Defining parameters
Level: | \( N \) | \(=\) | \( 640 = 2^{7} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 640.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(192\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(11\), \(29\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(640, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 112 | 24 | 88 |
Cusp forms | 80 | 24 | 56 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(640, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
640.2.c.a | $6$ | $5.110$ | 6.0.350464.1 | None | \(0\) | \(0\) | \(-2\) | \(0\) | \(q+\beta _{2}q^{3}+(\beta _{2}+\beta _{5})q^{5}+(\beta _{2}-\beta _{3}-\beta _{4}+\cdots)q^{7}+\cdots\) |
640.2.c.b | $6$ | $5.110$ | 6.0.350464.1 | None | \(0\) | \(0\) | \(-2\) | \(0\) | \(q+\beta _{2}q^{3}+(-\beta _{2}+\beta _{3})q^{5}+(\beta _{2}-\beta _{3}+\cdots)q^{7}+\cdots\) |
640.2.c.c | $6$ | $5.110$ | 6.0.350464.1 | None | \(0\) | \(0\) | \(2\) | \(0\) | \(q+\beta _{2}q^{3}+(-\beta _{2}-\beta _{5})q^{5}+(-\beta _{2}+\beta _{3}+\cdots)q^{7}+\cdots\) |
640.2.c.d | $6$ | $5.110$ | 6.0.350464.1 | None | \(0\) | \(0\) | \(2\) | \(0\) | \(q+\beta _{2}q^{3}+(\beta _{2}-\beta _{3})q^{5}+(-\beta _{2}+\beta _{3}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(640, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(640, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(160, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(320, [\chi])\)\(^{\oplus 2}\)