Properties

Label 64.12.a.m
Level $64$
Weight $12$
Character orbit 64.a
Self dual yes
Analytic conductor $49.174$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [64,12,Mod(1,64)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(64, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("64.1");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 64 = 2^{6} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 64.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.1739635558\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1056820.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 331x - 1379 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: no (minimal twist has level 32)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 + 147) q^{3} + (\beta_{2} - 257) q^{5} + (8 \beta_{2} + 30 \beta_1 + 2018) q^{7} + (18 \beta_{2} + 512 \beta_1 + 70719) q^{9} + (48 \beta_{2} + 411 \beta_1 + 78833) q^{11} + (129 \beta_{2} - 3072 \beta_1 - 479641) q^{13}+ \cdots + ( - 1533888 \beta_{2} + \cdots + 92190815877) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 440 q^{3} - 770 q^{5} + 6032 q^{7} + 211663 q^{9} + 236136 q^{11} - 1435722 q^{13} - 222160 q^{15} - 756186 q^{17} + 23267992 q^{19} + 20368000 q^{21} - 42366288 q^{23} - 6913515 q^{25} + 298561328 q^{27}+ \cdots + 276379454984 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 331x - 1379 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 32\nu - 11 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 512\nu^{2} - 3840\nu - 111869 ) / 9 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 11 ) / 32 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 9\beta_{2} + 120\beta _1 + 113189 ) / 512 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−14.9624
−4.50335
20.4657
0 −342.797 0 6432.96 0 40843.8 0 −59637.5 0
1.2 0 −8.10720 0 −9611.74 0 −77473.2 0 −177081. 0
1.3 0 790.904 0 2408.78 0 42661.4 0 448382. 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 64.12.a.m 3
4.b odd 2 1 64.12.a.l 3
8.b even 2 1 32.12.a.d 3
8.d odd 2 1 32.12.a.e yes 3
16.e even 4 2 256.12.b.l 6
16.f odd 4 2 256.12.b.m 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
32.12.a.d 3 8.b even 2 1
32.12.a.e yes 3 8.d odd 2 1
64.12.a.l 3 4.b odd 2 1
64.12.a.m 3 1.a even 1 1 trivial
256.12.b.l 6 16.e even 4 2
256.12.b.m 6 16.f odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} - 440T_{3}^{2} - 274752T_{3} - 2198016 \) acting on \(S_{12}^{\mathrm{new}}(\Gamma_0(64))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 440 T^{2} + \cdots - 2198016 \) Copy content Toggle raw display
$5$ \( T^{3} + \cdots + 148939701400 \) Copy content Toggle raw display
$7$ \( T^{3} + \cdots + 134993299460096 \) Copy content Toggle raw display
$11$ \( T^{3} + \cdots + 40\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( T^{3} + \cdots - 48\!\cdots\!00 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots - 20\!\cdots\!00 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots + 17\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots - 25\!\cdots\!12 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots + 37\!\cdots\!72 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots + 39\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots + 93\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots - 16\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots - 43\!\cdots\!56 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 61\!\cdots\!44 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 44\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots + 77\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 21\!\cdots\!60 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 24\!\cdots\!68 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots + 41\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 14\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots + 10\!\cdots\!80 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 67\!\cdots\!76 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 12\!\cdots\!00 \) Copy content Toggle raw display
show more
show less