Properties

Label 64.12.a.m.1.2
Level $64$
Weight $12$
Character 64.1
Self dual yes
Analytic conductor $49.174$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [64,12,Mod(1,64)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("64.1"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(64, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 12, names="a")
 
Level: \( N \) \(=\) \( 64 = 2^{6} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 64.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,440,0,-770] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.1739635558\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1056820.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 331x - 1379 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: no (minimal twist has level 32)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-4.50335\) of defining polynomial
Character \(\chi\) \(=\) 64.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.10720 q^{3} -9611.74 q^{5} -77473.2 q^{7} -177081. q^{9} -433944. q^{11} -1.20991e6 q^{13} +77924.3 q^{15} -3.77507e6 q^{17} +1.37832e7 q^{19} +628090. q^{21} -1.99143e7 q^{23} +4.35575e7 q^{25} +2.87180e6 q^{27} +1.15430e8 q^{29} -3.00417e8 q^{31} +3.51807e6 q^{33} +7.44652e8 q^{35} -4.52440e8 q^{37} +9.80901e6 q^{39} -3.74000e8 q^{41} -8.22566e7 q^{43} +1.70206e9 q^{45} -2.34368e9 q^{47} +4.02476e9 q^{49} +3.06052e7 q^{51} +2.08470e9 q^{53} +4.17096e9 q^{55} -1.11743e8 q^{57} -2.89241e9 q^{59} +7.03714e9 q^{61} +1.37190e10 q^{63} +1.16294e10 q^{65} -1.42883e10 q^{67} +1.61449e8 q^{69} -1.41180e10 q^{71} +5.07004e9 q^{73} -3.53129e8 q^{75} +3.36190e10 q^{77} +1.86354e10 q^{79} +3.13461e10 q^{81} -1.60715e9 q^{83} +3.62850e10 q^{85} -9.35814e8 q^{87} +8.15726e10 q^{89} +9.37358e10 q^{91} +2.43554e9 q^{93} -1.32480e11 q^{95} -1.21144e11 q^{97} +7.68433e10 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 440 q^{3} - 770 q^{5} + 6032 q^{7} + 211663 q^{9} + 236136 q^{11} - 1435722 q^{13} - 222160 q^{15} - 756186 q^{17} + 23267992 q^{19} + 20368000 q^{21} - 42366288 q^{23} - 6913515 q^{25} + 298561328 q^{27}+ \cdots + 276379454984 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −8.10720 −0.0192621 −0.00963105 0.999954i \(-0.503066\pi\)
−0.00963105 + 0.999954i \(0.503066\pi\)
\(4\) 0 0
\(5\) −9611.74 −1.37552 −0.687760 0.725938i \(-0.741406\pi\)
−0.687760 + 0.725938i \(0.741406\pi\)
\(6\) 0 0
\(7\) −77473.2 −1.74226 −0.871128 0.491056i \(-0.836611\pi\)
−0.871128 + 0.491056i \(0.836611\pi\)
\(8\) 0 0
\(9\) −177081. −0.999629
\(10\) 0 0
\(11\) −433944. −0.812407 −0.406204 0.913783i \(-0.633148\pi\)
−0.406204 + 0.913783i \(0.633148\pi\)
\(12\) 0 0
\(13\) −1.20991e6 −0.903787 −0.451893 0.892072i \(-0.649251\pi\)
−0.451893 + 0.892072i \(0.649251\pi\)
\(14\) 0 0
\(15\) 77924.3 0.0264954
\(16\) 0 0
\(17\) −3.77507e6 −0.644846 −0.322423 0.946596i \(-0.604497\pi\)
−0.322423 + 0.946596i \(0.604497\pi\)
\(18\) 0 0
\(19\) 1.37832e7 1.27704 0.638519 0.769606i \(-0.279547\pi\)
0.638519 + 0.769606i \(0.279547\pi\)
\(20\) 0 0
\(21\) 628090. 0.0335595
\(22\) 0 0
\(23\) −1.99143e7 −0.645152 −0.322576 0.946544i \(-0.604549\pi\)
−0.322576 + 0.946544i \(0.604549\pi\)
\(24\) 0 0
\(25\) 4.35575e7 0.892057
\(26\) 0 0
\(27\) 2.87180e6 0.0385171
\(28\) 0 0
\(29\) 1.15430e8 1.04503 0.522516 0.852629i \(-0.324993\pi\)
0.522516 + 0.852629i \(0.324993\pi\)
\(30\) 0 0
\(31\) −3.00417e8 −1.88467 −0.942336 0.334669i \(-0.891376\pi\)
−0.942336 + 0.334669i \(0.891376\pi\)
\(32\) 0 0
\(33\) 3.51807e6 0.0156487
\(34\) 0 0
\(35\) 7.44652e8 2.39651
\(36\) 0 0
\(37\) −4.52440e8 −1.07263 −0.536317 0.844017i \(-0.680185\pi\)
−0.536317 + 0.844017i \(0.680185\pi\)
\(38\) 0 0
\(39\) 9.80901e6 0.0174088
\(40\) 0 0
\(41\) −3.74000e8 −0.504151 −0.252076 0.967708i \(-0.581113\pi\)
−0.252076 + 0.967708i \(0.581113\pi\)
\(42\) 0 0
\(43\) −8.22566e7 −0.0853286 −0.0426643 0.999089i \(-0.513585\pi\)
−0.0426643 + 0.999089i \(0.513585\pi\)
\(44\) 0 0
\(45\) 1.70206e9 1.37501
\(46\) 0 0
\(47\) −2.34368e9 −1.49060 −0.745299 0.666730i \(-0.767693\pi\)
−0.745299 + 0.666730i \(0.767693\pi\)
\(48\) 0 0
\(49\) 4.02476e9 2.03546
\(50\) 0 0
\(51\) 3.06052e7 0.0124211
\(52\) 0 0
\(53\) 2.08470e9 0.684739 0.342370 0.939565i \(-0.388770\pi\)
0.342370 + 0.939565i \(0.388770\pi\)
\(54\) 0 0
\(55\) 4.17096e9 1.11748
\(56\) 0 0
\(57\) −1.11743e8 −0.0245984
\(58\) 0 0
\(59\) −2.89241e9 −0.526713 −0.263357 0.964699i \(-0.584830\pi\)
−0.263357 + 0.964699i \(0.584830\pi\)
\(60\) 0 0
\(61\) 7.03714e9 1.06680 0.533399 0.845864i \(-0.320915\pi\)
0.533399 + 0.845864i \(0.320915\pi\)
\(62\) 0 0
\(63\) 1.37190e10 1.74161
\(64\) 0 0
\(65\) 1.16294e10 1.24318
\(66\) 0 0
\(67\) −1.42883e10 −1.29292 −0.646458 0.762949i \(-0.723751\pi\)
−0.646458 + 0.762949i \(0.723751\pi\)
\(68\) 0 0
\(69\) 1.61449e8 0.0124270
\(70\) 0 0
\(71\) −1.41180e10 −0.928650 −0.464325 0.885665i \(-0.653703\pi\)
−0.464325 + 0.885665i \(0.653703\pi\)
\(72\) 0 0
\(73\) 5.07004e9 0.286244 0.143122 0.989705i \(-0.454286\pi\)
0.143122 + 0.989705i \(0.454286\pi\)
\(74\) 0 0
\(75\) −3.53129e8 −0.0171829
\(76\) 0 0
\(77\) 3.36190e10 1.41542
\(78\) 0 0
\(79\) 1.86354e10 0.681381 0.340691 0.940175i \(-0.389339\pi\)
0.340691 + 0.940175i \(0.389339\pi\)
\(80\) 0 0
\(81\) 3.13461e10 0.998887
\(82\) 0 0
\(83\) −1.60715e9 −0.0447844 −0.0223922 0.999749i \(-0.507128\pi\)
−0.0223922 + 0.999749i \(0.507128\pi\)
\(84\) 0 0
\(85\) 3.62850e10 0.886999
\(86\) 0 0
\(87\) −9.35814e8 −0.0201295
\(88\) 0 0
\(89\) 8.15726e10 1.54846 0.774229 0.632905i \(-0.218138\pi\)
0.774229 + 0.632905i \(0.218138\pi\)
\(90\) 0 0
\(91\) 9.37358e10 1.57463
\(92\) 0 0
\(93\) 2.43554e9 0.0363028
\(94\) 0 0
\(95\) −1.32480e11 −1.75659
\(96\) 0 0
\(97\) −1.21144e11 −1.43238 −0.716188 0.697907i \(-0.754115\pi\)
−0.716188 + 0.697907i \(0.754115\pi\)
\(98\) 0 0
\(99\) 7.68433e10 0.812106
\(100\) 0 0
\(101\) −3.41510e8 −0.00323323 −0.00161661 0.999999i \(-0.500515\pi\)
−0.00161661 + 0.999999i \(0.500515\pi\)
\(102\) 0 0
\(103\) −3.38650e10 −0.287837 −0.143919 0.989590i \(-0.545970\pi\)
−0.143919 + 0.989590i \(0.545970\pi\)
\(104\) 0 0
\(105\) −6.03704e9 −0.0461618
\(106\) 0 0
\(107\) −2.04508e11 −1.40961 −0.704806 0.709400i \(-0.748966\pi\)
−0.704806 + 0.709400i \(0.748966\pi\)
\(108\) 0 0
\(109\) −2.96478e11 −1.84564 −0.922819 0.385234i \(-0.874121\pi\)
−0.922819 + 0.385234i \(0.874121\pi\)
\(110\) 0 0
\(111\) 3.66802e9 0.0206612
\(112\) 0 0
\(113\) −8.68449e10 −0.443418 −0.221709 0.975113i \(-0.571163\pi\)
−0.221709 + 0.975113i \(0.571163\pi\)
\(114\) 0 0
\(115\) 1.91411e11 0.887420
\(116\) 0 0
\(117\) 2.14253e11 0.903451
\(118\) 0 0
\(119\) 2.92467e11 1.12349
\(120\) 0 0
\(121\) −9.70045e10 −0.339995
\(122\) 0 0
\(123\) 3.03210e9 0.00971102
\(124\) 0 0
\(125\) 5.06600e10 0.148477
\(126\) 0 0
\(127\) 2.07215e11 0.556546 0.278273 0.960502i \(-0.410238\pi\)
0.278273 + 0.960502i \(0.410238\pi\)
\(128\) 0 0
\(129\) 6.66871e8 0.00164361
\(130\) 0 0
\(131\) −7.06063e11 −1.59901 −0.799505 0.600659i \(-0.794905\pi\)
−0.799505 + 0.600659i \(0.794905\pi\)
\(132\) 0 0
\(133\) −1.06782e12 −2.22493
\(134\) 0 0
\(135\) −2.76030e10 −0.0529810
\(136\) 0 0
\(137\) −6.91127e11 −1.22347 −0.611737 0.791061i \(-0.709529\pi\)
−0.611737 + 0.791061i \(0.709529\pi\)
\(138\) 0 0
\(139\) −5.74440e11 −0.938996 −0.469498 0.882934i \(-0.655565\pi\)
−0.469498 + 0.882934i \(0.655565\pi\)
\(140\) 0 0
\(141\) 1.90007e10 0.0287121
\(142\) 0 0
\(143\) 5.25034e11 0.734243
\(144\) 0 0
\(145\) −1.10948e12 −1.43746
\(146\) 0 0
\(147\) −3.26296e10 −0.0392072
\(148\) 0 0
\(149\) −7.50213e11 −0.836874 −0.418437 0.908246i \(-0.637422\pi\)
−0.418437 + 0.908246i \(0.637422\pi\)
\(150\) 0 0
\(151\) −7.78919e11 −0.807456 −0.403728 0.914879i \(-0.632286\pi\)
−0.403728 + 0.914879i \(0.632286\pi\)
\(152\) 0 0
\(153\) 6.68494e11 0.644607
\(154\) 0 0
\(155\) 2.88753e12 2.59241
\(156\) 0 0
\(157\) 1.03515e12 0.866072 0.433036 0.901377i \(-0.357442\pi\)
0.433036 + 0.901377i \(0.357442\pi\)
\(158\) 0 0
\(159\) −1.69010e10 −0.0131895
\(160\) 0 0
\(161\) 1.54283e12 1.12402
\(162\) 0 0
\(163\) −1.04879e10 −0.00713929 −0.00356964 0.999994i \(-0.501136\pi\)
−0.00356964 + 0.999994i \(0.501136\pi\)
\(164\) 0 0
\(165\) −3.38148e10 −0.0215251
\(166\) 0 0
\(167\) −6.17418e11 −0.367823 −0.183911 0.982943i \(-0.558876\pi\)
−0.183911 + 0.982943i \(0.558876\pi\)
\(168\) 0 0
\(169\) −3.28269e11 −0.183170
\(170\) 0 0
\(171\) −2.44074e12 −1.27656
\(172\) 0 0
\(173\) 2.20665e12 1.08263 0.541315 0.840820i \(-0.317927\pi\)
0.541315 + 0.840820i \(0.317927\pi\)
\(174\) 0 0
\(175\) −3.37454e12 −1.55419
\(176\) 0 0
\(177\) 2.34494e10 0.0101456
\(178\) 0 0
\(179\) 2.94005e12 1.19581 0.597907 0.801565i \(-0.295999\pi\)
0.597907 + 0.801565i \(0.295999\pi\)
\(180\) 0 0
\(181\) 8.07676e11 0.309033 0.154517 0.987990i \(-0.450618\pi\)
0.154517 + 0.987990i \(0.450618\pi\)
\(182\) 0 0
\(183\) −5.70515e10 −0.0205488
\(184\) 0 0
\(185\) 4.34874e12 1.47543
\(186\) 0 0
\(187\) 1.63817e12 0.523877
\(188\) 0 0
\(189\) −2.22487e11 −0.0671066
\(190\) 0 0
\(191\) 2.07223e12 0.589866 0.294933 0.955518i \(-0.404703\pi\)
0.294933 + 0.955518i \(0.404703\pi\)
\(192\) 0 0
\(193\) 2.11276e11 0.0567918 0.0283959 0.999597i \(-0.490960\pi\)
0.0283959 + 0.999597i \(0.490960\pi\)
\(194\) 0 0
\(195\) −9.42817e10 −0.0239462
\(196\) 0 0
\(197\) 1.79929e12 0.432052 0.216026 0.976388i \(-0.430690\pi\)
0.216026 + 0.976388i \(0.430690\pi\)
\(198\) 0 0
\(199\) 5.44550e12 1.23693 0.618466 0.785812i \(-0.287755\pi\)
0.618466 + 0.785812i \(0.287755\pi\)
\(200\) 0 0
\(201\) 1.15838e11 0.0249043
\(202\) 0 0
\(203\) −8.94273e12 −1.82071
\(204\) 0 0
\(205\) 3.59480e12 0.693471
\(206\) 0 0
\(207\) 3.52645e12 0.644913
\(208\) 0 0
\(209\) −5.98111e12 −1.03747
\(210\) 0 0
\(211\) −1.45420e12 −0.239371 −0.119685 0.992812i \(-0.538189\pi\)
−0.119685 + 0.992812i \(0.538189\pi\)
\(212\) 0 0
\(213\) 1.14457e11 0.0178878
\(214\) 0 0
\(215\) 7.90630e11 0.117371
\(216\) 0 0
\(217\) 2.32743e13 3.28358
\(218\) 0 0
\(219\) −4.11038e10 −0.00551366
\(220\) 0 0
\(221\) 4.56751e12 0.582803
\(222\) 0 0
\(223\) −6.20554e12 −0.753534 −0.376767 0.926308i \(-0.622964\pi\)
−0.376767 + 0.926308i \(0.622964\pi\)
\(224\) 0 0
\(225\) −7.71322e12 −0.891726
\(226\) 0 0
\(227\) −1.18576e13 −1.30574 −0.652868 0.757472i \(-0.726434\pi\)
−0.652868 + 0.757472i \(0.726434\pi\)
\(228\) 0 0
\(229\) −2.83010e11 −0.0296966 −0.0148483 0.999890i \(-0.504727\pi\)
−0.0148483 + 0.999890i \(0.504727\pi\)
\(230\) 0 0
\(231\) −2.72556e11 −0.0272640
\(232\) 0 0
\(233\) −9.70846e12 −0.926175 −0.463087 0.886313i \(-0.653258\pi\)
−0.463087 + 0.886313i \(0.653258\pi\)
\(234\) 0 0
\(235\) 2.25269e13 2.05035
\(236\) 0 0
\(237\) −1.51081e11 −0.0131248
\(238\) 0 0
\(239\) 1.32519e13 1.09924 0.549618 0.835416i \(-0.314773\pi\)
0.549618 + 0.835416i \(0.314773\pi\)
\(240\) 0 0
\(241\) −1.77216e13 −1.40413 −0.702066 0.712112i \(-0.747739\pi\)
−0.702066 + 0.712112i \(0.747739\pi\)
\(242\) 0 0
\(243\) −7.62860e11 −0.0577577
\(244\) 0 0
\(245\) −3.86850e13 −2.79981
\(246\) 0 0
\(247\) −1.66764e13 −1.15417
\(248\) 0 0
\(249\) 1.30295e10 0.000862642 0
\(250\) 0 0
\(251\) −4.29322e12 −0.272005 −0.136003 0.990708i \(-0.543426\pi\)
−0.136003 + 0.990708i \(0.543426\pi\)
\(252\) 0 0
\(253\) 8.64169e12 0.524126
\(254\) 0 0
\(255\) −2.94170e11 −0.0170855
\(256\) 0 0
\(257\) −4.51002e12 −0.250926 −0.125463 0.992098i \(-0.540042\pi\)
−0.125463 + 0.992098i \(0.540042\pi\)
\(258\) 0 0
\(259\) 3.50519e13 1.86880
\(260\) 0 0
\(261\) −2.04405e13 −1.04464
\(262\) 0 0
\(263\) −2.96086e13 −1.45098 −0.725489 0.688233i \(-0.758387\pi\)
−0.725489 + 0.688233i \(0.758387\pi\)
\(264\) 0 0
\(265\) −2.00376e13 −0.941873
\(266\) 0 0
\(267\) −6.61326e11 −0.0298266
\(268\) 0 0
\(269\) 2.87428e13 1.24420 0.622102 0.782936i \(-0.286279\pi\)
0.622102 + 0.782936i \(0.286279\pi\)
\(270\) 0 0
\(271\) −3.78025e13 −1.57105 −0.785525 0.618830i \(-0.787607\pi\)
−0.785525 + 0.618830i \(0.787607\pi\)
\(272\) 0 0
\(273\) −7.59935e11 −0.0303307
\(274\) 0 0
\(275\) −1.89015e13 −0.724714
\(276\) 0 0
\(277\) −1.61698e13 −0.595754 −0.297877 0.954604i \(-0.596278\pi\)
−0.297877 + 0.954604i \(0.596278\pi\)
\(278\) 0 0
\(279\) 5.31983e13 1.88397
\(280\) 0 0
\(281\) 3.10776e13 1.05819 0.529094 0.848563i \(-0.322532\pi\)
0.529094 + 0.848563i \(0.322532\pi\)
\(282\) 0 0
\(283\) −2.16844e13 −0.710103 −0.355051 0.934847i \(-0.615537\pi\)
−0.355051 + 0.934847i \(0.615537\pi\)
\(284\) 0 0
\(285\) 1.07404e12 0.0338357
\(286\) 0 0
\(287\) 2.89750e13 0.878361
\(288\) 0 0
\(289\) −2.00207e13 −0.584174
\(290\) 0 0
\(291\) 9.82138e11 0.0275906
\(292\) 0 0
\(293\) −2.94763e13 −0.797445 −0.398722 0.917072i \(-0.630546\pi\)
−0.398722 + 0.917072i \(0.630546\pi\)
\(294\) 0 0
\(295\) 2.78011e13 0.724505
\(296\) 0 0
\(297\) −1.24620e12 −0.0312915
\(298\) 0 0
\(299\) 2.40946e13 0.583080
\(300\) 0 0
\(301\) 6.37268e12 0.148664
\(302\) 0 0
\(303\) 2.76869e9 6.22788e−5 0
\(304\) 0 0
\(305\) −6.76392e13 −1.46740
\(306\) 0 0
\(307\) 4.09035e12 0.0856051 0.0428025 0.999084i \(-0.486371\pi\)
0.0428025 + 0.999084i \(0.486371\pi\)
\(308\) 0 0
\(309\) 2.74550e11 0.00554435
\(310\) 0 0
\(311\) 2.06575e13 0.402621 0.201310 0.979528i \(-0.435480\pi\)
0.201310 + 0.979528i \(0.435480\pi\)
\(312\) 0 0
\(313\) 7.58015e13 1.42621 0.713105 0.701057i \(-0.247288\pi\)
0.713105 + 0.701057i \(0.247288\pi\)
\(314\) 0 0
\(315\) −1.31864e14 −2.39562
\(316\) 0 0
\(317\) 8.64969e13 1.51766 0.758831 0.651288i \(-0.225771\pi\)
0.758831 + 0.651288i \(0.225771\pi\)
\(318\) 0 0
\(319\) −5.00901e13 −0.848992
\(320\) 0 0
\(321\) 1.65799e12 0.0271521
\(322\) 0 0
\(323\) −5.20324e13 −0.823493
\(324\) 0 0
\(325\) −5.27008e13 −0.806230
\(326\) 0 0
\(327\) 2.40360e12 0.0355509
\(328\) 0 0
\(329\) 1.81572e14 2.59700
\(330\) 0 0
\(331\) 9.59234e13 1.32700 0.663500 0.748177i \(-0.269070\pi\)
0.663500 + 0.748177i \(0.269070\pi\)
\(332\) 0 0
\(333\) 8.01186e13 1.07224
\(334\) 0 0
\(335\) 1.37336e14 1.77843
\(336\) 0 0
\(337\) −5.82689e13 −0.730251 −0.365126 0.930958i \(-0.618974\pi\)
−0.365126 + 0.930958i \(0.618974\pi\)
\(338\) 0 0
\(339\) 7.04069e11 0.00854116
\(340\) 0 0
\(341\) 1.30364e14 1.53112
\(342\) 0 0
\(343\) −1.58622e14 −1.80403
\(344\) 0 0
\(345\) −1.55181e12 −0.0170936
\(346\) 0 0
\(347\) 1.39079e14 1.48406 0.742029 0.670368i \(-0.233864\pi\)
0.742029 + 0.670368i \(0.233864\pi\)
\(348\) 0 0
\(349\) −1.21040e12 −0.0125138 −0.00625691 0.999980i \(-0.501992\pi\)
−0.00625691 + 0.999980i \(0.501992\pi\)
\(350\) 0 0
\(351\) −3.47463e12 −0.0348112
\(352\) 0 0
\(353\) 4.46583e13 0.433652 0.216826 0.976210i \(-0.430430\pi\)
0.216826 + 0.976210i \(0.430430\pi\)
\(354\) 0 0
\(355\) 1.35699e14 1.27738
\(356\) 0 0
\(357\) −2.37108e12 −0.0216407
\(358\) 0 0
\(359\) −4.01912e13 −0.355722 −0.177861 0.984056i \(-0.556918\pi\)
−0.177861 + 0.984056i \(0.556918\pi\)
\(360\) 0 0
\(361\) 7.34850e13 0.630825
\(362\) 0 0
\(363\) 7.86434e11 0.00654902
\(364\) 0 0
\(365\) −4.87320e13 −0.393734
\(366\) 0 0
\(367\) −1.86874e14 −1.46516 −0.732582 0.680679i \(-0.761685\pi\)
−0.732582 + 0.680679i \(0.761685\pi\)
\(368\) 0 0
\(369\) 6.62285e13 0.503964
\(370\) 0 0
\(371\) −1.61508e14 −1.19299
\(372\) 0 0
\(373\) −4.10882e13 −0.294658 −0.147329 0.989088i \(-0.547068\pi\)
−0.147329 + 0.989088i \(0.547068\pi\)
\(374\) 0 0
\(375\) −4.10710e11 −0.00285998
\(376\) 0 0
\(377\) −1.39660e14 −0.944486
\(378\) 0 0
\(379\) 1.36292e13 0.0895270 0.0447635 0.998998i \(-0.485747\pi\)
0.0447635 + 0.998998i \(0.485747\pi\)
\(380\) 0 0
\(381\) −1.67994e12 −0.0107203
\(382\) 0 0
\(383\) 7.88646e13 0.488978 0.244489 0.969652i \(-0.421380\pi\)
0.244489 + 0.969652i \(0.421380\pi\)
\(384\) 0 0
\(385\) −3.23137e14 −1.94694
\(386\) 0 0
\(387\) 1.45661e13 0.0852969
\(388\) 0 0
\(389\) −7.25260e13 −0.412829 −0.206415 0.978465i \(-0.566180\pi\)
−0.206415 + 0.978465i \(0.566180\pi\)
\(390\) 0 0
\(391\) 7.51779e13 0.416024
\(392\) 0 0
\(393\) 5.72419e12 0.0308003
\(394\) 0 0
\(395\) −1.79119e14 −0.937254
\(396\) 0 0
\(397\) −1.22466e13 −0.0623260 −0.0311630 0.999514i \(-0.509921\pi\)
−0.0311630 + 0.999514i \(0.509921\pi\)
\(398\) 0 0
\(399\) 8.65706e12 0.0428568
\(400\) 0 0
\(401\) 3.06634e14 1.47682 0.738408 0.674354i \(-0.235578\pi\)
0.738408 + 0.674354i \(0.235578\pi\)
\(402\) 0 0
\(403\) 3.63479e14 1.70334
\(404\) 0 0
\(405\) −3.01291e14 −1.37399
\(406\) 0 0
\(407\) 1.96333e14 0.871415
\(408\) 0 0
\(409\) −1.75007e14 −0.756097 −0.378049 0.925786i \(-0.623405\pi\)
−0.378049 + 0.925786i \(0.623405\pi\)
\(410\) 0 0
\(411\) 5.60310e12 0.0235667
\(412\) 0 0
\(413\) 2.24084e14 0.917670
\(414\) 0 0
\(415\) 1.54475e13 0.0616019
\(416\) 0 0
\(417\) 4.65710e12 0.0180870
\(418\) 0 0
\(419\) −4.92094e14 −1.86153 −0.930767 0.365613i \(-0.880859\pi\)
−0.930767 + 0.365613i \(0.880859\pi\)
\(420\) 0 0
\(421\) −7.15111e12 −0.0263525 −0.0131763 0.999913i \(-0.504194\pi\)
−0.0131763 + 0.999913i \(0.504194\pi\)
\(422\) 0 0
\(423\) 4.15022e14 1.49004
\(424\) 0 0
\(425\) −1.64433e14 −0.575240
\(426\) 0 0
\(427\) −5.45189e14 −1.85863
\(428\) 0 0
\(429\) −4.25656e12 −0.0141431
\(430\) 0 0
\(431\) −9.30701e13 −0.301429 −0.150715 0.988577i \(-0.548157\pi\)
−0.150715 + 0.988577i \(0.548157\pi\)
\(432\) 0 0
\(433\) −7.17950e13 −0.226679 −0.113339 0.993556i \(-0.536155\pi\)
−0.113339 + 0.993556i \(0.536155\pi\)
\(434\) 0 0
\(435\) 8.99480e12 0.0276886
\(436\) 0 0
\(437\) −2.74482e14 −0.823884
\(438\) 0 0
\(439\) −6.47772e13 −0.189613 −0.0948063 0.995496i \(-0.530223\pi\)
−0.0948063 + 0.995496i \(0.530223\pi\)
\(440\) 0 0
\(441\) −7.12710e14 −2.03470
\(442\) 0 0
\(443\) 4.49312e14 1.25120 0.625601 0.780143i \(-0.284854\pi\)
0.625601 + 0.780143i \(0.284854\pi\)
\(444\) 0 0
\(445\) −7.84055e14 −2.12994
\(446\) 0 0
\(447\) 6.08213e12 0.0161200
\(448\) 0 0
\(449\) −1.01226e14 −0.261780 −0.130890 0.991397i \(-0.541784\pi\)
−0.130890 + 0.991397i \(0.541784\pi\)
\(450\) 0 0
\(451\) 1.62295e14 0.409576
\(452\) 0 0
\(453\) 6.31485e12 0.0155533
\(454\) 0 0
\(455\) −9.00965e14 −2.16593
\(456\) 0 0
\(457\) 5.47245e14 1.28423 0.642115 0.766608i \(-0.278057\pi\)
0.642115 + 0.766608i \(0.278057\pi\)
\(458\) 0 0
\(459\) −1.08412e13 −0.0248376
\(460\) 0 0
\(461\) 4.10181e13 0.0917531 0.0458765 0.998947i \(-0.485392\pi\)
0.0458765 + 0.998947i \(0.485392\pi\)
\(462\) 0 0
\(463\) 4.31660e14 0.942859 0.471429 0.881904i \(-0.343738\pi\)
0.471429 + 0.881904i \(0.343738\pi\)
\(464\) 0 0
\(465\) −2.34098e13 −0.0499352
\(466\) 0 0
\(467\) 3.19604e14 0.665839 0.332919 0.942955i \(-0.391966\pi\)
0.332919 + 0.942955i \(0.391966\pi\)
\(468\) 0 0
\(469\) 1.10696e15 2.25259
\(470\) 0 0
\(471\) −8.39215e12 −0.0166824
\(472\) 0 0
\(473\) 3.56948e13 0.0693215
\(474\) 0 0
\(475\) 6.00360e14 1.13919
\(476\) 0 0
\(477\) −3.69160e14 −0.684485
\(478\) 0 0
\(479\) 2.31754e13 0.0419935 0.0209968 0.999780i \(-0.493316\pi\)
0.0209968 + 0.999780i \(0.493316\pi\)
\(480\) 0 0
\(481\) 5.47413e14 0.969432
\(482\) 0 0
\(483\) −1.25080e13 −0.0216510
\(484\) 0 0
\(485\) 1.16440e15 1.97026
\(486\) 0 0
\(487\) −9.87799e12 −0.0163403 −0.00817014 0.999967i \(-0.502601\pi\)
−0.00817014 + 0.999967i \(0.502601\pi\)
\(488\) 0 0
\(489\) 8.50271e10 0.000137518 0
\(490\) 0 0
\(491\) 5.08043e14 0.803437 0.401719 0.915763i \(-0.368413\pi\)
0.401719 + 0.915763i \(0.368413\pi\)
\(492\) 0 0
\(493\) −4.35756e14 −0.673885
\(494\) 0 0
\(495\) −7.38598e14 −1.11707
\(496\) 0 0
\(497\) 1.09377e15 1.61795
\(498\) 0 0
\(499\) −9.67307e14 −1.39962 −0.699812 0.714327i \(-0.746733\pi\)
−0.699812 + 0.714327i \(0.746733\pi\)
\(500\) 0 0
\(501\) 5.00553e12 0.00708504
\(502\) 0 0
\(503\) −3.65928e14 −0.506724 −0.253362 0.967372i \(-0.581536\pi\)
−0.253362 + 0.967372i \(0.581536\pi\)
\(504\) 0 0
\(505\) 3.28251e12 0.00444737
\(506\) 0 0
\(507\) 2.66134e12 0.00352823
\(508\) 0 0
\(509\) −2.27986e13 −0.0295775 −0.0147887 0.999891i \(-0.504708\pi\)
−0.0147887 + 0.999891i \(0.504708\pi\)
\(510\) 0 0
\(511\) −3.92792e14 −0.498710
\(512\) 0 0
\(513\) 3.95824e13 0.0491878
\(514\) 0 0
\(515\) 3.25502e14 0.395926
\(516\) 0 0
\(517\) 1.01703e15 1.21097
\(518\) 0 0
\(519\) −1.78897e13 −0.0208537
\(520\) 0 0
\(521\) −3.19507e14 −0.364647 −0.182324 0.983239i \(-0.558362\pi\)
−0.182324 + 0.983239i \(0.558362\pi\)
\(522\) 0 0
\(523\) −4.76795e14 −0.532810 −0.266405 0.963861i \(-0.585836\pi\)
−0.266405 + 0.963861i \(0.585836\pi\)
\(524\) 0 0
\(525\) 2.73580e13 0.0299370
\(526\) 0 0
\(527\) 1.13410e15 1.21532
\(528\) 0 0
\(529\) −5.56230e14 −0.583778
\(530\) 0 0
\(531\) 5.12192e14 0.526518
\(532\) 0 0
\(533\) 4.52508e14 0.455645
\(534\) 0 0
\(535\) 1.96568e15 1.93895
\(536\) 0 0
\(537\) −2.38356e13 −0.0230339
\(538\) 0 0
\(539\) −1.74652e15 −1.65362
\(540\) 0 0
\(541\) −7.96966e14 −0.739359 −0.369679 0.929159i \(-0.620532\pi\)
−0.369679 + 0.929159i \(0.620532\pi\)
\(542\) 0 0
\(543\) −6.54799e12 −0.00595263
\(544\) 0 0
\(545\) 2.84967e15 2.53871
\(546\) 0 0
\(547\) −3.18708e14 −0.278268 −0.139134 0.990274i \(-0.544432\pi\)
−0.139134 + 0.990274i \(0.544432\pi\)
\(548\) 0 0
\(549\) −1.24615e15 −1.06640
\(550\) 0 0
\(551\) 1.59099e15 1.33455
\(552\) 0 0
\(553\) −1.44374e15 −1.18714
\(554\) 0 0
\(555\) −3.52561e13 −0.0284199
\(556\) 0 0
\(557\) 1.81222e15 1.43221 0.716107 0.697990i \(-0.245922\pi\)
0.716107 + 0.697990i \(0.245922\pi\)
\(558\) 0 0
\(559\) 9.95234e13 0.0771188
\(560\) 0 0
\(561\) −1.32810e13 −0.0100910
\(562\) 0 0
\(563\) 1.10209e15 0.821147 0.410573 0.911828i \(-0.365329\pi\)
0.410573 + 0.911828i \(0.365329\pi\)
\(564\) 0 0
\(565\) 8.34731e14 0.609930
\(566\) 0 0
\(567\) −2.42848e15 −1.74032
\(568\) 0 0
\(569\) 5.11497e14 0.359522 0.179761 0.983710i \(-0.442467\pi\)
0.179761 + 0.983710i \(0.442467\pi\)
\(570\) 0 0
\(571\) −2.06109e15 −1.42101 −0.710505 0.703692i \(-0.751534\pi\)
−0.710505 + 0.703692i \(0.751534\pi\)
\(572\) 0 0
\(573\) −1.67999e13 −0.0113621
\(574\) 0 0
\(575\) −8.67418e14 −0.575513
\(576\) 0 0
\(577\) −1.20295e15 −0.783036 −0.391518 0.920171i \(-0.628050\pi\)
−0.391518 + 0.920171i \(0.628050\pi\)
\(578\) 0 0
\(579\) −1.71286e12 −0.00109393
\(580\) 0 0
\(581\) 1.24511e14 0.0780259
\(582\) 0 0
\(583\) −9.04640e14 −0.556287
\(584\) 0 0
\(585\) −2.05935e15 −1.24272
\(586\) 0 0
\(587\) 2.33803e15 1.38465 0.692325 0.721586i \(-0.256587\pi\)
0.692325 + 0.721586i \(0.256587\pi\)
\(588\) 0 0
\(589\) −4.14070e15 −2.40680
\(590\) 0 0
\(591\) −1.45872e13 −0.00832223
\(592\) 0 0
\(593\) 1.65885e15 0.928981 0.464490 0.885578i \(-0.346238\pi\)
0.464490 + 0.885578i \(0.346238\pi\)
\(594\) 0 0
\(595\) −2.81111e15 −1.54538
\(596\) 0 0
\(597\) −4.41477e13 −0.0238259
\(598\) 0 0
\(599\) 1.01907e15 0.539951 0.269976 0.962867i \(-0.412984\pi\)
0.269976 + 0.962867i \(0.412984\pi\)
\(600\) 0 0
\(601\) −9.47247e14 −0.492781 −0.246390 0.969171i \(-0.579245\pi\)
−0.246390 + 0.969171i \(0.579245\pi\)
\(602\) 0 0
\(603\) 2.53020e15 1.29244
\(604\) 0 0
\(605\) 9.32382e14 0.467670
\(606\) 0 0
\(607\) 2.47092e15 1.21708 0.608542 0.793521i \(-0.291755\pi\)
0.608542 + 0.793521i \(0.291755\pi\)
\(608\) 0 0
\(609\) 7.25005e13 0.0350708
\(610\) 0 0
\(611\) 2.83565e15 1.34718
\(612\) 0 0
\(613\) −3.57299e15 −1.66725 −0.833623 0.552334i \(-0.813737\pi\)
−0.833623 + 0.552334i \(0.813737\pi\)
\(614\) 0 0
\(615\) −2.91437e13 −0.0133577
\(616\) 0 0
\(617\) −4.07316e15 −1.83385 −0.916923 0.399063i \(-0.869335\pi\)
−0.916923 + 0.399063i \(0.869335\pi\)
\(618\) 0 0
\(619\) 3.18768e15 1.40986 0.704931 0.709276i \(-0.250978\pi\)
0.704931 + 0.709276i \(0.250978\pi\)
\(620\) 0 0
\(621\) −5.71899e13 −0.0248494
\(622\) 0 0
\(623\) −6.31969e15 −2.69781
\(624\) 0 0
\(625\) −2.61376e15 −1.09629
\(626\) 0 0
\(627\) 4.84901e13 0.0199839
\(628\) 0 0
\(629\) 1.70799e15 0.691683
\(630\) 0 0
\(631\) −2.44443e15 −0.972784 −0.486392 0.873741i \(-0.661687\pi\)
−0.486392 + 0.873741i \(0.661687\pi\)
\(632\) 0 0
\(633\) 1.17895e13 0.00461078
\(634\) 0 0
\(635\) −1.99170e15 −0.765541
\(636\) 0 0
\(637\) −4.86962e15 −1.83962
\(638\) 0 0
\(639\) 2.50003e15 0.928306
\(640\) 0 0
\(641\) 1.14910e15 0.419411 0.209705 0.977765i \(-0.432749\pi\)
0.209705 + 0.977765i \(0.432749\pi\)
\(642\) 0 0
\(643\) −1.51489e15 −0.543528 −0.271764 0.962364i \(-0.587607\pi\)
−0.271764 + 0.962364i \(0.587607\pi\)
\(644\) 0 0
\(645\) −6.40979e12 −0.00226082
\(646\) 0 0
\(647\) −3.71991e15 −1.28991 −0.644954 0.764221i \(-0.723124\pi\)
−0.644954 + 0.764221i \(0.723124\pi\)
\(648\) 0 0
\(649\) 1.25514e15 0.427906
\(650\) 0 0
\(651\) −1.88689e14 −0.0632487
\(652\) 0 0
\(653\) 3.19693e15 1.05368 0.526842 0.849963i \(-0.323376\pi\)
0.526842 + 0.849963i \(0.323376\pi\)
\(654\) 0 0
\(655\) 6.78650e15 2.19947
\(656\) 0 0
\(657\) −8.97810e14 −0.286137
\(658\) 0 0
\(659\) −1.68897e15 −0.529361 −0.264681 0.964336i \(-0.585267\pi\)
−0.264681 + 0.964336i \(0.585267\pi\)
\(660\) 0 0
\(661\) 2.27989e15 0.702758 0.351379 0.936233i \(-0.385713\pi\)
0.351379 + 0.936233i \(0.385713\pi\)
\(662\) 0 0
\(663\) −3.70297e13 −0.0112260
\(664\) 0 0
\(665\) 1.02637e16 3.06043
\(666\) 0 0
\(667\) −2.29871e15 −0.674205
\(668\) 0 0
\(669\) 5.03095e13 0.0145146
\(670\) 0 0
\(671\) −3.05372e15 −0.866674
\(672\) 0 0
\(673\) −5.24583e15 −1.46464 −0.732321 0.680959i \(-0.761563\pi\)
−0.732321 + 0.680959i \(0.761563\pi\)
\(674\) 0 0
\(675\) 1.25088e14 0.0343594
\(676\) 0 0
\(677\) 1.96641e15 0.531419 0.265709 0.964053i \(-0.414394\pi\)
0.265709 + 0.964053i \(0.414394\pi\)
\(678\) 0 0
\(679\) 9.38541e15 2.49557
\(680\) 0 0
\(681\) 9.61321e13 0.0251512
\(682\) 0 0
\(683\) −3.08409e15 −0.793988 −0.396994 0.917821i \(-0.629947\pi\)
−0.396994 + 0.917821i \(0.629947\pi\)
\(684\) 0 0
\(685\) 6.64294e15 1.68291
\(686\) 0 0
\(687\) 2.29442e12 0.000572020 0
\(688\) 0 0
\(689\) −2.52230e15 −0.618858
\(690\) 0 0
\(691\) 3.36803e15 0.813292 0.406646 0.913586i \(-0.366698\pi\)
0.406646 + 0.913586i \(0.366698\pi\)
\(692\) 0 0
\(693\) −5.95329e15 −1.41490
\(694\) 0 0
\(695\) 5.52137e15 1.29161
\(696\) 0 0
\(697\) 1.41188e15 0.325100
\(698\) 0 0
\(699\) 7.87084e13 0.0178401
\(700\) 0 0
\(701\) −3.42925e15 −0.765157 −0.382579 0.923923i \(-0.624964\pi\)
−0.382579 + 0.923923i \(0.624964\pi\)
\(702\) 0 0
\(703\) −6.23605e15 −1.36979
\(704\) 0 0
\(705\) −1.82630e14 −0.0394940
\(706\) 0 0
\(707\) 2.64579e13 0.00563311
\(708\) 0 0
\(709\) −1.25116e14 −0.0262275 −0.0131138 0.999914i \(-0.504174\pi\)
−0.0131138 + 0.999914i \(0.504174\pi\)
\(710\) 0 0
\(711\) −3.29998e15 −0.681128
\(712\) 0 0
\(713\) 5.98261e15 1.21590
\(714\) 0 0
\(715\) −5.04650e15 −1.00997
\(716\) 0 0
\(717\) −1.07436e14 −0.0211736
\(718\) 0 0
\(719\) 6.08027e15 1.18009 0.590044 0.807371i \(-0.299111\pi\)
0.590044 + 0.807371i \(0.299111\pi\)
\(720\) 0 0
\(721\) 2.62363e15 0.501486
\(722\) 0 0
\(723\) 1.43672e14 0.0270465
\(724\) 0 0
\(725\) 5.02784e15 0.932229
\(726\) 0 0
\(727\) −2.84854e15 −0.520216 −0.260108 0.965580i \(-0.583758\pi\)
−0.260108 + 0.965580i \(0.583758\pi\)
\(728\) 0 0
\(729\) −5.54669e15 −0.997775
\(730\) 0 0
\(731\) 3.10525e14 0.0550238
\(732\) 0 0
\(733\) 9.54311e15 1.66578 0.832890 0.553438i \(-0.186684\pi\)
0.832890 + 0.553438i \(0.186684\pi\)
\(734\) 0 0
\(735\) 3.13627e14 0.0539303
\(736\) 0 0
\(737\) 6.20034e15 1.05037
\(738\) 0 0
\(739\) −5.08100e15 −0.848018 −0.424009 0.905658i \(-0.639378\pi\)
−0.424009 + 0.905658i \(0.639378\pi\)
\(740\) 0 0
\(741\) 1.35199e14 0.0222317
\(742\) 0 0
\(743\) −1.30834e15 −0.211973 −0.105987 0.994368i \(-0.533800\pi\)
−0.105987 + 0.994368i \(0.533800\pi\)
\(744\) 0 0
\(745\) 7.21086e15 1.15114
\(746\) 0 0
\(747\) 2.84596e14 0.0447678
\(748\) 0 0
\(749\) 1.58439e16 2.45591
\(750\) 0 0
\(751\) −1.02246e16 −1.56181 −0.780903 0.624652i \(-0.785241\pi\)
−0.780903 + 0.624652i \(0.785241\pi\)
\(752\) 0 0
\(753\) 3.48060e13 0.00523940
\(754\) 0 0
\(755\) 7.48677e15 1.11067
\(756\) 0 0
\(757\) −1.16093e16 −1.69737 −0.848686 0.528897i \(-0.822606\pi\)
−0.848686 + 0.528897i \(0.822606\pi\)
\(758\) 0 0
\(759\) −7.00599e13 −0.0100958
\(760\) 0 0
\(761\) 4.02600e14 0.0571818 0.0285909 0.999591i \(-0.490898\pi\)
0.0285909 + 0.999591i \(0.490898\pi\)
\(762\) 0 0
\(763\) 2.29691e16 3.21557
\(764\) 0 0
\(765\) −6.42540e15 −0.886670
\(766\) 0 0
\(767\) 3.49957e15 0.476036
\(768\) 0 0
\(769\) 3.45914e15 0.463845 0.231923 0.972734i \(-0.425498\pi\)
0.231923 + 0.972734i \(0.425498\pi\)
\(770\) 0 0
\(771\) 3.65636e13 0.00483337
\(772\) 0 0
\(773\) −6.12705e15 −0.798480 −0.399240 0.916847i \(-0.630726\pi\)
−0.399240 + 0.916847i \(0.630726\pi\)
\(774\) 0 0
\(775\) −1.30854e16 −1.68124
\(776\) 0 0
\(777\) −2.84173e14 −0.0359971
\(778\) 0 0
\(779\) −5.15490e15 −0.643820
\(780\) 0 0
\(781\) 6.12642e15 0.754442
\(782\) 0 0
\(783\) 3.31492e14 0.0402516
\(784\) 0 0
\(785\) −9.94957e15 −1.19130
\(786\) 0 0
\(787\) 1.63599e14 0.0193160 0.00965802 0.999953i \(-0.496926\pi\)
0.00965802 + 0.999953i \(0.496926\pi\)
\(788\) 0 0
\(789\) 2.40043e14 0.0279489
\(790\) 0 0
\(791\) 6.72815e15 0.772547
\(792\) 0 0
\(793\) −8.51433e15 −0.964157
\(794\) 0 0
\(795\) 1.62448e14 0.0181425
\(796\) 0 0
\(797\) 3.91386e14 0.0431107 0.0215553 0.999768i \(-0.493138\pi\)
0.0215553 + 0.999768i \(0.493138\pi\)
\(798\) 0 0
\(799\) 8.84757e15 0.961206
\(800\) 0 0
\(801\) −1.44450e16 −1.54788
\(802\) 0 0
\(803\) −2.20011e15 −0.232546
\(804\) 0 0
\(805\) −1.48292e16 −1.54611
\(806\) 0 0
\(807\) −2.33024e14 −0.0239660
\(808\) 0 0
\(809\) 1.10789e16 1.12404 0.562020 0.827124i \(-0.310025\pi\)
0.562020 + 0.827124i \(0.310025\pi\)
\(810\) 0 0
\(811\) −7.03872e15 −0.704497 −0.352248 0.935907i \(-0.614583\pi\)
−0.352248 + 0.935907i \(0.614583\pi\)
\(812\) 0 0
\(813\) 3.06473e14 0.0302617
\(814\) 0 0
\(815\) 1.00807e14 0.00982024
\(816\) 0 0
\(817\) −1.13376e15 −0.108968
\(818\) 0 0
\(819\) −1.65989e16 −1.57404
\(820\) 0 0
\(821\) −5.60310e15 −0.524253 −0.262127 0.965033i \(-0.584424\pi\)
−0.262127 + 0.965033i \(0.584424\pi\)
\(822\) 0 0
\(823\) −1.66745e16 −1.53940 −0.769702 0.638403i \(-0.779595\pi\)
−0.769702 + 0.638403i \(0.779595\pi\)
\(824\) 0 0
\(825\) 1.53238e14 0.0139595
\(826\) 0 0
\(827\) −1.13939e15 −0.102422 −0.0512108 0.998688i \(-0.516308\pi\)
−0.0512108 + 0.998688i \(0.516308\pi\)
\(828\) 0 0
\(829\) −1.44203e16 −1.27916 −0.639579 0.768726i \(-0.720891\pi\)
−0.639579 + 0.768726i \(0.720891\pi\)
\(830\) 0 0
\(831\) 1.31092e14 0.0114755
\(832\) 0 0
\(833\) −1.51938e16 −1.31256
\(834\) 0 0
\(835\) 5.93446e15 0.505948
\(836\) 0 0
\(837\) −8.62738e14 −0.0725920
\(838\) 0 0
\(839\) 1.33530e16 1.10889 0.554444 0.832221i \(-0.312931\pi\)
0.554444 + 0.832221i \(0.312931\pi\)
\(840\) 0 0
\(841\) 1.12358e15 0.0920925
\(842\) 0 0
\(843\) −2.51952e14 −0.0203829
\(844\) 0 0
\(845\) 3.15524e15 0.251954
\(846\) 0 0
\(847\) 7.51524e15 0.592358
\(848\) 0 0
\(849\) 1.75799e14 0.0136781
\(850\) 0 0
\(851\) 9.01003e15 0.692012
\(852\) 0 0
\(853\) 9.20764e15 0.698118 0.349059 0.937101i \(-0.386501\pi\)
0.349059 + 0.937101i \(0.386501\pi\)
\(854\) 0 0
\(855\) 2.34597e16 1.75594
\(856\) 0 0
\(857\) 5.20571e14 0.0384668 0.0192334 0.999815i \(-0.493877\pi\)
0.0192334 + 0.999815i \(0.493877\pi\)
\(858\) 0 0
\(859\) −1.86500e16 −1.36056 −0.680280 0.732953i \(-0.738142\pi\)
−0.680280 + 0.732953i \(0.738142\pi\)
\(860\) 0 0
\(861\) −2.34906e14 −0.0169191
\(862\) 0 0
\(863\) −7.13279e14 −0.0507224 −0.0253612 0.999678i \(-0.508074\pi\)
−0.0253612 + 0.999678i \(0.508074\pi\)
\(864\) 0 0
\(865\) −2.12098e16 −1.48918
\(866\) 0 0
\(867\) 1.62312e14 0.0112524
\(868\) 0 0
\(869\) −8.08672e15 −0.553559
\(870\) 0 0
\(871\) 1.72877e16 1.16852
\(872\) 0 0
\(873\) 2.14523e16 1.43185
\(874\) 0 0
\(875\) −3.92479e15 −0.258685
\(876\) 0 0
\(877\) 1.70756e16 1.11142 0.555709 0.831377i \(-0.312447\pi\)
0.555709 + 0.831377i \(0.312447\pi\)
\(878\) 0 0
\(879\) 2.38970e14 0.0153605
\(880\) 0 0
\(881\) 1.65770e16 1.05229 0.526147 0.850393i \(-0.323636\pi\)
0.526147 + 0.850393i \(0.323636\pi\)
\(882\) 0 0
\(883\) 1.71471e16 1.07500 0.537499 0.843264i \(-0.319369\pi\)
0.537499 + 0.843264i \(0.319369\pi\)
\(884\) 0 0
\(885\) −2.25389e14 −0.0139555
\(886\) 0 0
\(887\) −1.51925e16 −0.929069 −0.464535 0.885555i \(-0.653778\pi\)
−0.464535 + 0.885555i \(0.653778\pi\)
\(888\) 0 0
\(889\) −1.60536e16 −0.969646
\(890\) 0 0
\(891\) −1.36025e16 −0.811503
\(892\) 0 0
\(893\) −3.23033e16 −1.90355
\(894\) 0 0
\(895\) −2.82591e16 −1.64487
\(896\) 0 0
\(897\) −1.95340e14 −0.0112314
\(898\) 0 0
\(899\) −3.46772e16 −1.96954
\(900\) 0 0
\(901\) −7.86987e15 −0.441551
\(902\) 0 0
\(903\) −5.16646e13 −0.00286359
\(904\) 0 0
\(905\) −7.76318e15 −0.425082
\(906\) 0 0
\(907\) 3.52570e16 1.90724 0.953621 0.301011i \(-0.0973241\pi\)
0.953621 + 0.301011i \(0.0973241\pi\)
\(908\) 0 0
\(909\) 6.04751e13 0.00323203
\(910\) 0 0
\(911\) −1.80307e16 −0.952052 −0.476026 0.879431i \(-0.657923\pi\)
−0.476026 + 0.879431i \(0.657923\pi\)
\(912\) 0 0
\(913\) 6.97412e14 0.0363832
\(914\) 0 0
\(915\) 5.48364e14 0.0282653
\(916\) 0 0
\(917\) 5.47009e16 2.78589
\(918\) 0 0
\(919\) −1.18274e16 −0.595189 −0.297595 0.954692i \(-0.596184\pi\)
−0.297595 + 0.954692i \(0.596184\pi\)
\(920\) 0 0
\(921\) −3.31613e13 −0.00164893
\(922\) 0 0
\(923\) 1.70816e16 0.839302
\(924\) 0 0
\(925\) −1.97071e16 −0.956851
\(926\) 0 0
\(927\) 5.99686e15 0.287730
\(928\) 0 0
\(929\) 1.51253e16 0.717163 0.358582 0.933498i \(-0.383261\pi\)
0.358582 + 0.933498i \(0.383261\pi\)
\(930\) 0 0
\(931\) 5.54739e16 2.59936
\(932\) 0 0
\(933\) −1.67475e14 −0.00775532
\(934\) 0 0
\(935\) −1.57457e16 −0.720604
\(936\) 0 0
\(937\) −3.45437e15 −0.156243 −0.0781217 0.996944i \(-0.524892\pi\)
−0.0781217 + 0.996944i \(0.524892\pi\)
\(938\) 0 0
\(939\) −6.14537e14 −0.0274718
\(940\) 0 0
\(941\) 2.80566e16 1.23963 0.619816 0.784747i \(-0.287207\pi\)
0.619816 + 0.784747i \(0.287207\pi\)
\(942\) 0 0
\(943\) 7.44796e15 0.325254
\(944\) 0 0
\(945\) 2.13849e15 0.0923065
\(946\) 0 0
\(947\) −3.04374e16 −1.29862 −0.649310 0.760524i \(-0.724942\pi\)
−0.649310 + 0.760524i \(0.724942\pi\)
\(948\) 0 0
\(949\) −6.13431e15 −0.258703
\(950\) 0 0
\(951\) −7.01248e14 −0.0292334
\(952\) 0 0
\(953\) 1.86377e16 0.768036 0.384018 0.923326i \(-0.374540\pi\)
0.384018 + 0.923326i \(0.374540\pi\)
\(954\) 0 0
\(955\) −1.99177e16 −0.811374
\(956\) 0 0
\(957\) 4.06091e14 0.0163534
\(958\) 0 0
\(959\) 5.35438e16 2.13161
\(960\) 0 0
\(961\) 6.48421e16 2.55199
\(962\) 0 0
\(963\) 3.62145e16 1.40909
\(964\) 0 0
\(965\) −2.03073e15 −0.0781182
\(966\) 0 0
\(967\) −1.77292e16 −0.674286 −0.337143 0.941454i \(-0.609461\pi\)
−0.337143 + 0.941454i \(0.609461\pi\)
\(968\) 0 0
\(969\) 4.21837e14 0.0158622
\(970\) 0 0
\(971\) 2.64145e16 0.982056 0.491028 0.871144i \(-0.336621\pi\)
0.491028 + 0.871144i \(0.336621\pi\)
\(972\) 0 0
\(973\) 4.45037e16 1.63597
\(974\) 0 0
\(975\) 4.27256e14 0.0155297
\(976\) 0 0
\(977\) 1.41752e16 0.509458 0.254729 0.967013i \(-0.418014\pi\)
0.254729 + 0.967013i \(0.418014\pi\)
\(978\) 0 0
\(979\) −3.53979e16 −1.25798
\(980\) 0 0
\(981\) 5.25007e16 1.84495
\(982\) 0 0
\(983\) −3.39879e16 −1.18108 −0.590541 0.807008i \(-0.701086\pi\)
−0.590541 + 0.807008i \(0.701086\pi\)
\(984\) 0 0
\(985\) −1.72943e16 −0.594296
\(986\) 0 0
\(987\) −1.47204e15 −0.0500238
\(988\) 0 0
\(989\) 1.63808e15 0.0550499
\(990\) 0 0
\(991\) −4.42289e16 −1.46994 −0.734972 0.678097i \(-0.762805\pi\)
−0.734972 + 0.678097i \(0.762805\pi\)
\(992\) 0 0
\(993\) −7.77670e14 −0.0255608
\(994\) 0 0
\(995\) −5.23407e16 −1.70143
\(996\) 0 0
\(997\) −2.00620e16 −0.644986 −0.322493 0.946572i \(-0.604521\pi\)
−0.322493 + 0.946572i \(0.604521\pi\)
\(998\) 0 0
\(999\) −1.29932e15 −0.0413147
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 64.12.a.m.1.2 3
4.3 odd 2 64.12.a.l.1.2 3
8.3 odd 2 32.12.a.e.1.2 yes 3
8.5 even 2 32.12.a.d.1.2 3
16.3 odd 4 256.12.b.m.129.4 6
16.5 even 4 256.12.b.l.129.4 6
16.11 odd 4 256.12.b.m.129.3 6
16.13 even 4 256.12.b.l.129.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
32.12.a.d.1.2 3 8.5 even 2
32.12.a.e.1.2 yes 3 8.3 odd 2
64.12.a.l.1.2 3 4.3 odd 2
64.12.a.m.1.2 3 1.1 even 1 trivial
256.12.b.l.129.3 6 16.13 even 4
256.12.b.l.129.4 6 16.5 even 4
256.12.b.m.129.3 6 16.11 odd 4
256.12.b.m.129.4 6 16.3 odd 4