) q^{68} +(-0.00287143 + 0.0569102i) q^{70} +(-0.442665 - 0.766718i) q^{71} +(-7.26116 + 12.5767i) q^{73} +(9.13025 + 5.90401i) q^{74} +(7.92398 - 3.56502i) q^{76} +(-0.0101204 + 0.00178450i) q^{77} +(2.46319 + 2.06686i) q^{79} +(15.7596 + 0.427473i) q^{80} +(-7.56422 - 3.19345i) q^{82} +(9.76904 - 11.6423i) q^{83} +(-7.36694 + 1.29899i) q^{85} +(4.01039 - 4.31744i) q^{86} +(0.558804 + 2.78776i) q^{88} +(1.45362 - 2.51775i) q^{89} +(0.0354530 - 0.0204688i) q^{91} +(12.4175 + 5.99669i) q^{92} +(-10.7048 + 3.29560i) q^{94} +(13.1172 - 11.0066i) q^{95} +(-12.0217 + 4.37554i) q^{97} +(1.22556 + 9.82319i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 6 q^{2} - 6 q^{4} - 12 q^{7} + 3 q^{8} - 3 q^{10} + 21 q^{14} - 6 q^{16} + 6 q^{17} - 15 q^{20} - 6 q^{22} + 12 q^{23} - 12 q^{25} + 30 q^{26} - 12 q^{28} - 12 q^{31} + 36 q^{32} + 42 q^{38} - 21 q^{40}+ \cdots - 54 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{2}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.644492 + 1.25882i 0.455725 + 0.890121i
\(3\) 0 0
\(4\) −1.16926 + 1.62260i −0.584630 + 0.811300i
\(5\) −1.34802 + 3.70366i −0.602854 + 1.65633i 0.142608 + 0.989779i \(0.454451\pi\)
−0.745462 + 0.666548i \(0.767771\pi\)
\(6\) 0 0
\(7\) 0.00177522 0.0100678i 0.000670970 0.00380526i −0.984470 0.175550i \(-0.943829\pi\)
0.985141 + 0.171745i \(0.0549406\pi\)
\(8\) −2.79614 0.426137i −0.988585 0.150662i
\(9\) 0 0
\(10\) −5.53104 + 0.690061i −1.74907 + 0.218216i
\(11\) −0.343808 0.944604i −0.103662 0.284809i 0.877009 0.480474i \(-0.159535\pi\)
−0.980671 + 0.195666i \(0.937313\pi\)
\(12\) 0 0
\(13\) 2.57400 + 3.06757i 0.713899 + 0.850792i 0.994023 0.109172i \(-0.0348200\pi\)
−0.280124 + 0.959964i \(0.590376\pi\)
\(14\) 0.0138176 0.00425391i 0.00369292 0.00113691i
\(15\) 0 0
\(16\) −1.26566 3.79448i −0.316415 0.948621i
\(17\) 0.948987 + 1.64369i 0.230163 + 0.398654i 0.957856 0.287249i \(-0.0927407\pi\)
−0.727693 + 0.685903i \(0.759407\pi\)
\(18\) 0 0
\(19\) −3.76245 2.17225i −0.863166 0.498349i 0.00190536 0.999998i \(-0.499394\pi\)
−0.865071 + 0.501649i \(0.832727\pi\)
\(20\) −4.43337 6.51785i −0.991332 1.45743i
\(21\) 0 0
\(22\) 0.967506 1.04158i 0.206273 0.222066i
\(23\) −1.19728 6.79010i −0.249650 1.41583i −0.809442 0.587200i \(-0.800230\pi\)
0.559792 0.828633i \(-0.310881\pi\)
\(24\) 0 0
\(25\) −8.06972 6.77130i −1.61394 1.35426i
\(26\) −2.20260 + 5.21723i −0.431966 + 1.02318i
\(27\) 0 0
\(28\) 0.0142603 + 0.0146523i 0.00269494 + 0.00276903i
\(29\) −3.82827 + 4.56236i −0.710892 + 0.847208i −0.993712 0.111965i \(-0.964286\pi\)
0.282820 + 0.959173i \(0.408730\pi\)
\(30\) 0 0
\(31\) 1.38501 + 7.85480i 0.248756 + 1.41076i 0.811606 + 0.584205i \(0.198594\pi\)
−0.562850 + 0.826559i \(0.690295\pi\)
\(32\) 3.96087 4.03875i 0.700189 0.713957i
\(33\) 0 0
\(34\) −1.45750 + 2.25395i −0.249959 + 0.386550i
\(35\) 0.0348946 + 0.0201464i 0.00589826 + 0.00340536i
\(36\) 0 0
\(37\) 6.65823 3.84413i 1.09461 0.631971i 0.159807 0.987148i \(-0.448913\pi\)
0.934799 + 0.355177i \(0.115579\pi\)
\(38\) 0.309608 6.13625i 0.0502250 0.995432i
\(39\) 0 0
\(40\) 5.34753 9.78152i 0.845519 1.54659i
\(41\) −4.44753 + 3.73192i −0.694588 + 0.582828i −0.920228 0.391382i \(-0.871997\pi\)
0.225641 + 0.974211i \(0.427553\pi\)
\(42\) 0 0
\(43\) −1.42511 3.91546i −0.217327 0.597102i 0.782341 0.622850i \(-0.214025\pi\)
−0.999668 + 0.0257481i \(0.991803\pi\)
\(44\) 1.93471 + 0.546626i 0.291669 + 0.0824069i
\(45\) 0 0
\(46\) 7.77588 5.88332i 1.14649 0.867448i
\(47\) −1.37530 + 7.79973i −0.200608 + 1.13771i 0.703594 + 0.710602i \(0.251578\pi\)
−0.904202 + 0.427105i \(0.859534\pi\)
\(48\) 0 0
\(49\) 6.57775 + 2.39411i 0.939679 + 0.342015i
\(50\) 3.32298 14.5224i 0.469941 2.05377i
\(51\) 0 0
\(52\) −7.98712 + 0.589779i −1.10761 + 0.0817876i
\(53\) 2.25567i 0.309840i 0.987927 + 0.154920i \(0.0495120\pi\)
−0.987927 + 0.154920i \(0.950488\pi\)
\(54\) 0 0
\(55\) 3.96195 0.534230
\(56\) −0.00925402 + 0.0273944i −0.00123662 + 0.00366074i
\(57\) 0 0
\(58\) −8.21048 1.87871i −1.07809 0.246686i
\(59\) −2.24610 + 6.17111i −0.292417 + 0.803410i 0.703294 + 0.710899i \(0.251712\pi\)
−0.995712 + 0.0925111i \(0.970511\pi\)
\(60\) 0 0
\(61\) −0.106836 0.0188381i −0.0136789 0.00241197i 0.166805 0.985990i \(-0.446655\pi\)
−0.180483 + 0.983578i \(0.557766\pi\)
\(62\) −8.99516 + 6.80584i −1.14239 + 0.864343i
\(63\) 0 0
\(64\) 7.63681 + 2.38308i 0.954602 + 0.297885i
\(65\) −14.8311 + 5.39806i −1.83957 + 0.669547i
\(66\) 0 0
\(67\) 2.47342 + 2.94771i 0.302177 + 0.360120i 0.895670 0.444718i \(-0.146696\pi\)
−0.593494 + 0.804839i \(0.702252\pi\)
\(68\) −3.77667 0.382080i −0.457989 0.0463340i
\(69\) 0 0
\(70\) −0.00287143 + 0.0569102i −0.000343202 + 0.00680207i
\(71\) −0.442665 0.766718i −0.0525346 0.0909926i 0.838562 0.544806i \(-0.183397\pi\)
−0.891097 + 0.453813i \(0.850063\pi\)
\(72\) 0 0
\(73\) −7.26116 + 12.5767i −0.849854 + 1.47199i 0.0314838 + 0.999504i \(0.489977\pi\)
−0.881338 + 0.472486i \(0.843357\pi\)
\(74\) 9.13025 + 5.90401i 1.06137 + 0.686327i
\(75\) 0 0
\(76\) 7.92398 3.56502i 0.908943 0.408936i
\(77\) −0.0101204 + 0.00178450i −0.00115333 + 0.000203362i
\(78\) 0 0
\(79\) 2.46319 + 2.06686i 0.277131 + 0.232540i 0.770750 0.637138i \(-0.219882\pi\)
−0.493619 + 0.869678i \(0.664326\pi\)
\(80\) 15.7596 + 0.427473i 1.76198 + 0.0477930i
\(81\) 0 0
\(82\) −7.56422 3.19345i −0.835328 0.352658i
\(83\) 9.76904 11.6423i 1.07229 1.27791i 0.113579 0.993529i \(-0.463768\pi\)
0.958712 0.284378i \(-0.0917872\pi\)
\(84\) 0 0
\(85\) −7.36694 + 1.29899i −0.799057 + 0.140895i
\(86\) 4.01039 4.31744i 0.432452 0.465562i
\(87\) 0 0
\(88\) 0.558804 + 2.78776i 0.0595687 + 0.297176i
\(89\) 1.45362 2.51775i 0.154084 0.266881i −0.778641 0.627469i \(-0.784091\pi\)
0.932725 + 0.360588i \(0.117424\pi\)
\(90\) 0 0
\(91\) 0.0354530 0.0204688i 0.00371649 0.00214572i
\(92\) 12.4175 + 5.99669i 1.29462 + 0.625198i
\(93\) 0 0
\(94\) −10.7048 + 3.29560i −1.10412 + 0.339915i
\(95\) 13.1172 11.0066i 1.34579 1.12925i
\(96\) 0 0
\(97\) −12.0217 + 4.37554i −1.22062 + 0.444269i −0.870375 0.492389i \(-0.836124\pi\)
−0.350244 + 0.936658i \(0.613901\pi\)
\(98\) 1.22556 + 9.82319i 0.123800 + 0.992292i
\(99\) 0 0
\(100\) 20.4227 5.17651i 2.04227 0.517651i
\(101\) 8.25225 + 1.45509i 0.821129 + 0.144787i 0.568403 0.822751i \(-0.307562\pi\)
0.252727 + 0.967538i \(0.418673\pi\)
\(102\) 0 0
\(103\) 6.53199 + 2.37745i 0.643617 + 0.234257i 0.643147 0.765743i \(-0.277628\pi\)
0.000469418 1.00000i \(0.499851\pi\)
\(104\) −5.89006 9.67424i −0.577568 0.948638i
\(105\) 0 0
\(106\) −2.83949 + 1.45376i −0.275795 + 0.141202i
\(107\) 14.2756i 1.38007i 0.723776 + 0.690035i \(0.242405\pi\)
−0.723776 + 0.690035i \(0.757595\pi\)
\(108\) 0 0
\(109\) 4.88426i 0.467827i 0.972257 + 0.233914i \(0.0751533\pi\)
−0.972257 + 0.233914i \(0.924847\pi\)
\(110\) 2.55345 + 4.98739i 0.243462 + 0.475529i
\(111\) 0 0
\(112\) −0.0404488 + 0.00600633i −0.00382206 + 0.000567545i
\(113\) −4.20463 1.53036i −0.395538 0.143964i 0.136591 0.990628i \(-0.456386\pi\)
−0.532129 + 0.846663i \(0.678608\pi\)
\(114\) 0 0
\(115\) 26.7622 + 4.71889i 2.49559 + 0.440039i
\(116\) −2.92663 11.5463i −0.271731 1.07205i
\(117\) 0 0
\(118\) −9.21591 + 1.14979i −0.848394 + 0.105847i
\(119\) 0.0182330 0.00663627i 0.00167142 0.000608346i
\(120\) 0 0
\(121\) 7.65242 6.42114i 0.695674 0.583740i
\(122\) −0.0451412 0.146628i −0.00408689 0.0132751i
\(123\) 0 0
\(124\) −14.3646 6.93699i −1.28998 0.622960i
\(125\) 18.8902 10.9063i 1.68959 0.975485i
\(126\) 0 0
\(127\) −0.733337 + 1.27018i −0.0650731 + 0.112710i −0.896726 0.442585i \(-0.854061\pi\)
0.831653 + 0.555295i \(0.187395\pi\)
\(128\) 1.92199 + 11.1493i 0.169882 + 0.985464i
\(129\) 0 0
\(130\) −16.3537 15.1906i −1.43431 1.33231i
\(131\) 11.2373 1.98143i 0.981805 0.173119i 0.340366 0.940293i \(-0.389449\pi\)
0.641439 + 0.767174i \(0.278338\pi\)
\(132\) 0 0
\(133\) −0.0285489 + 0.0340233i −0.00247551 + 0.00295019i
\(134\) −2.11654 + 5.01337i −0.182841 + 0.433089i
\(135\) 0 0
\(136\) −1.95306 5.00040i −0.167474 0.428781i
\(137\) −3.27137 2.74501i −0.279492 0.234522i 0.492255 0.870451i \(-0.336173\pi\)
−0.771748 + 0.635929i \(0.780617\pi\)
\(138\) 0 0
\(139\) 1.04893 0.184955i 0.0889693 0.0156877i −0.128986 0.991646i \(-0.541172\pi\)
0.217956 + 0.975959i \(0.430061\pi\)
\(140\) −0.0734904 + 0.0330636i −0.00621107 + 0.00279438i
\(141\) 0 0
\(142\) 0.679866 1.05138i 0.0570531 0.0882297i
\(143\) 2.01268 3.48606i 0.168309 0.291519i
\(144\) 0 0
\(145\) −11.7368 20.3288i −0.974690 1.68821i
\(146\) −20.5116 1.03492i −1.69755 0.0856506i
\(147\) 0 0
\(148\) −1.54772 + 15.2984i −0.127222 + 1.25752i
\(149\) −1.34236 1.59976i −0.109970 0.131058i 0.708251 0.705960i \(-0.249484\pi\)
−0.818222 + 0.574903i \(0.805040\pi\)
\(150\) 0 0
\(151\) 9.89970 3.60320i 0.805626 0.293224i 0.0938105 0.995590i \(-0.470095\pi\)
0.711816 + 0.702366i \(0.247873\pi\)
\(152\) 9.59467 + 7.67725i 0.778231 + 0.622707i
\(153\) 0 0
\(154\) −0.00876888 0.0115897i −0.000706616 0.000933922i
\(155\) −30.9586 5.45883i −2.48665 0.438464i
\(156\) 0 0
\(157\) −7.61747 + 20.9288i −0.607940 + 1.67030i 0.126779 + 0.991931i \(0.459536\pi\)
−0.734720 + 0.678371i \(0.762686\pi\)
\(158\) −1.01430 + 4.43280i −0.0806937 + 0.352654i
\(159\) 0 0
\(160\) 9.61883 + 20.1140i 0.760436 + 1.59015i
\(161\) −0.0704866 −0.00555512
\(162\) 0 0
\(163\) 8.64571i 0.677184i 0.940933 + 0.338592i \(0.109951\pi\)
−0.940933 + 0.338592i \(0.890049\pi\)
\(164\) −0.855093 11.5801i −0.0667715 0.904258i
\(165\) 0 0
\(166\) 20.9516 + 4.79411i 1.62616 + 0.372095i
\(167\) 7.93163 + 2.88688i 0.613768 + 0.223393i 0.630151 0.776473i \(-0.282993\pi\)
−0.0163833 + 0.999866i \(0.505215\pi\)
\(168\) 0 0
\(169\) −0.527105 + 2.98936i −0.0405465 + 0.229951i
\(170\) −6.38313 8.43647i −0.489564 0.647048i
\(171\) 0 0
\(172\) 8.01955 + 2.26581i 0.611485 + 0.172766i
\(173\) −4.65008 12.7760i −0.353539 0.971340i −0.981224 0.192872i \(-0.938220\pi\)
0.627685 0.778467i \(-0.284003\pi\)
\(174\) 0 0
\(175\) −0.0824974 + 0.0692236i −0.00623622 + 0.00523281i
\(176\) −3.14914 + 2.50012i −0.237375 + 0.188454i
\(177\) 0 0
\(178\) 4.10624 + 0.207183i 0.307776 + 0.0155290i
\(179\) 0.257187 0.148487i 0.0192231 0.0110985i −0.490358 0.871521i \(-0.663134\pi\)
0.509581 + 0.860423i \(0.329801\pi\)
\(180\) 0 0
\(181\) −1.63626 0.944694i −0.121622 0.0702186i 0.437955 0.898997i \(-0.355703\pi\)
−0.559577 + 0.828778i \(0.689036\pi\)
\(182\) 0.0486158 + 0.0314370i 0.00360364 + 0.00233027i
\(183\) 0 0
\(184\) 0.454243 + 19.4963i 0.0334873 + 1.43728i
\(185\) 5.26192 + 29.8418i 0.386864 + 2.19401i
\(186\) 0 0
\(187\) 1.22637 1.46153i 0.0896811 0.106878i
\(188\) −11.0477 11.3515i −0.805740 0.827892i
\(189\) 0 0
\(190\) 22.3092 + 9.41849i 1.61848 + 0.683289i
\(191\) −10.6897 8.96976i −0.773483 0.649029i 0.168116 0.985767i \(-0.446232\pi\)
−0.941598 + 0.336738i \(0.890676\pi\)
\(192\) 0 0
\(193\) 1.65530 + 9.38768i 0.119151 + 0.675740i 0.984611 + 0.174761i \(0.0559153\pi\)
−0.865460 + 0.500979i \(0.832974\pi\)
\(194\) −13.2559 12.3132i −0.951720 0.884034i
\(195\) 0 0
\(196\) −11.5758 + 7.87372i −0.826841 + 0.562409i
\(197\) 7.61046 + 4.39390i 0.542223 + 0.313052i 0.745979 0.665969i \(-0.231982\pi\)
−0.203757 + 0.979022i \(0.565315\pi\)
\(198\) 0 0
\(199\) 4.70991 + 8.15780i 0.333876 + 0.578291i 0.983268 0.182163i \(-0.0583098\pi\)
−0.649392 + 0.760454i \(0.724977\pi\)
\(200\) 19.6786 + 22.3723i 1.39149 + 1.58196i
\(201\) 0 0
\(202\) 3.48680 + 11.3259i 0.245331 + 0.796887i
\(203\) 0.0391368 + 0.0466414i 0.00274686 + 0.00327358i
\(204\) 0 0
\(205\) −7.82640 21.5029i −0.546619 1.50182i
\(206\) 1.21703 + 9.75486i 0.0847946 + 0.679653i
\(207\) 0 0
\(208\) 8.38205 13.6495i 0.581190 0.946423i
\(209\) −0.758358 + 4.30086i −0.0524567 + 0.297497i
\(210\) 0 0
\(211\) 4.12560 11.3350i 0.284018 0.780333i −0.712855 0.701311i \(-0.752598\pi\)
0.996873 0.0790214i \(-0.0251795\pi\)
\(212\) −3.66005 2.63747i −0.251373 0.181142i
\(213\) 0 0
\(214\) −17.9704 + 9.20048i −1.22843 + 0.628932i
\(215\) 16.4226 1.12001
\(216\) 0 0
\(217\) 0.0815391 0.00553524
\(218\) −6.14841 + 3.14786i −0.416423 + 0.213200i
\(219\) 0 0
\(220\) −4.63255 + 6.42866i −0.312327 + 0.433420i
\(221\) −2.59946 + 7.14195i −0.174858 + 0.480420i
\(222\) 0 0
\(223\) 0.616341 3.49544i 0.0412732 0.234072i −0.957192 0.289454i \(-0.906526\pi\)
0.998465 + 0.0553815i \(0.0176375\pi\)
\(224\) −0.0336298 0.0470468i −0.00224699 0.00314345i
\(225\) 0 0
\(226\) −0.783400 6.27918i −0.0521110 0.417685i
\(227\) −3.72066 10.2224i −0.246949 0.678486i −0.999794 0.0202886i \(-0.993542\pi\)
0.752846 0.658197i \(-0.228681\pi\)
\(228\) 0 0
\(229\) 5.05083 + 6.01935i 0.333769 + 0.397770i 0.906661 0.421861i \(-0.138623\pi\)
−0.572892 + 0.819631i \(0.694179\pi\)
\(230\) 11.3078 + 36.7301i 0.745612 + 2.42191i
\(231\) 0 0
\(232\) 12.6486 11.1256i 0.830420 0.730433i
\(233\) −12.0985 20.9553i −0.792602 1.37283i −0.924351 0.381544i \(-0.875392\pi\)
0.131749 0.991283i \(-0.457941\pi\)
\(234\) 0 0
\(235\) −27.0336 15.6079i −1.76348 1.01814i
\(236\) −7.38696 10.8602i −0.480850 0.706936i
\(237\) 0 0
\(238\) 0.0201049 + 0.0186751i 0.00130321 + 0.00121052i
\(239\) 5.23764 + 29.7041i 0.338795 + 1.92140i 0.385963 + 0.922514i \(0.373869\pi\)
−0.0471684 + 0.998887i \(0.515020\pi\)
\(240\) 0 0
\(241\) −1.91756 1.60903i −0.123521 0.103647i 0.578935 0.815374i \(-0.303469\pi\)
−0.702456 + 0.711727i \(0.747913\pi\)
\(242\) 13.0150 + 5.49465i 0.836635 + 0.353209i
\(243\) 0 0
\(244\) 0.155486 0.151325i 0.00995396 0.00968762i
\(245\) −17.7339 + 21.1344i −1.13298 + 1.35023i
\(246\) 0 0
\(247\) −3.02101 17.1330i −0.192222 1.09015i
\(248\) −0.525470 22.5534i −0.0333674 1.43214i
\(249\) 0 0
\(250\) 25.9036 + 16.7504i 1.63829 + 1.05939i
\(251\) −14.5027 8.37314i −0.915402 0.528508i −0.0332368 0.999448i \(-0.510582\pi\)
−0.882165 + 0.470940i \(0.843915\pi\)
\(252\) 0 0
\(253\) −6.00232 + 3.46544i −0.377363 + 0.217870i
\(254\) −2.07156 0.104521i −0.129981 0.00655825i
\(255\) 0 0
\(256\) −12.7962 + 9.60505i −0.799763 + 0.600316i
\(257\) 20.4870 17.1907i 1.27795 1.07232i 0.284423 0.958699i \(-0.408198\pi\)
0.993524 0.113626i \(-0.0362465\pi\)
\(258\) 0 0
\(259\) −0.0268820 0.0738578i −0.00167037 0.00458930i
\(260\) 8.58247 30.3766i 0.532262 1.88388i
\(261\) 0 0
\(262\) 9.73660 + 12.8687i 0.601529 + 0.795031i
\(263\) 0.762315 4.32330i 0.0470064 0.266586i −0.952242 0.305343i \(-0.901229\pi\)
0.999249 + 0.0387571i \(0.0123398\pi\)
\(264\) 0 0
\(265\) −8.35424 3.04070i −0.513197 0.186788i
\(266\) −0.0612288 0.0140103i −0.00375418 0.000859024i
\(267\) 0 0
\(268\) −7.67503 + 0.566734i −0.468827 + 0.0346188i
\(269\) 0.741050i 0.0451826i −0.999745 0.0225913i \(-0.992808\pi\)
0.999745 0.0225913i \(-0.00719165\pi\)
\(270\) 0 0
\(271\) −14.1450 −0.859245 −0.429622 0.903009i \(-0.641353\pi\)
−0.429622 + 0.903009i \(0.641353\pi\)
\(272\) 5.03587 5.68127i 0.305345 0.344478i
\(273\) 0 0
\(274\) 1.34710 5.88721i 0.0813813 0.355659i
\(275\) −3.62176 + 9.95071i −0.218400 + 0.600050i
\(276\) 0 0
\(277\) 8.42697 + 1.48590i 0.506327 + 0.0892792i 0.420976 0.907072i \(-0.361688\pi\)
0.0853514 + 0.996351i \(0.472799\pi\)
\(278\) 0.908854 + 1.20122i 0.0545094 + 0.0720442i
\(279\) 0 0
\(280\) −0.0889851 0.0712021i −0.00531788 0.00425514i
\(281\) 17.6483 6.42344i 1.05281 0.383191i 0.243086 0.970005i \(-0.421840\pi\)
0.809722 + 0.586814i \(0.199618\pi\)
\(282\) 0 0
\(283\) −16.5234 19.6918i −0.982214 1.17056i −0.985347 0.170562i \(-0.945442\pi\)
0.00313343 0.999995i \(-0.499003\pi\)
\(284\) 1.76167 + 0.178225i 0.104536 + 0.0105757i
\(285\) 0 0
\(286\) 5.68549 + 0.286864i 0.336190 + 0.0169626i
\(287\) 0.0296768 + 0.0514017i 0.00175177 + 0.00303415i
\(288\) 0 0
\(289\) 6.69885 11.6027i 0.394050 0.682514i
\(290\) 18.0260 27.8763i 1.05852 1.63695i
\(291\) 0 0
\(292\) −11.9168 26.4874i −0.697375 1.55006i
\(293\) −14.3663 + 2.53317i −0.839288 + 0.147989i −0.576738 0.816929i \(-0.695675\pi\)
−0.262550 + 0.964918i \(0.584564\pi\)
\(294\) 0 0
\(295\) −19.8279 16.6376i −1.15442 0.968678i
\(296\) −20.2555 + 7.91142i −1.17733 + 0.459842i
\(297\) 0 0
\(298\) 1.14868 2.72083i 0.0665410 0.157613i
\(299\) 17.7473 21.1504i 1.02635 1.22316i
\(300\) 0 0
\(301\) −0.0419499 + 0.00739689i −0.00241795 + 0.000426350i
\(302\) 10.9161 + 10.1397i 0.628149 + 0.583476i
\(303\) 0 0
\(304\) −3.48059 + 17.0259i −0.199626 + 0.976502i
\(305\) 0.213787 0.370290i 0.0122414 0.0212028i
\(306\) 0 0
\(307\) −8.07578 + 4.66255i −0.460909 + 0.266106i −0.712426 0.701747i \(-0.752404\pi\)
0.251517 + 0.967853i \(0.419070\pi\)
\(308\) 0.00893785 0.0185079i 0.000509281 0.00105458i
\(309\) 0 0
\(310\) −13.0809 42.4895i −0.742942 2.41324i
\(311\) 6.15253 5.16259i 0.348878 0.292743i −0.451461 0.892291i \(-0.649097\pi\)
0.800339 + 0.599547i \(0.204653\pi\)
\(312\) 0 0
\(313\) 31.0694 11.3083i 1.75615 0.639185i 0.756261 0.654269i \(-0.227024\pi\)
0.999886 + 0.0150840i \(0.00480156\pi\)
\(314\) −31.2550 + 3.89943i −1.76382 + 0.220057i
\(315\) 0 0
\(316\) −6.23381 + 1.58007i −0.350679 + 0.0888861i
\(317\) 25.6721 + 4.52669i 1.44189 + 0.254244i 0.839240 0.543762i \(-0.183000\pi\)
0.602650 + 0.798006i \(0.294112\pi\)
\(318\) 0 0
\(319\) 5.62581 + 2.04763i 0.314985 + 0.114645i
\(320\) −19.1207 + 25.0717i −1.06888 + 1.40155i
\(321\) 0 0
\(322\) −0.0454280 0.0887300i −0.00253161 0.00494473i
\(323\) 8.24576i 0.458806i
\(324\) 0 0
\(325\) 42.1838i 2.33993i
\(326\) −10.8834 + 5.57209i −0.602776 + 0.308609i
\(327\) 0 0
\(328\) 14.0262 8.53972i 0.774469 0.471527i
\(329\) 0.0760844 + 0.0276925i 0.00419467 + 0.00152674i
\(330\) 0 0
\(331\) −2.73256 0.481823i −0.150195 0.0264834i 0.0980451 0.995182i \(-0.468741\pi\)
−0.248240 + 0.968699i \(0.579852\pi\)
\(332\) 7.46822 + 29.4641i 0.409872 + 1.61705i
\(333\) 0 0
\(334\) 1.47781 + 11.8451i 0.0808621 + 0.648133i
\(335\) −14.2516 + 5.18714i −0.778645 + 0.283404i
\(336\) 0 0
\(337\) −10.0326 + 8.41837i −0.546512 + 0.458578i −0.873758 0.486361i \(-0.838324\pi\)
0.327246 + 0.944939i \(0.393879\pi\)
\(338\) −4.10278 + 1.26309i −0.223162 + 0.0687029i
\(339\) 0 0
\(340\) 6.50613 13.4725i 0.352844 0.730646i
\(341\) 6.94350 4.00883i 0.376012 0.217090i
\(342\) 0 0
\(343\) 0.0715611 0.123947i 0.00386393 0.00669253i
\(344\) 2.31629 + 11.5555i 0.124886 + 0.623029i
\(345\) 0 0
\(346\) 13.0857 14.0876i 0.703493 0.757356i
\(347\) 14.2864 2.51907i 0.766932 0.135231i 0.223523 0.974699i \(-0.428244\pi\)
0.543409 + 0.839468i \(0.317133\pi\)
\(348\) 0 0
\(349\) −15.0245 + 17.9055i −0.804242 + 0.958459i −0.999753 0.0222430i \(-0.992919\pi\)
0.195510 + 0.980702i \(0.437364\pi\)
\(350\) −0.140309 0.0592355i −0.00749983 0.00316627i
\(351\) 0 0
\(352\) −5.17680 2.35290i −0.275924 0.125410i
\(353\) 26.1780 + 21.9660i 1.39332 + 1.16913i 0.963976 + 0.265988i \(0.0856981\pi\)
0.429340 + 0.903143i \(0.358746\pi\)
\(354\) 0 0
\(355\) 3.43638 0.605927i 0.182384 0.0321593i
\(356\) 2.38564 + 5.30255i 0.126438 + 0.281035i
\(357\) 0 0
\(358\) 0.352674 + 0.228054i 0.0186394 + 0.0120530i
\(359\) 13.5391 23.4504i 0.714565 1.23766i −0.248562 0.968616i \(-0.579958\pi\)
0.963127 0.269047i \(-0.0867088\pi\)
\(360\) 0 0
\(361\) −0.0626343 0.108486i −0.00329654 0.00570978i
\(362\) 0.134646 2.66860i 0.00707682 0.140259i
\(363\) 0 0
\(364\) −0.00824113 + 0.0814595i −0.000431953 + 0.00426964i
\(365\) −36.7916 43.8465i −1.92576 2.29503i
\(366\) 0 0
\(367\) 4.30354 1.56636i 0.224643 0.0817633i −0.227247 0.973837i \(-0.572972\pi\)
0.451890 + 0.892074i \(0.350750\pi\)
\(368\) −24.2496 + 13.1370i −1.26410 + 0.684814i
\(369\) 0 0
\(370\) −34.1742 + 25.8566i −1.77663 + 1.34422i
\(371\) 0.0227096 + 0.00400432i 0.00117902 + 0.000207894i
\(372\) 0 0
\(373\) −5.86591 + 16.1165i −0.303725 + 0.834479i 0.690119 + 0.723696i \(0.257558\pi\)
−0.993845 + 0.110783i \(0.964664\pi\)
\(374\) 2.63019 + 0.601836i 0.136004 + 0.0311202i
\(375\) 0 0
\(376\) 7.16929 21.2231i 0.369728 1.09450i
\(377\) −23.8493 −1.22830
\(378\) 0 0
\(379\) 0.380673i 0.0195538i 0.999952 + 0.00977692i \(0.00311214\pi\)
−0.999952 + 0.00977692i \(0.996888\pi\)
\(380\) 2.52194 + 34.1535i 0.129373 + 1.75204i
\(381\) 0 0
\(382\) 4.40187 19.2374i 0.225219 0.984272i
\(383\) −34.6697 12.6187i −1.77154 0.644788i −0.999963 0.00865253i \(-0.997246\pi\)
−0.771578 0.636135i \(-0.780532\pi\)
\(384\) 0 0
\(385\) 0.00703334 0.0398880i 0.000358452 0.00203288i
\(386\) −10.7506 + 8.13401i −0.547190 + 0.414010i
\(387\) 0 0
\(388\) 6.95675 24.6226i 0.353176 1.25002i
\(389\) 2.44660 + 6.72197i 0.124047 + 0.340817i 0.986136 0.165941i \(-0.0530660\pi\)
−0.862088 + 0.506758i \(0.830844\pi\)
\(390\) 0 0
\(391\) 10.0246 8.41167i 0.506968 0.425397i
\(392\) −17.3721 9.49728i −0.877424 0.479685i
\(393\) 0 0
\(394\) −0.626255 + 12.4120i −0.0315503 + 0.625309i
\(395\) −10.9754 + 6.33665i −0.552233 + 0.318832i
\(396\) 0 0
\(397\) 22.6986 + 13.1051i 1.13921 + 0.657724i 0.946235 0.323479i \(-0.104853\pi\)
0.192976 + 0.981203i \(0.438186\pi\)
\(398\) −7.23371 + 11.1866i −0.362593 + 0.560732i
\(399\) 0 0
\(400\) −15.4801 + 39.1906i −0.774003 + 1.95953i
\(401\) −3.00071 17.0179i −0.149848 0.849832i −0.963346 0.268263i \(-0.913550\pi\)
0.813497 0.581569i \(-0.197561\pi\)
\(402\) 0 0
\(403\) −20.5302 + 24.4669i −1.02268 + 1.21878i
\(404\) −12.0101 + 11.6887i −0.597523 + 0.581535i
\(405\) 0 0
\(406\) −0.0334898 + 0.0793262i −0.00166207 + 0.00393689i
\(407\) −5.92033 4.96775i −0.293460 0.246242i
\(408\) 0 0
\(409\) −4.27076 24.2207i −0.211176 1.19764i −0.887421 0.460960i \(-0.847505\pi\)
0.676245 0.736677i \(-0.263606\pi\)
\(410\) 22.0242 23.7105i 1.08770 1.17098i
\(411\) 0 0
\(412\) −11.4953 + 7.81895i −0.566331 + 0.385212i
\(413\) 0.0581420 + 0.0335683i 0.00286098 + 0.00165179i
\(414\) 0 0
\(415\) 29.9502 + 51.8753i 1.47020 + 2.54646i
\(416\) 22.5844 + 1.75450i 1.10729 + 0.0860216i
\(417\) 0 0
\(418\) −5.90277 + 1.81723i −0.288714 + 0.0888838i
\(419\) 8.86909 + 10.5698i 0.433283 + 0.516367i 0.937867 0.346996i \(-0.112798\pi\)
−0.504583 + 0.863363i \(0.668354\pi\)
\(420\) 0 0
\(421\) −12.5029 34.3515i −0.609355 1.67419i −0.731637 0.681695i \(-0.761243\pi\)
0.122281 0.992496i \(-0.460979\pi\)
\(422\) 16.9276 2.11192i 0.824024 0.102807i
\(423\) 0 0
\(424\) 0.961226 6.30718i 0.0466813 0.306304i
\(425\) 3.47188 19.6900i 0.168411 0.955106i
\(426\) 0 0
\(427\) −0.000379315 0.00104216i −1.83563e−5 5.04336e-5i
\(428\) −23.1635 16.6918i −1.11965 0.806830i
\(429\) 0 0
\(430\) 10.5842 + 20.6731i 0.510418 + 0.996947i
\(431\) −7.44743 −0.358730 −0.179365 0.983783i \(-0.557404\pi\)
−0.179365 + 0.983783i \(0.557404\pi\)
\(432\) 0 0
\(433\) 20.9407 1.00634 0.503172 0.864186i \(-0.332166\pi\)
0.503172 + 0.864186i \(0.332166\pi\)
\(434\) 0.0525513 + 0.102643i 0.00252254 + 0.00492703i
\(435\) 0 0
\(436\) −7.92519 5.71097i −0.379548 0.273506i
\(437\) −10.2451 + 28.1482i −0.490090 + 1.34651i
\(438\) 0 0
\(439\) 4.88555 27.7073i 0.233174 1.32240i −0.613250 0.789889i \(-0.710138\pi\)
0.846424 0.532509i \(-0.178751\pi\)
\(440\) −11.0782 1.68834i −0.528132 0.0804882i
\(441\) 0 0
\(442\) −10.6658 + 1.33068i −0.507319 + 0.0632939i
\(443\) 5.98423 + 16.4415i 0.284319 + 0.781161i 0.996835 + 0.0795043i \(0.0253338\pi\)
−0.712515 + 0.701657i \(0.752444\pi\)
\(444\) 0 0
\(445\) 7.36537 + 8.77771i 0.349152 + 0.416103i
\(446\) 4.79736 1.47692i 0.227162 0.0699342i
\(447\) 0 0
\(448\) 0.0375493 0.0726552i 0.00177404 0.00343264i
\(449\) 2.99357 + 5.18501i 0.141275 + 0.244696i 0.927977 0.372637i \(-0.121546\pi\)
−0.786702 + 0.617333i \(0.788213\pi\)
\(450\) 0 0
\(451\) 5.05428 + 2.91809i 0.237997 + 0.137408i
\(452\) 7.39947 5.03304i 0.348042 0.236734i
\(453\) 0 0
\(454\) 10.4703 11.2719i 0.491394 0.529017i
\(455\) 0.0280181 + 0.158899i 0.00131351 + 0.00744928i
\(456\) 0 0
\(457\) 18.6279 + 15.6306i 0.871375 + 0.731170i 0.964387 0.264495i \(-0.0852052\pi\)
−0.0930125 + 0.995665i \(0.529650\pi\)
\(458\) −4.32206 + 10.2375i −0.201957 + 0.478368i
\(459\) 0 0
\(460\) −38.9488 + 37.9067i −1.81600 + 1.76741i
\(461\) 10.3010 12.2762i 0.479764 0.571761i −0.470819 0.882230i \(-0.656042\pi\)
0.950584 + 0.310469i \(0.100486\pi\)
\(462\) 0 0
\(463\) 0.124840 + 0.708003i 0.00580181 + 0.0329037i 0.987571 0.157172i \(-0.0502377\pi\)
−0.981769 + 0.190076i \(0.939127\pi\)
\(464\) 22.1571 + 8.75192i 1.02862 + 0.406298i
\(465\) 0 0
\(466\) 18.5816 28.7354i 0.860774 1.33114i
\(467\) 16.8793 + 9.74528i 0.781082 + 0.450958i 0.836814 0.547488i \(-0.184416\pi\)
−0.0557318 + 0.998446i \(0.517749\pi\)
\(468\) 0 0
\(469\) 0.0340678 0.0196690i 0.00157310 0.000908231i
\(470\) 2.22456 44.0896i 0.102611 2.03370i
\(471\) 0 0
\(472\) 8.91015 16.2981i 0.410123 0.750183i
\(473\) −3.20859 + 2.69233i −0.147531 + 0.123794i
\(474\) 0 0
\(475\) 15.6530 + 43.0062i 0.718207 + 1.97326i
\(476\) −0.0105511 + 0.0373444i −0.000483610 + 0.00171168i
\(477\) 0 0
\(478\) −34.0166 + 25.7373i −1.55588 + 1.17720i
\(479\) −1.69552 + 9.61575i −0.0774701 + 0.439355i 0.921259 + 0.388950i \(0.127162\pi\)
−0.998729 + 0.0504046i \(0.983949\pi\)
\(480\) 0 0
\(481\) 28.9304 + 10.5298i 1.31911 + 0.480118i
\(482\) 0.789623 3.45087i 0.0359663 0.157183i
\(483\) 0 0
\(484\) 1.47127 + 19.9248i 0.0668760 + 0.905672i
\(485\) 50.4227i 2.28958i
\(486\) 0 0
\(487\) −40.7197 −1.84519 −0.922594 0.385773i \(-0.873935\pi\)
−0.922594 + 0.385773i \(0.873935\pi\)
\(488\) 0.290701 + 0.0982007i 0.0131594 + 0.00444534i
\(489\) 0 0
\(490\) −38.0338 8.70284i −1.71819 0.393154i
\(491\) −4.27622 + 11.7488i −0.192983 + 0.530217i −0.998012 0.0630180i \(-0.979927\pi\)
0.805029 + 0.593235i \(0.202150\pi\)
\(492\) 0 0
\(493\) −11.1321 1.96289i −0.501365 0.0884041i
\(494\) 19.6203 14.8450i 0.882761 0.667907i
\(495\) 0 0
\(496\) 28.0520 15.1969i 1.25957 0.682362i
\(497\) −0.00850497 + 0.00309555i −0.000381500 + 0.000138855i
\(498\) 0 0
\(499\) 2.94192 + 3.50604i 0.131698 + 0.156952i 0.827863 0.560930i \(-0.189556\pi\)
−0.696165 + 0.717882i \(0.745112\pi\)
\(500\) −4.39106 + 43.4035i −0.196374 + 1.94106i
\(501\) 0 0
\(502\) 1.19341 23.6527i 0.0532644 1.05567i
\(503\) 9.68900 + 16.7818i 0.432011 + 0.748265i 0.997046 0.0768015i \(-0.0244708\pi\)
−0.565035 + 0.825067i \(0.691137\pi\)
\(504\) 0 0
\(505\) −16.5134 + 28.6020i −0.734836 + 1.27277i
\(506\) −8.23081 5.32240i −0.365904 0.236609i
\(507\) 0 0
\(508\) −1.20353 2.67508i −0.0533979 0.118688i
\(509\) −2.30682 + 0.406755i −0.102248 + 0.0180291i −0.224538 0.974465i \(-0.572087\pi\)
0.122290 + 0.992494i \(0.460976\pi\)
\(510\) 0 0
\(511\) 0.113729 + 0.0954301i 0.00503108 + 0.00422158i
\(512\) −20.3381 9.91776i −0.898825 0.438307i
\(513\) 0 0
\(514\) 34.8437 + 14.7103i 1.53689 + 0.648842i
\(515\) −17.6105 + 20.9874i −0.776014 + 0.924817i
\(516\) 0 0
\(517\) 7.84049 1.38249i 0.344824 0.0608018i
\(518\) 0.0756484 0.0814404i 0.00332380 0.00357829i
\(519\) 0 0
\(520\) 43.7701 8.77368i 1.91944 0.384751i
\(521\) 3.33988 5.78485i 0.146323 0.253439i −0.783543 0.621338i \(-0.786589\pi\)
0.929866 + 0.367899i \(0.119923\pi\)
\(522\) 0 0
\(523\) −25.4719 + 14.7062i −1.11381 + 0.643057i −0.939813 0.341690i \(-0.889001\pi\)
−0.173994 + 0.984747i \(0.555667\pi\)
\(524\) −9.92422 + 20.5504i −0.433542 + 0.897749i
\(525\) 0 0
\(526\) 5.93357 1.82672i 0.258716 0.0796486i
\(527\) −11.5965 + 9.73065i −0.505153 + 0.423874i
\(528\) 0 0
\(529\) −23.0590 + 8.39280i −1.00257 + 0.364904i
\(530\) −1.55655 12.4762i −0.0676122 0.541932i
\(531\) 0 0
\(532\) −0.0218251 0.0861056i −0.000946236 0.00373315i
\(533\) −22.8959 4.03716i −0.991731 0.174869i
\(534\) 0 0
\(535\) −52.8718 19.2438i −2.28585 0.831980i
\(536\) −5.65991 9.29623i −0.244471 0.401536i
\(537\) 0 0
\(538\) 0.932850 0.477601i 0.0402180 0.0205908i
\(539\) 7.03648i 0.303083i
\(540\) 0 0
\(541\) 1.09392i 0.0470312i −0.999723 0.0235156i \(-0.992514\pi\)
0.999723 0.0235156i \(-0.00748594\pi\)
\(542\) −9.11631 17.8060i −0.391579 0.764832i
\(543\) 0 0
\(544\) 10.3973 + 2.67773i 0.445780 + 0.114807i
\(545\) −18.0896 6.58409i −0.774875 0.282031i
\(546\) 0 0
\(547\) 11.4033 + 2.01070i 0.487568 + 0.0859714i 0.412028 0.911171i \(-0.364821\pi\)
0.0755403 + 0.997143i \(0.475932\pi\)
\(548\) 8.27914 2.09850i 0.353667 0.0896435i
\(549\) 0 0
\(550\) −14.8604 + 1.85400i −0.633648 + 0.0790549i
\(551\) 24.3143 8.84968i 1.03582 0.377009i
\(552\) 0 0
\(553\) 0.0251814 0.0211297i 0.00107082 0.000898528i
\(554\) 3.56063 + 11.5657i 0.151277 + 0.491379i
\(555\) 0 0
\(556\) −0.926368 + 1.91826i −0.0392867 + 0.0813523i
\(557\) −11.9979 + 6.92697i −0.508366 + 0.293505i −0.732162 0.681131i \(-0.761488\pi\)
0.223796 + 0.974636i \(0.428155\pi\)
\(558\) 0 0
\(559\) 8.34273 14.4500i 0.352860 0.611171i
\(560\) 0.0322805 0.157905i 0.00136410 0.00667272i
\(561\) 0 0
\(562\) 19.4601 + 18.0762i 0.820876 + 0.762496i
\(563\) 29.5384 5.20841i 1.24489 0.219508i 0.487882 0.872910i \(-0.337770\pi\)
0.757012 + 0.653401i \(0.226659\pi\)
\(564\) 0 0
\(565\) 11.3359 13.5096i 0.476903 0.568351i
\(566\) 14.1393 33.4912i 0.594318 1.40774i
\(567\) 0 0
\(568\) 0.911026 + 2.33249i 0.0382258 + 0.0978690i
\(569\) 13.1491 + 11.0334i 0.551241 + 0.462546i 0.875361 0.483470i \(-0.160624\pi\)
−0.324120 + 0.946016i \(0.605068\pi\)
\(570\) 0 0
\(571\) 16.7116 2.94670i 0.699357 0.123316i 0.187346 0.982294i \(-0.440012\pi\)
0.512012 + 0.858978i \(0.328900\pi\)
\(572\) 3.30314 + 7.34189i 0.138111 + 0.306980i
\(573\) 0 0
\(574\) −0.0455791 + 0.0704858i −0.00190244 + 0.00294202i
\(575\) −36.3161 + 62.9013i −1.51449 + 2.62317i
\(576\) 0 0
\(577\) −4.49809 7.79092i −0.187258 0.324340i 0.757077 0.653326i \(-0.226627\pi\)
−0.944335 + 0.328985i \(0.893293\pi\)
\(578\) 18.9231 + 0.954775i 0.787098 + 0.0397134i
\(579\) 0 0
\(580\) 46.7089 + 4.72547i 1.93948 + 0.196214i
\(581\) −0.0998698 0.119020i −0.00414330 0.00493779i
\(582\) 0 0
\(583\) 2.13072 0.775517i 0.0882453 0.0321186i
\(584\) 25.6626 32.0720i 1.06193 1.32715i
\(585\) 0 0
\(586\) −12.4478 16.4520i −0.514212 0.679626i
\(587\) 29.2734 + 5.16169i 1.20824 + 0.213046i 0.741258 0.671220i \(-0.234229\pi\)
0.466984 + 0.884266i \(0.345340\pi\)
\(588\) 0 0
\(589\) 11.8516 32.5619i 0.488336 1.34169i
\(590\) 8.16482 35.6826i 0.336140 1.46903i
\(591\) 0 0
\(592\) −23.0136 20.3992i −0.945851 0.838401i
\(593\) 21.5451 0.884750 0.442375 0.896830i \(-0.354136\pi\)
0.442375 + 0.896830i \(0.354136\pi\)
\(594\) 0 0
\(595\) 0.0764747i 0.00313516i
\(596\) 4.16535 0.307574i 0.170619 0.0125987i
\(597\) 0 0
\(598\) 38.0626 + 8.70942i 1.55650 + 0.356155i
\(599\) 10.2586 + 3.73384i 0.419156 + 0.152560i 0.542983 0.839743i \(-0.317295\pi\)
−0.123827 + 0.992304i \(0.539517\pi\)
\(600\) 0 0
\(601\) −2.62710 + 14.8990i −0.107162 + 0.607744i 0.883173 + 0.469047i \(0.155403\pi\)
−0.990335 + 0.138697i \(0.955709\pi\)
\(602\) −0.0363477 0.0480401i −0.00148142 0.00195797i
\(603\) 0 0
\(604\) −5.72879 + 20.2763i −0.233101 + 0.825032i
\(605\) 13.4661 + 36.9978i 0.547475 + 1.50417i
\(606\) 0 0
\(607\) −18.8283 + 15.7988i −0.764216 + 0.641253i −0.939221 0.343314i \(-0.888450\pi\)
0.175005 + 0.984568i \(0.444006\pi\)
\(608\) −23.6758 + 6.59161i −0.960179 + 0.267325i
\(609\) 0 0
\(610\) 0.603913 + 0.0304707i 0.0244517 + 0.00123372i
\(611\) −27.4663 + 15.8577i −1.11117 + 0.641532i
\(612\) 0 0
\(613\) 15.6018 + 9.00768i 0.630149 + 0.363817i 0.780810 0.624769i \(-0.214807\pi\)
−0.150661 + 0.988586i \(0.548140\pi\)
\(614\) −11.0741 7.16098i −0.446914 0.288994i
\(615\) 0 0
\(616\) 0.0290585 0.000677033i 0.00117080 2.72784e-5i
\(617\) 4.06887 + 23.0757i 0.163807 + 0.928994i 0.950286 + 0.311378i \(0.100790\pi\)
−0.786480 + 0.617616i \(0.788098\pi\)
\(618\) 0 0
\(619\) 21.6871 25.8457i 0.871679 1.03883i −0.127219 0.991875i \(-0.540605\pi\)
0.998897 0.0469514i \(-0.0149506\pi\)
\(620\) 45.0561 43.8506i 1.80950 1.76108i
\(621\) 0 0
\(622\) 10.4640 + 4.41769i 0.419569 + 0.177133i
\(623\) −0.0227676 0.0191043i −0.000912166 0.000765398i
\(624\) 0 0
\(625\) 5.78239 + 32.7936i 0.231296 + 1.31174i
\(626\) 34.2592 + 31.8227i 1.36927 + 1.27189i
\(627\) 0 0
\(628\) −25.0523 36.8313i −0.999695 1.46973i
\(629\) 12.6372 + 7.29606i 0.503876 + 0.290913i
\(630\) 0 0
\(631\) −3.55095 6.15043i −0.141361 0.244845i 0.786648 0.617401i \(-0.211815\pi\)
−0.928009 + 0.372557i \(0.878481\pi\)
\(632\) −6.00667 6.82890i −0.238932 0.271639i
\(633\) 0 0
\(634\) 10.8472 + 35.2340i 0.430797 + 1.39932i
\(635\) −3.71575 4.42826i −0.147455 0.175730i
\(636\) 0 0
\(637\) 9.58703 + 26.3402i 0.379852 + 1.04363i
\(638\) 1.04819 + 8.40157i 0.0414983 + 0.332621i
\(639\) 0 0
\(640\) −43.8840 7.91104i −1.73467 0.312711i
\(641\) 0.826096 4.68502i 0.0326288 0.185047i −0.964137 0.265404i \(-0.914495\pi\)
0.996766 + 0.0803565i \(0.0256059\pi\)
\(642\) 0 0
\(643\) 5.88956 16.1814i 0.232262 0.638134i −0.767735 0.640768i \(-0.778616\pi\)
0.999997 + 0.00263392i \(0.000838403\pi\)
\(644\) 0.0824172 0.114372i 0.00324769 0.00450687i
\(645\) 0 0
\(646\) 10.3799 5.31433i 0.408393 0.209089i
\(647\) −38.9704 −1.53208 −0.766042 0.642791i \(-0.777776\pi\)
−0.766042 + 0.642791i \(0.777776\pi\)
\(648\) 0 0
\(649\) 6.60148 0.259131
\(650\) 53.1018 27.1871i 2.08282 1.06637i
\(651\) 0 0
\(652\) −14.0285 10.1091i −0.549399 0.395902i
\(653\) 7.50821 20.6286i 0.293819 0.807261i −0.701680 0.712492i \(-0.747566\pi\)
0.995499 0.0947692i \(-0.0302113\pi\)
\(654\) 0 0
\(655\) −7.80953 + 44.2901i −0.305144 + 1.73056i
\(656\) 19.7898 + 12.1527i 0.772661 + 0.474485i
\(657\) 0 0
\(658\) 0.0141759 + 0.113624i 0.000552636 + 0.00442953i
\(659\) −10.8064 29.6905i −0.420960 1.15658i −0.951158 0.308703i \(-0.900105\pi\)
0.530199 0.847873i \(-0.322117\pi\)
\(660\) 0 0
\(661\) 0.564964 + 0.673298i 0.0219746 + 0.0261883i 0.776920 0.629600i \(-0.216781\pi\)
−0.754945 + 0.655788i \(0.772337\pi\)
\(662\) −1.15458 3.75033i −0.0448741 0.145761i
\(663\) 0 0
\(664\) −32.2768 + 28.3905i −1.25258 + 1.10177i
\(665\) −0.0875262 0.151600i −0.00339412 0.00587879i
\(666\) 0 0
\(667\) 35.5624 + 20.5319i 1.37698 + 0.795000i
\(668\) −13.9584 + 9.49435i −0.540066 + 0.367347i
\(669\) 0 0
\(670\) −15.7147 14.5971i −0.607111 0.563934i
\(671\) 0.0189365 + 0.107394i 0.000731036 + 0.00414591i
\(672\) 0 0
\(673\) 2.60760 + 2.18804i 0.100516 + 0.0843426i 0.691661 0.722223i \(-0.256879\pi\)
−0.591145 + 0.806565i \(0.701324\pi\)
\(674\) −17.0632 7.20371i −0.657249 0.277477i
\(675\) 0 0
\(676\) −4.23421 4.35062i −0.162854 0.167331i
\(677\) −12.0910 + 14.4095i −0.464695 + 0.553802i −0.946595 0.322424i \(-0.895502\pi\)
0.481900 + 0.876226i \(0.339947\pi\)
\(678\) 0 0
\(679\) 0.0227108 + 0.128799i 0.000871561 + 0.00494287i
\(680\) 21.1526 0.492833i 0.811163 0.0188993i
\(681\) 0 0
\(682\) 9.52143 + 6.15696i 0.364594 + 0.235762i
\(683\) 19.4488 + 11.2288i 0.744188 + 0.429657i 0.823590 0.567186i \(-0.191968\pi\)
−0.0794021 + 0.996843i \(0.525301\pi\)
\(684\) 0 0
\(685\) 14.5765 8.41573i 0.556938 0.321548i
\(686\) 0.202148 + 0.0101995i 0.00771805 + 0.000389418i
\(687\) 0 0
\(688\) −13.0534 + 10.3632i −0.497658 + 0.395093i
\(689\) −6.91944 + 5.80610i −0.263610 + 0.221195i
\(690\) 0 0
\(691\) −14.6665 40.2960i −0.557941 1.53293i −0.822618 0.568594i \(-0.807488\pi\)
0.264677 0.964337i \(-0.414735\pi\)
\(692\) 26.1674 + 7.39323i 0.994737 + 0.281049i
\(693\) 0 0
\(694\) 12.3785 + 16.3605i 0.469882 + 0.621034i
\(695\) −0.728974 + 4.13422i −0.0276515 + 0.156820i
\(696\) 0 0
\(697\) −10.3548 3.76883i −0.392215 0.142755i
\(698\) −32.2230 7.37320i −1.21966 0.279080i
\(699\) 0 0
\(700\) −0.0158612 0.214801i −0.000599495 0.00811870i
\(701\) 30.9274i 1.16811i 0.811714 + 0.584055i \(0.198535\pi\)
−0.811714 + 0.584055i \(0.801465\pi\)
\(702\) 0 0
\(703\) −33.4017 −1.25977
\(704\) −0.374529 8.03308i −0.0141156 0.302758i
\(705\) 0 0
\(706\) −10.7797 + 47.1103i −0.405699 + 1.77302i
\(707\) 0.0292991 0.0804987i 0.00110191 0.00302746i
\(708\) 0 0
\(709\) 10.5402 + 1.85852i 0.395845 + 0.0697982i 0.368028 0.929815i \(-0.380033\pi\)
0.0278175 + 0.999613i \(0.491144\pi\)
\(710\) 2.97747 + 3.93528i 0.111743 + 0.147688i
\(711\) 0 0
\(712\) −5.13744 + 6.42054i −0.192534 + 0.240620i
\(713\) 51.6766 18.8088i 1.93531 0.704394i
\(714\) 0 0
\(715\) 10.1981 + 12.1536i 0.381386 + 0.454518i
\(716\) −0.0597837 + 0.590932i −0.00223422 + 0.0220842i
\(717\) 0 0
\(718\) 38.2456 + 1.92970i 1.42731 + 0.0720158i
\(719\) −7.98318 13.8273i −0.297723 0.515671i 0.677892 0.735161i \(-0.262894\pi\)
−0.975615 + 0.219491i \(0.929560\pi\)
\(720\) 0 0
\(721\) 0.0355314 0.0615422i 0.00132326 0.00229195i
\(722\) 0.0961969 0.148764i 0.00358008 0.00553641i
\(723\) 0 0
\(724\) 3.44607 1.55040i 0.128072 0.0576201i
\(725\) 61.7861 10.8946i 2.29468 0.404614i
\(726\) 0 0
\(727\) 18.0652 + 15.1585i 0.670002 + 0.562198i 0.913066 0.407812i \(-0.133708\pi\)
−0.243064 + 0.970010i \(0.578153\pi\)
\(728\) −0.107854 + 0.0421259i −0.00399735 + 0.00156129i
\(729\) 0 0
\(730\) 31.4830 74.5728i 1.16524 2.76006i
\(731\) 5.08341 6.05817i 0.188017 0.224069i
\(732\) 0 0
\(733\) 5.12011 0.902813i 0.189115 0.0333462i −0.0782882 0.996931i \(-0.524945\pi\)
0.267404 + 0.963585i \(0.413834\pi\)
\(734\) 4.74536 + 4.40788i 0.175155 + 0.162698i
\(735\) 0 0
\(736\) −32.1658 22.0592i −1.18565 0.813112i
\(737\) 1.93404 3.34985i 0.0712412 0.123393i
\(738\) 0 0
\(739\) 10.5638 6.09903i 0.388596 0.224356i −0.292955 0.956126i \(-0.594639\pi\)
0.681552 + 0.731770i \(0.261305\pi\)
\(740\) −54.5739 26.3549i −2.00617 0.968824i
\(741\) 0 0
\(742\) 0.00959544 + 0.0311681i 0.000352260 + 0.00114422i
\(743\) 11.5486 9.69040i 0.423676 0.355506i −0.405883 0.913925i \(-0.633036\pi\)
0.829559 + 0.558419i \(0.188592\pi\)
\(744\) 0 0
\(745\) 7.73451 2.81513i 0.283371 0.103138i
\(746\) −24.0683 + 3.00279i −0.881202 + 0.109940i
\(747\) 0 0
\(748\) 0.937534 + 3.69882i 0.0342796 + 0.135242i
\(749\) 0.143723 + 0.0253422i 0.00525153 + 0.000925986i
\(750\) 0 0
\(751\) −1.35242 0.492239i −0.0493504 0.0179621i 0.317227 0.948350i \(-0.397248\pi\)
−0.366577 + 0.930388i \(0.619471\pi\)
\(752\) 31.3366 4.65324i 1.14273 0.169686i
\(753\) 0 0
\(754\) −15.3707 30.0220i −0.559768 1.09334i
\(755\) 41.5223i 1.51115i
\(756\) 0 0
\(757\) 15.3476i 0.557818i 0.960318 + 0.278909i \(0.0899727\pi\)
−0.960318 + 0.278909i \(0.910027\pi\)
\(758\) −0.479199 + 0.245340i −0.0174053 + 0.00891116i
\(759\) 0 0
\(760\) −41.3678 + 25.1863i −1.50057 + 0.913603i
\(761\) 3.86991 + 1.40853i 0.140284 + 0.0510593i 0.411208 0.911541i \(-0.365107\pi\)
−0.270924 + 0.962601i \(0.587329\pi\)
\(762\) 0 0
\(763\) 0.0491736 + 0.00867063i 0.00178020 + 0.000313898i
\(764\) 27.0534 6.85719i 0.978759 0.248084i
\(765\) 0 0
\(766\) −6.45961 51.7757i −0.233395 1.87073i
\(767\) −24.7118 + 8.99435i −0.892291 + 0.324767i
\(768\) 0 0
\(769\) 36.4911 30.6197i 1.31590 1.10417i 0.328748 0.944418i \(-0.393373\pi\)
0.987156 0.159757i \(-0.0510710\pi\)
\(770\) 0.0547448 0.0168538i 0.00197287 0.000607369i
\(771\) 0 0
\(772\) −17.1679 8.29075i −0.617887 0.298391i
\(773\) −4.04314 + 2.33431i −0.145422 + 0.0839592i −0.570945 0.820988i \(-0.693423\pi\)
0.425524 + 0.904947i \(0.360090\pi\)
\(774\) 0 0
\(775\) 42.0105 72.7644i 1.50906 2.61377i
\(776\) 35.4790 7.11174i 1.27362 0.255297i
\(777\) 0 0
\(778\) −6.88494 + 7.41208i −0.246837 + 0.265736i
\(779\) 24.8403 4.38001i 0.889996 0.156930i
\(780\) 0 0
\(781\) −0.572053 + 0.681746i −0.0204697 + 0.0243948i
\(782\) 17.0496 + 7.19797i 0.609692 + 0.257399i
\(783\) 0 0
\(784\) 0.759198 27.9893i 0.0271142 0.999617i
\(785\) −67.2447 56.4250i −2.40007 2.01390i
\(786\) 0 0
\(787\) −16.1106 + 2.84073i −0.574279 + 0.101261i −0.453243 0.891387i \(-0.649733\pi\)
−0.121037 + 0.992648i \(0.538622\pi\)
\(788\) −16.0281 + 7.21111i −0.570979 + 0.256885i
\(789\) 0 0
\(790\) −15.0503 9.73215i −0.535465 0.346254i
\(791\) −0.0228715 + 0.0396145i −0.000813215 + 0.00140853i
\(792\) 0 0
\(793\) −0.217209 0.376216i −0.00771330 0.0133598i
\(794\) −1.86784 + 37.0196i −0.0662872 + 1.31378i
\(795\) 0 0
\(796\) −18.7439 1.89630i −0.664362 0.0672125i
\(797\) 6.71611 + 8.00395i 0.237897 + 0.283514i 0.871762 0.489929i \(-0.162977\pi\)
−0.633866 + 0.773443i \(0.718533\pi\)
\(798\) 0 0
\(799\) −14.1255 + 5.14126i −0.499725 + 0.181885i
\(800\) −59.3107 + 5.77138i −2.09695 + 0.204049i
\(801\) 0 0
\(802\) 19.4885 14.7452i 0.688164 0.520672i
\(803\) 14.3764 + 2.53495i 0.507333 + 0.0894566i
\(804\) 0 0
\(805\) 0.0950175 0.261058i 0.00334893 0.00920110i
\(806\) −44.0310 10.0751i −1.55092 0.354880i
\(807\) 0 0
\(808\) −22.4544 7.58524i −0.789942 0.266848i
\(809\) −5.87774 −0.206650 −0.103325 0.994648i \(-0.532948\pi\)
−0.103325 + 0.994648i \(0.532948\pi\)
\(810\) 0 0
\(811\) 40.3341i 1.41632i 0.706052 + 0.708160i \(0.250475\pi\)
−0.706052 + 0.708160i \(0.749525\pi\)
\(812\) −0.121441 + 0.00896738i −0.00426176 + 0.000314693i
\(813\) 0 0
\(814\) 2.43790 10.6543i 0.0854484 0.373433i
\(815\) −32.0208 11.6546i −1.12164 0.408243i
\(816\) 0 0
\(817\) −3.14346 + 17.8274i −0.109976 + 0.623703i
\(818\) 27.7371 20.9862i 0.969803 0.733764i
\(819\) 0 0
\(820\) 44.0416 + 12.4433i 1.53800 + 0.434540i
\(821\) 8.31903 + 22.8563i 0.290336 + 0.797692i 0.996017 + 0.0891622i \(0.0284190\pi\)
−0.705681 + 0.708530i \(0.749359\pi\)
\(822\) 0 0
\(823\) −22.0384 + 18.4924i −0.768211 + 0.644605i −0.940250 0.340485i \(-0.889409\pi\)
0.172039 + 0.985090i \(0.444964\pi\)
\(824\) −17.2513 9.43122i −0.600976 0.328552i
\(825\) 0 0
\(826\) −0.00478443 + 0.0948249i −0.000166472 + 0.00329938i
\(827\) −12.6598 + 7.30915i −0.440225 + 0.254164i −0.703693 0.710504i \(-0.748467\pi\)
0.263468 + 0.964668i \(0.415134\pi\)
\(828\) 0 0
\(829\) 38.2098 + 22.0604i 1.32708 + 0.766191i 0.984847 0.173424i \(-0.0554830\pi\)
0.342234 + 0.939615i \(0.388816\pi\)
\(830\) −45.9990 + 71.1351i −1.59665 + 2.46914i
\(831\) 0 0
\(832\) 12.3469 + 29.5605i 0.428051 + 1.02483i
\(833\) 2.30702 + 13.0838i 0.0799336 + 0.453326i
\(834\) 0 0
\(835\) −21.3840 + 25.4845i −0.740025 + 0.881927i
\(836\) −6.09186 6.25934i −0.210691 0.216484i
\(837\) 0 0
\(838\) −7.58939 + 17.9767i −0.262171 + 0.620995i
\(839\) 28.2388 + 23.6951i 0.974911 + 0.818047i 0.983314 0.181917i \(-0.0582303\pi\)
−0.00840301 + 0.999965i \(0.502675\pi\)
\(840\) 0 0
\(841\) −1.12364 6.37246i −0.0387461 0.219740i
\(842\) 35.1844 37.8782i 1.21253 1.30537i
\(843\) 0 0
\(844\) 13.5683 + 19.9478i 0.467038 + 0.686630i
\(845\) −10.3610 5.98194i −0.356430 0.205785i
\(846\) 0 0
\(847\) −0.0510619 0.0884417i −0.00175451 0.00303889i
\(848\) 8.55911 2.85491i 0.293921 0.0980381i
\(849\) 0 0
\(850\) 27.0238 8.31958i 0.926909 0.285359i
\(851\) −34.0738 40.6075i −1.16803 1.39201i
\(852\) 0 0
\(853\) 12.7574 + 35.0506i 0.436804 + 1.20011i 0.941560 + 0.336846i \(0.109360\pi\)
−0.504756 + 0.863262i \(0.668417\pi\)
\(854\) −0.00155636 0.000194174i −5.32574e−5 6.64448e-6i
\(855\) 0 0
\(856\) 6.08334 39.9165i 0.207924 1.36432i
\(857\) 2.38265 13.5127i 0.0813899 0.461585i −0.916687 0.399605i \(-0.869147\pi\)
0.998077 0.0619803i \(-0.0197416\pi\)
\(858\) 0 0
\(859\) 10.4655 28.7538i 0.357079 0.981067i −0.622958 0.782255i \(-0.714069\pi\)
0.980038 0.198812i \(-0.0637083\pi\)
\(860\) −19.2023 + 26.6473i −0.654794 + 0.908667i
\(861\) 0 0
\(862\) −4.79981 9.37498i −0.163482 0.319313i
\(863\) 7.80840 0.265801 0.132900 0.991129i \(-0.457571\pi\)
0.132900 + 0.991129i \(0.457571\pi\)
\(864\) 0 0
\(865\) 53.5863 1.82199
\(866\) 13.4961 + 26.3606i 0.458616 + 0.895768i
\(867\) 0 0
\(868\) −0.0953405 + 0.132305i −0.00323607 + 0.00449074i
\(869\) 1.10550 3.03735i 0.0375016 0.103035i
\(870\) 0 0
\(871\) −2.67573 + 15.1748i −0.0906636 + 0.514179i
\(872\) 2.08136 13.6571i 0.0704839 0.462487i
\(873\) 0 0
\(874\) −42.0364 + 5.24453i −1.42190 + 0.177399i
\(875\) −0.0762675 0.209543i −0.00257831 0.00708385i
\(876\) 0 0
\(877\) −22.5373 26.8589i −0.761029 0.906959i 0.236883 0.971538i \(-0.423874\pi\)
−0.997913 + 0.0645787i \(0.979430\pi\)
\(878\) 38.0273 11.7071i 1.28336 0.395096i
\(879\) 0 0
\(880\) −5.01448 15.0336i −0.169038 0.506781i
\(881\) 17.3596 + 30.0677i 0.584859 + 1.01301i 0.994893 + 0.100936i \(0.0321836\pi\)
−0.410034 + 0.912070i \(0.634483\pi\)
\(882\) 0 0
\(883\) −48.4749 27.9870i −1.63131 0.941837i −0.983690 0.179874i \(-0.942431\pi\)
−0.647620 0.761963i \(-0.724236\pi\)
\(884\) −8.54909 12.5687i −0.287537 0.422731i
\(885\) 0 0
\(886\) −16.8402 + 18.1295i −0.565756 + 0.609073i
\(887\) −5.13500 29.1221i −0.172417 0.977823i −0.941084 0.338174i \(-0.890191\pi\)
0.768667 0.639649i \(-0.220920\pi\)
\(888\) 0 0
\(889\) 0.0114860 + 0.00963792i 0.000385229 + 0.000323245i
\(890\) −6.30264 + 14.9289i −0.211265 + 0.500416i
\(891\) 0 0
\(892\) 4.95104 + 5.08716i 0.165773 + 0.170331i
\(893\) 22.1175 26.3586i 0.740134 0.882057i
\(894\) 0 0
\(895\) 0.203252 + 1.15270i 0.00679396 + 0.0385305i
\(896\) 0.115660 0.000442194i 0.00386394 1.47726e-5i
\(897\) 0 0
\(898\) −4.59767 + 7.11007i −0.153426 + 0.237266i
\(899\) −41.1386 23.7514i −1.37205 0.792154i
\(900\) 0 0
\(901\) −3.70763 + 2.14060i −0.123519 + 0.0713138i
\(902\) −0.415911 + 8.24312i −0.0138483 + 0.274466i
\(903\) 0 0
\(904\) 11.1046 + 6.07085i 0.369333 + 0.201913i
\(905\) 5.70454 4.78668i 0.189625 0.159115i
\(906\) 0 0
\(907\) 11.8324 + 32.5093i 0.392889 + 1.07945i 0.965676 + 0.259749i \(0.0836399\pi\)
−0.572787 + 0.819704i \(0.694138\pi\)
\(908\) 20.9373 + 5.91553i 0.694829 + 0.196314i
\(909\) 0 0
\(910\) −0.181967 + 0.137679i −0.00603216 + 0.00456400i
\(911\) 2.10465 11.9361i 0.0697303 0.395460i −0.929888 0.367842i \(-0.880097\pi\)
0.999619 0.0276180i \(-0.00879219\pi\)
\(912\) 0 0
\(913\) −14.3560 5.22516i −0.475115 0.172928i
\(914\) −7.67066 + 33.5230i −0.253723 + 1.10884i
\(915\) 0 0
\(916\) −15.6727 + 1.15729i −0.517842 + 0.0382381i
\(917\) 0.116652i 0.00385218i
\(918\) 0 0
\(919\) 11.2018 0.369514 0.184757 0.982784i \(-0.440850\pi\)
0.184757 + 0.982784i \(0.440850\pi\)
\(920\) −72.8199 24.5991i −2.40080 0.811007i
\(921\) 0 0
\(922\) 22.0925 + 5.05516i 0.727577 + 0.166483i
\(923\) 1.21254 3.33144i 0.0399114 0.109656i
\(924\) 0 0
\(925\) −79.7598 14.0638i −2.62249 0.462415i
\(926\) −0.810790 + 0.613453i −0.0266442 + 0.0201593i
\(927\) 0 0
\(928\) 3.26295 + 33.5323i 0.107112 + 1.10075i
\(929\) −33.5582 + 12.2142i −1.10101 + 0.400734i −0.827687 0.561189i \(-0.810344\pi\)
−0.273320 + 0.961923i \(0.588122\pi\)
\(930\) 0 0
\(931\) −19.5479 23.2962i −0.640656 0.763504i
\(932\) 48.1484 + 4.87110i 1.57715 + 0.159558i
\(933\) 0 0
\(934\) −1.38898 + 27.5288i −0.0454488 + 0.900770i
\(935\) 3.75984 + 6.51224i 0.122960 + 0.212973i
\(936\) 0 0
\(937\) −13.9023 + 24.0795i −0.454169 + 0.786643i −0.998640 0.0521363i \(-0.983397\pi\)
0.544471 + 0.838779i \(0.316730\pi\)
\(938\) 0.0467162 + 0.0302087i 0.00152534 + 0.000986348i
\(939\) 0 0
\(940\) 56.9346 25.6151i 1.85700 0.835471i
\(941\) −17.4040 + 3.06880i −0.567355 + 0.100040i −0.449965 0.893046i \(-0.648564\pi\)
−0.117390 + 0.993086i \(0.537453\pi\)
\(942\) 0 0
\(943\) 30.6650 + 25.7310i 0.998591 + 0.837917i
\(944\) 26.2590 + 0.712264i 0.854657 + 0.0231822i
\(945\) 0 0
\(946\) −5.45708 2.30386i −0.177425 0.0749050i
\(947\) −31.1472 + 37.1197i −1.01215 + 1.20623i −0.0337637 + 0.999430i \(0.510749\pi\)
−0.978383 + 0.206800i \(0.933695\pi\)
\(948\) 0 0
\(949\) −57.2701 + 10.0983i −1.85907 + 0.327804i
\(950\) −44.0488 + 47.4214i −1.42913 + 1.53855i
\(951\) 0 0
\(952\) −0.0538100 + 0.0107862i −0.00174399 + 0.000349582i
\(953\) −6.84000 + 11.8472i −0.221569 + 0.383770i −0.955285 0.295688i \(-0.904451\pi\)
0.733715 + 0.679457i \(0.237785\pi\)
\(954\) 0 0
\(955\) 47.6310 27.4998i 1.54130 0.889871i
\(956\) −54.3221 26.2333i −1.75690 0.848445i
\(957\) 0 0
\(958\) −13.1973 + 4.06292i −0.426384 + 0.131267i
\(959\) −0.0334435 + 0.0280625i −0.00107995 + 0.000906184i
\(960\) 0 0
\(961\) −30.6492 + 11.1554i −0.988684 + 0.359852i
\(962\) 5.39028 + 43.2046i 0.173789 + 1.39297i
\(963\) 0 0
\(964\) 4.85294 1.23007i 0.156303 0.0396178i
\(965\) −37.0002 6.52413i −1.19108 0.210019i
\(966\) 0 0
\(967\) 28.0120 + 10.1955i 0.900806 + 0.327867i 0.750576 0.660785i \(-0.229776\pi\)
0.150230 + 0.988651i \(0.451999\pi\)
\(968\) −24.1335 + 14.6934i −0.775681 + 0.472265i
\(969\) 0 0
\(970\) 63.4731 32.4970i 2.03800 1.04342i
\(971\) 31.5563i 1.01269i −0.862331 0.506345i \(-0.830996\pi\)
0.862331 0.506345i \(-0.169004\pi\)
\(972\) 0 0
\(973\) 0.0108888i 0.000349078i
\(974\) −26.2435 51.2589i −0.840897 1.64244i
\(975\) 0 0
\(976\) 0.0637373 + 0.429230i 0.00204018 + 0.0137393i
\(977\) −26.2819 9.56585i −0.840834 0.306039i −0.114536 0.993419i \(-0.536538\pi\)
−0.726297 + 0.687381i \(0.758760\pi\)
\(978\) 0 0
\(979\) −2.87804 0.507477i −0.0919827 0.0162190i
\(980\) −13.5572 53.4867i −0.433069 1.70857i
\(981\) 0 0
\(982\) −17.5457 + 2.18902i −0.559905 + 0.0698546i
\(983\) −23.5384 + 8.56727i −0.750758 + 0.273253i −0.688925 0.724833i \(-0.741917\pi\)
−0.0618331 + 0.998087i \(0.519695\pi\)
\(984\) 0 0
\(985\) −26.5326 + 22.2635i −0.845398 + 0.709373i
\(986\) −4.70362 15.2784i −0.149794 0.486563i
\(987\) 0 0
\(988\) 31.3323 + 15.1310i 0.996813 + 0.481382i
\(989\) −24.8801 + 14.3645i −0.791141 + 0.456766i
\(990\) 0 0
\(991\) 11.3147 19.5976i 0.359422 0.622537i −0.628442 0.777856i \(-0.716307\pi\)
0.987864 + 0.155319i \(0.0496405\pi\)
\(992\) 37.2095 + 25.5181i 1.18140 + 0.810201i
\(993\) 0 0
\(994\) −0.00937813 0.00871117i −0.000297456 0.000276302i
\(995\) −36.5628 + 6.44700i −1.15912 + 0.204384i
\(996\) 0 0
\(997\) −6.16806 + 7.35081i −0.195344 + 0.232802i −0.854821 0.518922i \(-0.826333\pi\)
0.659477 + 0.751725i \(0.270778\pi\)
\(998\) −2.51744 + 5.96297i −0.0796881 + 0.188754i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.t.a.613.22 204
3.2 odd 2 216.2.t.a.205.13 yes 204
8.5 even 2 inner 648.2.t.a.613.31 204
12.11 even 2 864.2.bf.a.529.16 204
24.5 odd 2 216.2.t.a.205.4 yes 204
24.11 even 2 864.2.bf.a.529.19 204
27.5 odd 18 216.2.t.a.157.4 204
27.22 even 9 inner 648.2.t.a.37.31 204
108.59 even 18 864.2.bf.a.49.19 204
216.5 odd 18 216.2.t.a.157.13 yes 204
216.59 even 18 864.2.bf.a.49.16 204
216.157 even 18 inner 648.2.t.a.37.22 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.157.4 204 27.5 odd 18
216.2.t.a.157.13 yes 204 216.5 odd 18
216.2.t.a.205.4 yes 204 24.5 odd 2
216.2.t.a.205.13 yes 204 3.2 odd 2
648.2.t.a.37.22 204 216.157 even 18 inner
648.2.t.a.37.31 204 27.22 even 9 inner
648.2.t.a.613.22 204 1.1 even 1 trivial
648.2.t.a.613.31 204 8.5 even 2 inner
864.2.bf.a.49.16 204 216.59 even 18
864.2.bf.a.49.19 204 108.59 even 18
864.2.bf.a.529.16 204 12.11 even 2
864.2.bf.a.529.19 204 24.11 even 2