Properties

Label 648.2.bd
Level $648$
Weight $2$
Character orbit 648.bd
Rep. character $\chi_{648}(13,\cdot)$
Character field $\Q(\zeta_{54})$
Dimension $1908$
Newform subspaces $1$
Sturm bound $216$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.bd (of order \(54\) and degree \(18\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 648 \)
Character field: \(\Q(\zeta_{54})\)
Newform subspaces: \( 1 \)
Sturm bound: \(216\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(648, [\chi])\).

Total New Old
Modular forms 1980 1980 0
Cusp forms 1908 1908 0
Eisenstein series 72 72 0

Trace form

\( 1908q - 18q^{2} - 18q^{4} - 18q^{6} - 36q^{7} - 18q^{8} - 36q^{9} + O(q^{10}) \) \( 1908q - 18q^{2} - 18q^{4} - 18q^{6} - 36q^{7} - 18q^{8} - 36q^{9} - 18q^{10} - 18q^{12} - 18q^{14} - 36q^{15} - 18q^{16} - 36q^{17} - 18q^{18} - 18q^{20} - 18q^{22} - 36q^{23} - 18q^{24} - 36q^{25} - 9q^{26} - 9q^{28} - 18q^{30} - 36q^{31} - 18q^{32} - 36q^{33} - 18q^{34} - 18q^{36} - 18q^{38} - 36q^{39} - 18q^{40} - 36q^{41} + 27q^{42} - 90q^{44} - 18q^{46} - 36q^{47} - 117q^{48} - 36q^{49} + 99q^{50} - 18q^{52} + 108q^{54} - 18q^{55} - 144q^{56} - 36q^{57} - 18q^{58} - 135q^{60} + 81q^{62} - 36q^{63} - 18q^{64} - 36q^{65} + 54q^{66} - 63q^{68} - 18q^{70} - 36q^{71} - 18q^{72} - 36q^{73} - 18q^{74} - 18q^{76} - 45q^{78} - 36q^{79} - 36q^{80} - 36q^{81} - 36q^{82} - 45q^{84} - 18q^{86} - 36q^{87} - 18q^{88} - 36q^{89} - 81q^{90} - 108q^{92} - 18q^{94} - 36q^{95} - 135q^{96} - 36q^{97} - 189q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(648, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
648.2.bd.a \(1908\) \(5.174\) None \(-18\) \(0\) \(0\) \(-36\)