Properties

Label 637.2.g.l.373.5
Level $637$
Weight $2$
Character 637.373
Analytic conductor $5.086$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [637,2,Mod(263,637)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(637, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("637.263"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,2,2,-4,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 7x^{10} - 2x^{9} + 33x^{8} - 11x^{7} + 55x^{6} + 17x^{5} + 47x^{4} + x^{3} + 8x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 373.5
Root \(1.16700 - 2.02131i\) of defining polynomial
Character \(\chi\) \(=\) 637.373
Dual form 637.2.g.l.263.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.952780 + 1.65026i) q^{2} -0.428448 q^{3} +(-0.815580 + 1.41263i) q^{4} +(-0.736565 + 1.27577i) q^{5} +(-0.408216 - 0.707051i) q^{6} +0.702849 q^{8} -2.81643 q^{9} -2.80714 q^{10} -4.39361 q^{11} +(0.349433 - 0.605236i) q^{12} +(-2.69752 + 2.39236i) q^{13} +(0.315580 - 0.546600i) q^{15} +(2.30082 + 3.98514i) q^{16} +(-0.601356 + 1.04158i) q^{17} +(-2.68344 - 4.64786i) q^{18} -3.24209 q^{19} +(-1.20145 - 2.08098i) q^{20} +(-4.18615 - 7.25062i) q^{22} +(2.21855 + 3.84264i) q^{23} -0.301134 q^{24} +(1.41494 + 2.45075i) q^{25} +(-6.51816 - 2.17223i) q^{26} +2.49204 q^{27} +(-0.0837807 + 0.145112i) q^{29} +1.20271 q^{30} +(2.62272 + 4.54268i) q^{31} +(-3.68150 + 6.37655i) q^{32} +1.88243 q^{33} -2.29184 q^{34} +(2.29702 - 3.97856i) q^{36} +(-3.52527 - 6.10595i) q^{37} +(-3.08900 - 5.35031i) q^{38} +(1.15575 - 1.02500i) q^{39} +(-0.517694 + 0.896672i) q^{40} +(2.58195 - 4.47206i) q^{41} +(-0.0113752 - 0.0197024i) q^{43} +(3.58334 - 6.20653i) q^{44} +(2.07449 - 3.59311i) q^{45} +(-4.22758 + 7.32239i) q^{46} +(5.84178 - 10.1183i) q^{47} +(-0.985780 - 1.70742i) q^{48} +(-2.69626 + 4.67006i) q^{50} +(0.257649 - 0.446262i) q^{51} +(-1.17946 - 5.76175i) q^{52} +(0.0708929 + 0.122790i) q^{53} +(2.37436 + 4.11252i) q^{54} +(3.23618 - 5.60523i) q^{55} +1.38907 q^{57} -0.319298 q^{58} +(-2.67177 + 4.62764i) q^{59} +(0.514760 + 0.891591i) q^{60} -11.5457 q^{61} +(-4.99774 + 8.65635i) q^{62} -4.82736 q^{64} +(-1.06519 - 5.20354i) q^{65} +(1.79355 + 3.10651i) q^{66} +4.13546 q^{67} +(-0.980907 - 1.69898i) q^{68} +(-0.950533 - 1.64637i) q^{69} +(4.98486 + 8.63403i) q^{71} -1.97953 q^{72} +(7.62080 + 13.1996i) q^{73} +(6.71762 - 11.6353i) q^{74} +(-0.606229 - 1.05002i) q^{75} +(2.64418 - 4.57986i) q^{76} +(2.79269 + 0.930689i) q^{78} +(-0.387251 + 0.670738i) q^{79} -6.77881 q^{80} +7.38159 q^{81} +9.84011 q^{82} +16.0186 q^{83} +(-0.885875 - 1.53438i) q^{85} +(0.0216761 - 0.0375441i) q^{86} +(0.0358956 - 0.0621731i) q^{87} -3.08805 q^{88} +(3.27880 + 5.67904i) q^{89} +7.90611 q^{90} -7.23762 q^{92} +(-1.12370 - 1.94630i) q^{93} +22.2637 q^{94} +(2.38801 - 4.13616i) q^{95} +(1.57733 - 2.73202i) q^{96} +(1.74583 + 3.02387i) q^{97} +12.3743 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{2} + 2 q^{3} - 4 q^{4} - q^{5} + 9 q^{6} - 6 q^{8} - 6 q^{9} + 8 q^{10} - 8 q^{11} - 5 q^{12} + 2 q^{13} - 2 q^{15} + 8 q^{16} - 5 q^{17} + 3 q^{18} - 2 q^{19} + q^{20} - 5 q^{22} - q^{23}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.952780 + 1.65026i 0.673717 + 1.16691i 0.976842 + 0.213962i \(0.0686367\pi\)
−0.303125 + 0.952951i \(0.598030\pi\)
\(3\) −0.428448 −0.247364 −0.123682 0.992322i \(-0.539470\pi\)
−0.123682 + 0.992322i \(0.539470\pi\)
\(4\) −0.815580 + 1.41263i −0.407790 + 0.706313i
\(5\) −0.736565 + 1.27577i −0.329402 + 0.570541i −0.982393 0.186825i \(-0.940180\pi\)
0.652991 + 0.757365i \(0.273514\pi\)
\(6\) −0.408216 0.707051i −0.166654 0.288653i
\(7\) 0 0
\(8\) 0.702849 0.248495
\(9\) −2.81643 −0.938811
\(10\) −2.80714 −0.887695
\(11\) −4.39361 −1.32472 −0.662362 0.749184i \(-0.730446\pi\)
−0.662362 + 0.749184i \(0.730446\pi\)
\(12\) 0.349433 0.605236i 0.100873 0.174717i
\(13\) −2.69752 + 2.39236i −0.748158 + 0.663520i
\(14\) 0 0
\(15\) 0.315580 0.546600i 0.0814823 0.141131i
\(16\) 2.30082 + 3.98514i 0.575205 + 0.996284i
\(17\) −0.601356 + 1.04158i −0.145850 + 0.252620i −0.929690 0.368343i \(-0.879925\pi\)
0.783840 + 0.620963i \(0.213258\pi\)
\(18\) −2.68344 4.64786i −0.632493 1.09551i
\(19\) −3.24209 −0.743787 −0.371893 0.928275i \(-0.621291\pi\)
−0.371893 + 0.928275i \(0.621291\pi\)
\(20\) −1.20145 2.08098i −0.268653 0.465321i
\(21\) 0 0
\(22\) −4.18615 7.25062i −0.892490 1.54584i
\(23\) 2.21855 + 3.84264i 0.462600 + 0.801246i 0.999090 0.0426603i \(-0.0135833\pi\)
−0.536490 + 0.843907i \(0.680250\pi\)
\(24\) −0.301134 −0.0614687
\(25\) 1.41494 + 2.45075i 0.282989 + 0.490151i
\(26\) −6.51816 2.17223i −1.27832 0.426010i
\(27\) 2.49204 0.479593
\(28\) 0 0
\(29\) −0.0837807 + 0.145112i −0.0155577 + 0.0269467i −0.873699 0.486466i \(-0.838286\pi\)
0.858142 + 0.513413i \(0.171619\pi\)
\(30\) 1.20271 0.219584
\(31\) 2.62272 + 4.54268i 0.471054 + 0.815889i 0.999452 0.0331076i \(-0.0105404\pi\)
−0.528398 + 0.848997i \(0.677207\pi\)
\(32\) −3.68150 + 6.37655i −0.650803 + 1.12722i
\(33\) 1.88243 0.327690
\(34\) −2.29184 −0.393047
\(35\) 0 0
\(36\) 2.29702 3.97856i 0.382837 0.663094i
\(37\) −3.52527 6.10595i −0.579552 1.00381i −0.995531 0.0944386i \(-0.969894\pi\)
0.415979 0.909374i \(-0.363439\pi\)
\(38\) −3.08900 5.35031i −0.501102 0.867934i
\(39\) 1.15575 1.02500i 0.185068 0.164131i
\(40\) −0.517694 + 0.896672i −0.0818546 + 0.141776i
\(41\) 2.58195 4.47206i 0.403233 0.698419i −0.590881 0.806758i \(-0.701220\pi\)
0.994114 + 0.108339i \(0.0345533\pi\)
\(42\) 0 0
\(43\) −0.0113752 0.0197024i −0.00173470 0.00300459i 0.865157 0.501502i \(-0.167219\pi\)
−0.866891 + 0.498497i \(0.833886\pi\)
\(44\) 3.58334 6.20653i 0.540209 0.935670i
\(45\) 2.07449 3.59311i 0.309246 0.535630i
\(46\) −4.22758 + 7.32239i −0.623323 + 1.07963i
\(47\) 5.84178 10.1183i 0.852111 1.47590i −0.0271891 0.999630i \(-0.508656\pi\)
0.879300 0.476269i \(-0.158011\pi\)
\(48\) −0.985780 1.70742i −0.142285 0.246445i
\(49\) 0 0
\(50\) −2.69626 + 4.67006i −0.381309 + 0.660446i
\(51\) 0.257649 0.446262i 0.0360781 0.0624892i
\(52\) −1.17946 5.76175i −0.163561 0.799010i
\(53\) 0.0708929 + 0.122790i 0.00973788 + 0.0168665i 0.870853 0.491543i \(-0.163567\pi\)
−0.861115 + 0.508410i \(0.830234\pi\)
\(54\) 2.37436 + 4.11252i 0.323110 + 0.559643i
\(55\) 3.23618 5.60523i 0.436367 0.755809i
\(56\) 0 0
\(57\) 1.38907 0.183986
\(58\) −0.319298 −0.0419259
\(59\) −2.67177 + 4.62764i −0.347835 + 0.602468i −0.985865 0.167544i \(-0.946416\pi\)
0.638030 + 0.770012i \(0.279750\pi\)
\(60\) 0.514760 + 0.891591i 0.0664553 + 0.115104i
\(61\) −11.5457 −1.47828 −0.739141 0.673551i \(-0.764768\pi\)
−0.739141 + 0.673551i \(0.764768\pi\)
\(62\) −4.99774 + 8.65635i −0.634714 + 1.09936i
\(63\) 0 0
\(64\) −4.82736 −0.603420
\(65\) −1.06519 5.20354i −0.132121 0.645420i
\(66\) 1.79355 + 3.10651i 0.220770 + 0.382385i
\(67\) 4.13546 0.505226 0.252613 0.967567i \(-0.418710\pi\)
0.252613 + 0.967567i \(0.418710\pi\)
\(68\) −0.980907 1.69898i −0.118952 0.206032i
\(69\) −0.950533 1.64637i −0.114431 0.198200i
\(70\) 0 0
\(71\) 4.98486 + 8.63403i 0.591594 + 1.02467i 0.994018 + 0.109217i \(0.0348344\pi\)
−0.402424 + 0.915453i \(0.631832\pi\)
\(72\) −1.97953 −0.233289
\(73\) 7.62080 + 13.1996i 0.891947 + 1.54490i 0.837539 + 0.546378i \(0.183994\pi\)
0.0544080 + 0.998519i \(0.482673\pi\)
\(74\) 6.71762 11.6353i 0.780908 1.35257i
\(75\) −0.606229 1.05002i −0.0700013 0.121246i
\(76\) 2.64418 4.57986i 0.303309 0.525346i
\(77\) 0 0
\(78\) 2.79269 + 0.930689i 0.316210 + 0.105380i
\(79\) −0.387251 + 0.670738i −0.0435691 + 0.0754639i −0.886988 0.461793i \(-0.847206\pi\)
0.843418 + 0.537257i \(0.180540\pi\)
\(80\) −6.77881 −0.757894
\(81\) 7.38159 0.820177
\(82\) 9.84011 1.08666
\(83\) 16.0186 1.75827 0.879136 0.476571i \(-0.158121\pi\)
0.879136 + 0.476571i \(0.158121\pi\)
\(84\) 0 0
\(85\) −0.885875 1.53438i −0.0960866 0.166427i
\(86\) 0.0216761 0.0375441i 0.00233740 0.00404849i
\(87\) 0.0358956 0.0621731i 0.00384842 0.00666565i
\(88\) −3.08805 −0.329187
\(89\) 3.27880 + 5.67904i 0.347552 + 0.601977i 0.985814 0.167842i \(-0.0536797\pi\)
−0.638262 + 0.769819i \(0.720346\pi\)
\(90\) 7.90611 0.833378
\(91\) 0 0
\(92\) −7.23762 −0.754574
\(93\) −1.12370 1.94630i −0.116522 0.201822i
\(94\) 22.2637 2.29633
\(95\) 2.38801 4.13616i 0.245005 0.424361i
\(96\) 1.57733 2.73202i 0.160986 0.278835i
\(97\) 1.74583 + 3.02387i 0.177262 + 0.307027i 0.940942 0.338568i \(-0.109943\pi\)
−0.763680 + 0.645595i \(0.776609\pi\)
\(98\) 0 0
\(99\) 12.3743 1.24367
\(100\) −4.61600 −0.461600
\(101\) −2.57780 −0.256500 −0.128250 0.991742i \(-0.540936\pi\)
−0.128250 + 0.991742i \(0.540936\pi\)
\(102\) 0.981933 0.0972258
\(103\) −8.43173 + 14.6042i −0.830803 + 1.43899i 0.0665997 + 0.997780i \(0.478785\pi\)
−0.897402 + 0.441213i \(0.854548\pi\)
\(104\) −1.89595 + 1.68146i −0.185913 + 0.164881i
\(105\) 0 0
\(106\) −0.135091 + 0.233984i −0.0131212 + 0.0227265i
\(107\) −4.34132 7.51939i −0.419692 0.726927i 0.576217 0.817297i \(-0.304528\pi\)
−0.995908 + 0.0903697i \(0.971195\pi\)
\(108\) −2.03245 + 3.52031i −0.195573 + 0.338742i
\(109\) 6.02026 + 10.4274i 0.576637 + 0.998764i 0.995862 + 0.0908816i \(0.0289685\pi\)
−0.419225 + 0.907882i \(0.637698\pi\)
\(110\) 12.3335 1.17595
\(111\) 1.51040 + 2.61608i 0.143360 + 0.248307i
\(112\) 0 0
\(113\) −4.68616 8.11667i −0.440837 0.763552i 0.556915 0.830570i \(-0.311985\pi\)
−0.997752 + 0.0670176i \(0.978652\pi\)
\(114\) 1.32348 + 2.29233i 0.123955 + 0.214696i
\(115\) −6.53643 −0.609525
\(116\) −0.136660 0.236701i −0.0126885 0.0219772i
\(117\) 7.59739 6.73791i 0.702379 0.622920i
\(118\) −10.1824 −0.937369
\(119\) 0 0
\(120\) 0.221805 0.384177i 0.0202479 0.0350704i
\(121\) 8.30385 0.754895
\(122\) −11.0006 19.0535i −0.995944 1.72503i
\(123\) −1.10623 + 1.91605i −0.0997453 + 0.172764i
\(124\) −8.55614 −0.768364
\(125\) −11.5344 −1.03167
\(126\) 0 0
\(127\) −7.94269 + 13.7571i −0.704800 + 1.22075i 0.261964 + 0.965078i \(0.415630\pi\)
−0.966764 + 0.255672i \(0.917703\pi\)
\(128\) 2.76359 + 4.78667i 0.244269 + 0.423086i
\(129\) 0.00487367 + 0.00844145i 0.000429103 + 0.000743228i
\(130\) 7.57232 6.71567i 0.664136 0.589004i
\(131\) 0.928725 1.60860i 0.0811430 0.140544i −0.822598 0.568623i \(-0.807476\pi\)
0.903741 + 0.428079i \(0.140810\pi\)
\(132\) −1.53527 + 2.65917i −0.133628 + 0.231451i
\(133\) 0 0
\(134\) 3.94018 + 6.82459i 0.340380 + 0.589555i
\(135\) −1.83555 + 3.17926i −0.157979 + 0.273627i
\(136\) −0.422662 + 0.732072i −0.0362430 + 0.0627747i
\(137\) 6.40011 11.0853i 0.546798 0.947082i −0.451693 0.892173i \(-0.649180\pi\)
0.998491 0.0549088i \(-0.0174868\pi\)
\(138\) 1.81130 3.13726i 0.154188 0.267061i
\(139\) −0.169365 0.293348i −0.0143653 0.0248815i 0.858753 0.512389i \(-0.171239\pi\)
−0.873119 + 0.487508i \(0.837906\pi\)
\(140\) 0 0
\(141\) −2.50290 + 4.33514i −0.210782 + 0.365085i
\(142\) −9.49894 + 16.4527i −0.797134 + 1.38068i
\(143\) 11.8519 10.5111i 0.991104 0.878982i
\(144\) −6.48010 11.2239i −0.540009 0.935322i
\(145\) −0.123420 0.213769i −0.0102495 0.0177526i
\(146\) −14.5219 + 25.1526i −1.20184 + 2.08165i
\(147\) 0 0
\(148\) 11.5006 0.945341
\(149\) 3.92316 0.321398 0.160699 0.987003i \(-0.448625\pi\)
0.160699 + 0.987003i \(0.448625\pi\)
\(150\) 1.15521 2.00088i 0.0943222 0.163371i
\(151\) 1.05939 + 1.83492i 0.0862122 + 0.149324i 0.905907 0.423476i \(-0.139190\pi\)
−0.819695 + 0.572800i \(0.805857\pi\)
\(152\) −2.27870 −0.184827
\(153\) 1.69368 2.93354i 0.136926 0.237162i
\(154\) 0 0
\(155\) −7.72721 −0.620664
\(156\) 0.505336 + 2.46861i 0.0404593 + 0.197647i
\(157\) −11.0564 19.1502i −0.882397 1.52836i −0.848668 0.528925i \(-0.822595\pi\)
−0.0337285 0.999431i \(-0.510738\pi\)
\(158\) −1.47586 −0.117413
\(159\) −0.0303739 0.0526091i −0.00240881 0.00417217i
\(160\) −5.42333 9.39348i −0.428752 0.742620i
\(161\) 0 0
\(162\) 7.03303 + 12.1816i 0.552567 + 0.957074i
\(163\) 3.85214 0.301723 0.150861 0.988555i \(-0.451795\pi\)
0.150861 + 0.988555i \(0.451795\pi\)
\(164\) 4.21157 + 7.29465i 0.328868 + 0.569616i
\(165\) −1.38653 + 2.40155i −0.107942 + 0.186960i
\(166\) 15.2622 + 26.4349i 1.18458 + 2.05175i
\(167\) 1.06947 1.85238i 0.0827582 0.143341i −0.821676 0.569956i \(-0.806960\pi\)
0.904434 + 0.426614i \(0.140294\pi\)
\(168\) 0 0
\(169\) 1.55326 12.9069i 0.119482 0.992836i
\(170\) 1.68809 2.92385i 0.129470 0.224249i
\(171\) 9.13113 0.698275
\(172\) 0.0371095 0.00282957
\(173\) 16.6133 1.26308 0.631542 0.775342i \(-0.282422\pi\)
0.631542 + 0.775342i \(0.282422\pi\)
\(174\) 0.136803 0.0103710
\(175\) 0 0
\(176\) −10.1089 17.5091i −0.761988 1.31980i
\(177\) 1.14471 1.98270i 0.0860419 0.149029i
\(178\) −6.24795 + 10.8218i −0.468303 + 0.811125i
\(179\) −0.539496 −0.0403238 −0.0201619 0.999797i \(-0.506418\pi\)
−0.0201619 + 0.999797i \(0.506418\pi\)
\(180\) 3.38382 + 5.86094i 0.252215 + 0.436849i
\(181\) −2.77164 −0.206014 −0.103007 0.994681i \(-0.532846\pi\)
−0.103007 + 0.994681i \(0.532846\pi\)
\(182\) 0 0
\(183\) 4.94675 0.365674
\(184\) 1.55931 + 2.70080i 0.114954 + 0.199105i
\(185\) 10.3864 0.763621
\(186\) 2.14127 3.70879i 0.157006 0.271942i
\(187\) 2.64213 4.57629i 0.193211 0.334652i
\(188\) 9.52887 + 16.5045i 0.694964 + 1.20371i
\(189\) 0 0
\(190\) 9.10100 0.660256
\(191\) −20.2407 −1.46457 −0.732284 0.680999i \(-0.761546\pi\)
−0.732284 + 0.680999i \(0.761546\pi\)
\(192\) 2.06827 0.149265
\(193\) −16.3771 −1.17885 −0.589425 0.807823i \(-0.700646\pi\)
−0.589425 + 0.807823i \(0.700646\pi\)
\(194\) −3.32678 + 5.76216i −0.238849 + 0.413699i
\(195\) 0.456378 + 2.22944i 0.0326819 + 0.159654i
\(196\) 0 0
\(197\) −9.86676 + 17.0897i −0.702977 + 1.21759i 0.264439 + 0.964402i \(0.414813\pi\)
−0.967417 + 0.253190i \(0.918520\pi\)
\(198\) 11.7900 + 20.4209i 0.837879 + 1.45125i
\(199\) −7.05873 + 12.2261i −0.500380 + 0.866683i 0.499620 + 0.866245i \(0.333473\pi\)
−1.00000 0.000438630i \(0.999860\pi\)
\(200\) 0.994491 + 1.72251i 0.0703212 + 0.121800i
\(201\) −1.77183 −0.124975
\(202\) −2.45607 4.25404i −0.172809 0.299313i
\(203\) 0 0
\(204\) 0.420267 + 0.727924i 0.0294246 + 0.0509649i
\(205\) 3.80354 + 6.58793i 0.265651 + 0.460121i
\(206\) −32.1343 −2.23890
\(207\) −6.24840 10.8225i −0.434294 0.752219i
\(208\) −15.7404 5.24562i −1.09140 0.363718i
\(209\) 14.2445 0.985313
\(210\) 0 0
\(211\) 2.31317 4.00652i 0.159245 0.275820i −0.775352 0.631530i \(-0.782427\pi\)
0.934597 + 0.355709i \(0.115761\pi\)
\(212\) −0.231275 −0.0158840
\(213\) −2.13575 3.69923i −0.146339 0.253467i
\(214\) 8.27265 14.3287i 0.565507 0.979487i
\(215\) 0.0335143 0.00228565
\(216\) 1.75152 0.119176
\(217\) 0 0
\(218\) −11.4720 + 19.8700i −0.776980 + 1.34577i
\(219\) −3.26511 5.65534i −0.220636 0.382152i
\(220\) 5.27873 + 9.14303i 0.355892 + 0.616423i
\(221\) −0.869656 4.24834i −0.0584994 0.285774i
\(222\) −2.87815 + 4.98510i −0.193169 + 0.334578i
\(223\) −10.6761 + 18.4916i −0.714926 + 1.23829i 0.248061 + 0.968744i \(0.420207\pi\)
−0.962988 + 0.269545i \(0.913127\pi\)
\(224\) 0 0
\(225\) −3.98509 6.90239i −0.265673 0.460159i
\(226\) 8.92976 15.4668i 0.593999 1.02884i
\(227\) −5.22451 + 9.04911i −0.346763 + 0.600611i −0.985672 0.168671i \(-0.946052\pi\)
0.638910 + 0.769282i \(0.279386\pi\)
\(228\) −1.13289 + 1.96223i −0.0750278 + 0.129952i
\(229\) 7.22901 12.5210i 0.477706 0.827412i −0.521967 0.852966i \(-0.674802\pi\)
0.999673 + 0.0255538i \(0.00813493\pi\)
\(230\) −6.22778 10.7868i −0.410648 0.711262i
\(231\) 0 0
\(232\) −0.0588852 + 0.101992i −0.00386600 + 0.00669611i
\(233\) 4.64413 8.04388i 0.304247 0.526972i −0.672846 0.739783i \(-0.734928\pi\)
0.977093 + 0.212811i \(0.0682617\pi\)
\(234\) 18.3580 + 6.11795i 1.20010 + 0.399943i
\(235\) 8.60570 + 14.9055i 0.561374 + 0.972328i
\(236\) −4.35808 7.54842i −0.283687 0.491360i
\(237\) 0.165917 0.287376i 0.0107774 0.0186671i
\(238\) 0 0
\(239\) 19.6332 1.26997 0.634983 0.772526i \(-0.281007\pi\)
0.634983 + 0.772526i \(0.281007\pi\)
\(240\) 2.90437 0.187476
\(241\) 3.65552 6.33155i 0.235473 0.407851i −0.723937 0.689866i \(-0.757669\pi\)
0.959410 + 0.282015i \(0.0910028\pi\)
\(242\) 7.91174 + 13.7035i 0.508586 + 0.880897i
\(243\) −10.6387 −0.682475
\(244\) 9.41648 16.3098i 0.602828 1.04413i
\(245\) 0 0
\(246\) −4.21597 −0.268801
\(247\) 8.74562 7.75624i 0.556470 0.493518i
\(248\) 1.84337 + 3.19282i 0.117054 + 0.202744i
\(249\) −6.86314 −0.434934
\(250\) −10.9898 19.0349i −0.695055 1.20387i
\(251\) −5.93191 10.2744i −0.374419 0.648512i 0.615821 0.787886i \(-0.288824\pi\)
−0.990240 + 0.139374i \(0.955491\pi\)
\(252\) 0 0
\(253\) −9.74746 16.8831i −0.612817 1.06143i
\(254\) −30.2706 −1.89934
\(255\) 0.379551 + 0.657402i 0.0237684 + 0.0411681i
\(256\) −10.0935 + 17.4825i −0.630846 + 1.09266i
\(257\) −7.58608 13.1395i −0.473206 0.819618i 0.526323 0.850285i \(-0.323570\pi\)
−0.999530 + 0.0306670i \(0.990237\pi\)
\(258\) −0.00928708 + 0.0160857i −0.000578188 + 0.00100145i
\(259\) 0 0
\(260\) 8.21940 + 2.73919i 0.509745 + 0.169877i
\(261\) 0.235963 0.408699i 0.0146057 0.0252979i
\(262\) 3.53948 0.218670
\(263\) 17.1964 1.06037 0.530187 0.847880i \(-0.322122\pi\)
0.530187 + 0.847880i \(0.322122\pi\)
\(264\) 1.32307 0.0814291
\(265\) −0.208869 −0.0128307
\(266\) 0 0
\(267\) −1.40479 2.43317i −0.0859719 0.148908i
\(268\) −3.37279 + 5.84185i −0.206026 + 0.356848i
\(269\) 9.46102 16.3870i 0.576849 0.999131i −0.418989 0.907991i \(-0.637616\pi\)
0.995838 0.0911401i \(-0.0290511\pi\)
\(270\) −6.99549 −0.425732
\(271\) 16.0667 + 27.8283i 0.975982 + 1.69045i 0.676657 + 0.736298i \(0.263428\pi\)
0.299324 + 0.954151i \(0.403239\pi\)
\(272\) −5.53444 −0.335575
\(273\) 0 0
\(274\) 24.3916 1.47355
\(275\) −6.21672 10.7677i −0.374882 0.649315i
\(276\) 3.10094 0.186655
\(277\) −9.20269 + 15.9395i −0.552936 + 0.957714i 0.445125 + 0.895469i \(0.353159\pi\)
−0.998061 + 0.0622450i \(0.980174\pi\)
\(278\) 0.322734 0.558992i 0.0193563 0.0335261i
\(279\) −7.38671 12.7942i −0.442231 0.765966i
\(280\) 0 0
\(281\) −14.2252 −0.848603 −0.424302 0.905521i \(-0.639480\pi\)
−0.424302 + 0.905521i \(0.639480\pi\)
\(282\) −9.53883 −0.568029
\(283\) 11.4289 0.679378 0.339689 0.940538i \(-0.389678\pi\)
0.339689 + 0.940538i \(0.389678\pi\)
\(284\) −16.2622 −0.964983
\(285\) −1.02314 + 1.77213i −0.0606055 + 0.104972i
\(286\) 28.6383 + 9.54396i 1.69342 + 0.564346i
\(287\) 0 0
\(288\) 10.3687 17.9591i 0.610981 1.05825i
\(289\) 7.77674 + 13.4697i 0.457455 + 0.792336i
\(290\) 0.235184 0.407351i 0.0138105 0.0239205i
\(291\) −0.747997 1.29557i −0.0438483 0.0759476i
\(292\) −24.8615 −1.45491
\(293\) −6.60231 11.4355i −0.385711 0.668071i 0.606156 0.795345i \(-0.292711\pi\)
−0.991868 + 0.127274i \(0.959377\pi\)
\(294\) 0 0
\(295\) −3.93586 6.81712i −0.229155 0.396908i
\(296\) −2.47773 4.29156i −0.144015 0.249442i
\(297\) −10.9490 −0.635328
\(298\) 3.73791 + 6.47425i 0.216531 + 0.375043i
\(299\) −15.1776 5.05805i −0.877741 0.292515i
\(300\) 1.97771 0.114183
\(301\) 0 0
\(302\) −2.01874 + 3.49656i −0.116165 + 0.201204i
\(303\) 1.10445 0.0634490
\(304\) −7.45947 12.9202i −0.427830 0.741023i
\(305\) 8.50420 14.7297i 0.486949 0.843420i
\(306\) 6.45481 0.368997
\(307\) 6.65903 0.380051 0.190026 0.981779i \(-0.439143\pi\)
0.190026 + 0.981779i \(0.439143\pi\)
\(308\) 0 0
\(309\) 3.61255 6.25713i 0.205511 0.355955i
\(310\) −7.36233 12.7519i −0.418152 0.724261i
\(311\) −1.02298 1.77186i −0.0580081 0.100473i 0.835563 0.549395i \(-0.185142\pi\)
−0.893571 + 0.448922i \(0.851808\pi\)
\(312\) 0.812315 0.720419i 0.0459883 0.0407857i
\(313\) 4.70883 8.15594i 0.266159 0.461001i −0.701708 0.712465i \(-0.747579\pi\)
0.967867 + 0.251464i \(0.0809120\pi\)
\(314\) 21.0686 36.4919i 1.18897 2.05936i
\(315\) 0 0
\(316\) −0.631667 1.09408i −0.0355341 0.0615468i
\(317\) 16.6856 28.9004i 0.937159 1.62321i 0.166421 0.986055i \(-0.446779\pi\)
0.770738 0.637153i \(-0.219888\pi\)
\(318\) 0.0578792 0.100250i 0.00324571 0.00562173i
\(319\) 0.368100 0.637568i 0.0206097 0.0356970i
\(320\) 3.55567 6.15860i 0.198768 0.344276i
\(321\) 1.86003 + 3.22167i 0.103817 + 0.179816i
\(322\) 0 0
\(323\) 1.94965 3.37689i 0.108481 0.187895i
\(324\) −6.02027 + 10.4274i −0.334460 + 0.579301i
\(325\) −9.67992 3.22592i −0.536946 0.178942i
\(326\) 3.67024 + 6.35704i 0.203276 + 0.352084i
\(327\) −2.57937 4.46760i −0.142639 0.247059i
\(328\) 1.81472 3.14318i 0.100201 0.173553i
\(329\) 0 0
\(330\) −5.28425 −0.290888
\(331\) 19.0660 1.04796 0.523980 0.851731i \(-0.324447\pi\)
0.523980 + 0.851731i \(0.324447\pi\)
\(332\) −13.0645 + 22.6283i −0.717005 + 1.24189i
\(333\) 9.92870 + 17.1970i 0.544089 + 0.942390i
\(334\) 4.07589 0.223023
\(335\) −3.04603 + 5.27588i −0.166423 + 0.288252i
\(336\) 0 0
\(337\) −31.2849 −1.70420 −0.852098 0.523382i \(-0.824670\pi\)
−0.852098 + 0.523382i \(0.824670\pi\)
\(338\) 22.7797 9.73412i 1.23905 0.529466i
\(339\) 2.00777 + 3.47757i 0.109047 + 0.188876i
\(340\) 2.89001 0.156733
\(341\) −11.5232 19.9588i −0.624017 1.08083i
\(342\) 8.69996 + 15.0688i 0.470440 + 0.814826i
\(343\) 0 0
\(344\) −0.00799504 0.0138478i −0.000431064 0.000746624i
\(345\) 2.80052 0.150775
\(346\) 15.8288 + 27.4163i 0.850961 + 1.47391i
\(347\) −5.83759 + 10.1110i −0.313378 + 0.542787i −0.979091 0.203420i \(-0.934794\pi\)
0.665713 + 0.746208i \(0.268128\pi\)
\(348\) 0.0585515 + 0.101414i 0.00313869 + 0.00543637i
\(349\) 11.9952 20.7763i 0.642089 1.11213i −0.342877 0.939380i \(-0.611401\pi\)
0.984966 0.172750i \(-0.0552652\pi\)
\(350\) 0 0
\(351\) −6.72233 + 5.96184i −0.358811 + 0.318219i
\(352\) 16.1751 28.0161i 0.862135 1.49326i
\(353\) −12.7934 −0.680922 −0.340461 0.940259i \(-0.610583\pi\)
−0.340461 + 0.940259i \(0.610583\pi\)
\(354\) 4.36264 0.231872
\(355\) −14.6867 −0.779488
\(356\) −10.6965 −0.566912
\(357\) 0 0
\(358\) −0.514021 0.890310i −0.0271668 0.0470544i
\(359\) −6.16986 + 10.6865i −0.325633 + 0.564012i −0.981640 0.190742i \(-0.938911\pi\)
0.656008 + 0.754754i \(0.272244\pi\)
\(360\) 1.45805 2.52542i 0.0768460 0.133101i
\(361\) −8.48884 −0.446781
\(362\) −2.64076 4.57393i −0.138795 0.240401i
\(363\) −3.55776 −0.186734
\(364\) 0 0
\(365\) −22.4528 −1.17524
\(366\) 4.71316 + 8.16344i 0.246361 + 0.426710i
\(367\) −2.03077 −0.106005 −0.0530026 0.998594i \(-0.516879\pi\)
−0.0530026 + 0.998594i \(0.516879\pi\)
\(368\) −10.2090 + 17.6825i −0.532179 + 0.921762i
\(369\) −7.27188 + 12.5953i −0.378559 + 0.655684i
\(370\) 9.89593 + 17.1403i 0.514465 + 0.891079i
\(371\) 0 0
\(372\) 3.66586 0.190066
\(373\) −3.87400 −0.200588 −0.100294 0.994958i \(-0.531978\pi\)
−0.100294 + 0.994958i \(0.531978\pi\)
\(374\) 10.0695 0.520679
\(375\) 4.94190 0.255199
\(376\) 4.10588 7.11160i 0.211745 0.366753i
\(377\) −0.121160 0.591877i −0.00624007 0.0304832i
\(378\) 0 0
\(379\) 7.28396 12.6162i 0.374152 0.648050i −0.616048 0.787709i \(-0.711267\pi\)
0.990200 + 0.139659i \(0.0446006\pi\)
\(380\) 3.89523 + 6.74673i 0.199821 + 0.346100i
\(381\) 3.40303 5.89422i 0.174342 0.301970i
\(382\) −19.2850 33.4025i −0.986705 1.70902i
\(383\) 26.7818 1.36849 0.684243 0.729254i \(-0.260133\pi\)
0.684243 + 0.729254i \(0.260133\pi\)
\(384\) −1.18405 2.05084i −0.0604234 0.104656i
\(385\) 0 0
\(386\) −15.6038 27.0266i −0.794212 1.37562i
\(387\) 0.0320375 + 0.0554905i 0.00162856 + 0.00282074i
\(388\) −5.69545 −0.289143
\(389\) −6.00738 10.4051i −0.304586 0.527559i 0.672583 0.740022i \(-0.265185\pi\)
−0.977169 + 0.212463i \(0.931852\pi\)
\(390\) −3.24434 + 2.87731i −0.164284 + 0.145698i
\(391\) −5.33655 −0.269881
\(392\) 0 0
\(393\) −0.397910 + 0.689200i −0.0200719 + 0.0347655i
\(394\) −37.6034 −1.89443
\(395\) −0.570470 0.988084i −0.0287035 0.0497159i
\(396\) −10.0922 + 17.4803i −0.507154 + 0.878417i
\(397\) 1.65765 0.0831951 0.0415975 0.999134i \(-0.486755\pi\)
0.0415975 + 0.999134i \(0.486755\pi\)
\(398\) −26.9017 −1.34846
\(399\) 0 0
\(400\) −6.51106 + 11.2775i −0.325553 + 0.563874i
\(401\) 10.2414 + 17.7386i 0.511430 + 0.885823i 0.999912 + 0.0132488i \(0.00421735\pi\)
−0.488482 + 0.872574i \(0.662449\pi\)
\(402\) −1.68816 2.92398i −0.0841978 0.145835i
\(403\) −17.9425 5.97951i −0.893782 0.297861i
\(404\) 2.10240 3.64146i 0.104598 0.181169i
\(405\) −5.43702 + 9.41720i −0.270168 + 0.467944i
\(406\) 0 0
\(407\) 15.4887 + 26.8272i 0.767746 + 1.32978i
\(408\) 0.181089 0.313655i 0.00896522 0.0155282i
\(409\) 7.43293 12.8742i 0.367535 0.636589i −0.621645 0.783299i \(-0.713535\pi\)
0.989180 + 0.146710i \(0.0468685\pi\)
\(410\) −7.24788 + 12.5537i −0.357947 + 0.619983i
\(411\) −2.74211 + 4.74948i −0.135258 + 0.234274i
\(412\) −13.7535 23.8217i −0.677586 1.17361i
\(413\) 0 0
\(414\) 11.9067 20.6230i 0.585182 1.01357i
\(415\) −11.7988 + 20.4360i −0.579178 + 1.00317i
\(416\) −5.32404 26.0083i −0.261032 1.27516i
\(417\) 0.0725639 + 0.125684i 0.00355347 + 0.00615479i
\(418\) 13.5719 + 23.5072i 0.663822 + 1.14977i
\(419\) −11.8087 + 20.4533i −0.576895 + 0.999211i 0.418938 + 0.908015i \(0.362402\pi\)
−0.995833 + 0.0911962i \(0.970931\pi\)
\(420\) 0 0
\(421\) 26.0822 1.27117 0.635585 0.772031i \(-0.280759\pi\)
0.635585 + 0.772031i \(0.280759\pi\)
\(422\) 8.81576 0.429144
\(423\) −16.4530 + 28.4974i −0.799971 + 1.38559i
\(424\) 0.0498269 + 0.0863028i 0.00241981 + 0.00419123i
\(425\) −3.40354 −0.165096
\(426\) 4.06980 7.04910i 0.197182 0.341530i
\(427\) 0 0
\(428\) 14.1628 0.684584
\(429\) −5.07791 + 4.50345i −0.245164 + 0.217429i
\(430\) 0.0319317 + 0.0553074i 0.00153988 + 0.00266716i
\(431\) −13.3172 −0.641466 −0.320733 0.947170i \(-0.603929\pi\)
−0.320733 + 0.947170i \(0.603929\pi\)
\(432\) 5.73373 + 9.93110i 0.275864 + 0.477810i
\(433\) 10.2110 + 17.6860i 0.490711 + 0.849937i 0.999943 0.0106929i \(-0.00340371\pi\)
−0.509232 + 0.860629i \(0.670070\pi\)
\(434\) 0 0
\(435\) 0.0528790 + 0.0915890i 0.00253535 + 0.00439136i
\(436\) −19.6400 −0.940586
\(437\) −7.19275 12.4582i −0.344076 0.595957i
\(438\) 6.22187 10.7766i 0.297292 0.514925i
\(439\) −4.88537 8.46171i −0.233166 0.403855i 0.725572 0.688146i \(-0.241575\pi\)
−0.958738 + 0.284291i \(0.908242\pi\)
\(440\) 2.27455 3.93963i 0.108435 0.187814i
\(441\) 0 0
\(442\) 6.18229 5.48290i 0.294061 0.260795i
\(443\) −10.5819 + 18.3285i −0.502763 + 0.870811i 0.497232 + 0.867618i \(0.334350\pi\)
−0.999995 + 0.00319331i \(0.998984\pi\)
\(444\) −4.92739 −0.233844
\(445\) −9.66019 −0.457937
\(446\) −40.6880 −1.92663
\(447\) −1.68087 −0.0795023
\(448\) 0 0
\(449\) 9.07320 + 15.7152i 0.428191 + 0.741648i 0.996712 0.0810200i \(-0.0258178\pi\)
−0.568522 + 0.822668i \(0.692484\pi\)
\(450\) 7.59384 13.1529i 0.357977 0.620034i
\(451\) −11.3441 + 19.6485i −0.534172 + 0.925213i
\(452\) 15.2877 0.719075
\(453\) −0.453895 0.786168i −0.0213258 0.0369374i
\(454\) −19.9112 −0.934480
\(455\) 0 0
\(456\) 0.976304 0.0457196
\(457\) 9.00991 + 15.6056i 0.421466 + 0.730000i 0.996083 0.0884220i \(-0.0281824\pi\)
−0.574617 + 0.818422i \(0.694849\pi\)
\(458\) 27.5506 1.28736
\(459\) −1.49860 + 2.59565i −0.0699487 + 0.121155i
\(460\) 5.33098 9.23352i 0.248558 0.430515i
\(461\) −14.8873 25.7855i −0.693370 1.20095i −0.970727 0.240185i \(-0.922792\pi\)
0.277357 0.960767i \(-0.410542\pi\)
\(462\) 0 0
\(463\) 17.7067 0.822900 0.411450 0.911432i \(-0.365023\pi\)
0.411450 + 0.911432i \(0.365023\pi\)
\(464\) −0.771057 −0.0357954
\(465\) 3.31070 0.153530
\(466\) 17.6994 0.819907
\(467\) −2.91461 + 5.04825i −0.134872 + 0.233605i −0.925549 0.378629i \(-0.876396\pi\)
0.790677 + 0.612234i \(0.209729\pi\)
\(468\) 3.32186 + 16.2276i 0.153553 + 0.750120i
\(469\) 0 0
\(470\) −16.3987 + 28.4033i −0.756414 + 1.31015i
\(471\) 4.73709 + 8.20488i 0.218274 + 0.378061i
\(472\) −1.87785 + 3.25253i −0.0864350 + 0.149710i
\(473\) 0.0499782 + 0.0865648i 0.00229800 + 0.00398025i
\(474\) 0.632328 0.0290438
\(475\) −4.58738 7.94557i −0.210483 0.364568i
\(476\) 0 0
\(477\) −0.199665 0.345830i −0.00914203 0.0158345i
\(478\) 18.7061 + 32.4000i 0.855598 + 1.48194i
\(479\) −14.4913 −0.662125 −0.331062 0.943609i \(-0.607407\pi\)
−0.331062 + 0.943609i \(0.607407\pi\)
\(480\) 2.32361 + 4.02461i 0.106058 + 0.183698i
\(481\) 24.1171 + 8.03724i 1.09965 + 0.366467i
\(482\) 13.9316 0.634569
\(483\) 0 0
\(484\) −6.77245 + 11.7302i −0.307839 + 0.533192i
\(485\) −5.14367 −0.233562
\(486\) −10.1364 17.5567i −0.459795 0.796389i
\(487\) 8.98006 15.5539i 0.406926 0.704816i −0.587618 0.809139i \(-0.699934\pi\)
0.994543 + 0.104323i \(0.0332675\pi\)
\(488\) −8.11491 −0.367345
\(489\) −1.65044 −0.0746354
\(490\) 0 0
\(491\) 18.1505 31.4375i 0.819119 1.41876i −0.0872134 0.996190i \(-0.527796\pi\)
0.906332 0.422566i \(-0.138870\pi\)
\(492\) −1.80444 3.12537i −0.0813503 0.140903i
\(493\) −0.100764 0.174528i −0.00453818 0.00786036i
\(494\) 21.1325 + 7.04258i 0.950796 + 0.316861i
\(495\) −9.11449 + 15.7868i −0.409666 + 0.709562i
\(496\) −12.0688 + 20.9038i −0.541905 + 0.938607i
\(497\) 0 0
\(498\) −6.53906 11.3260i −0.293022 0.507530i
\(499\) −11.8538 + 20.5314i −0.530649 + 0.919112i 0.468711 + 0.883352i \(0.344719\pi\)
−0.999360 + 0.0357602i \(0.988615\pi\)
\(500\) 9.40726 16.2938i 0.420705 0.728683i
\(501\) −0.458213 + 0.793648i −0.0204714 + 0.0354576i
\(502\) 11.3036 19.5784i 0.504505 0.873828i
\(503\) 13.8876 + 24.0540i 0.619217 + 1.07252i 0.989629 + 0.143648i \(0.0458834\pi\)
−0.370411 + 0.928868i \(0.620783\pi\)
\(504\) 0 0
\(505\) 1.89871 3.28867i 0.0844916 0.146344i
\(506\) 18.5744 32.1717i 0.825731 1.43021i
\(507\) −0.665491 + 5.52992i −0.0295555 + 0.245592i
\(508\) −12.9558 22.4401i −0.574820 0.995618i
\(509\) 4.35208 + 7.53802i 0.192902 + 0.334117i 0.946211 0.323551i \(-0.104877\pi\)
−0.753308 + 0.657667i \(0.771543\pi\)
\(510\) −0.723257 + 1.25272i −0.0320264 + 0.0554713i
\(511\) 0 0
\(512\) −27.4134 −1.21151
\(513\) −8.07941 −0.356715
\(514\) 14.4557 25.0380i 0.637615 1.10438i
\(515\) −12.4210 21.5139i −0.547336 0.948014i
\(516\) −0.0158995 −0.000699935
\(517\) −25.6665 + 44.4557i −1.12881 + 1.95516i
\(518\) 0 0
\(519\) −7.11792 −0.312442
\(520\) −0.748668 3.65730i −0.0328313 0.160383i
\(521\) −4.28573 7.42310i −0.187761 0.325212i 0.756742 0.653713i \(-0.226790\pi\)
−0.944504 + 0.328501i \(0.893456\pi\)
\(522\) 0.899282 0.0393605
\(523\) 14.9746 + 25.9369i 0.654796 + 1.13414i 0.981945 + 0.189167i \(0.0605787\pi\)
−0.327149 + 0.944973i \(0.606088\pi\)
\(524\) 1.51490 + 2.62388i 0.0661786 + 0.114625i
\(525\) 0 0
\(526\) 16.3844 + 28.3786i 0.714393 + 1.23736i
\(527\) −6.30874 −0.274813
\(528\) 4.33114 + 7.50175i 0.188489 + 0.326472i
\(529\) 1.65606 2.86838i 0.0720027 0.124712i
\(530\) −0.199006 0.344689i −0.00864427 0.0149723i
\(531\) 7.52486 13.0334i 0.326551 0.565603i
\(532\) 0 0
\(533\) 3.73391 + 18.2404i 0.161734 + 0.790081i
\(534\) 2.67692 4.63656i 0.115842 0.200643i
\(535\) 12.7907 0.552989
\(536\) 2.90660 0.125546
\(537\) 0.231146 0.00997467
\(538\) 36.0571 1.55453
\(539\) 0 0
\(540\) −2.99407 5.18588i −0.128844 0.223165i
\(541\) −5.24095 + 9.07760i −0.225326 + 0.390276i −0.956417 0.292003i \(-0.905678\pi\)
0.731091 + 0.682280i \(0.239011\pi\)
\(542\) −30.6160 + 53.0285i −1.31507 + 2.27777i
\(543\) 1.18750 0.0509606
\(544\) −4.42778 7.66914i −0.189840 0.328812i
\(545\) −17.7373 −0.759781
\(546\) 0 0
\(547\) 15.2216 0.650829 0.325415 0.945571i \(-0.394496\pi\)
0.325415 + 0.945571i \(0.394496\pi\)
\(548\) 10.4396 + 18.0819i 0.445957 + 0.772421i
\(549\) 32.5178 1.38783
\(550\) 11.8463 20.5184i 0.505129 0.874909i
\(551\) 0.271625 0.470468i 0.0115716 0.0200426i
\(552\) −0.668081 1.15715i −0.0284354 0.0492516i
\(553\) 0 0
\(554\) −35.0726 −1.49009
\(555\) −4.45002 −0.188893
\(556\) 0.552521 0.0234321
\(557\) 11.8597 0.502513 0.251256 0.967921i \(-0.419156\pi\)
0.251256 + 0.967921i \(0.419156\pi\)
\(558\) 14.0758 24.3800i 0.595877 1.03209i
\(559\) 0.0778200 + 0.0259342i 0.00329144 + 0.00109690i
\(560\) 0 0
\(561\) −1.13201 + 1.96070i −0.0477936 + 0.0827809i
\(562\) −13.5535 23.4753i −0.571719 0.990246i
\(563\) 3.84675 6.66276i 0.162121 0.280802i −0.773508 0.633786i \(-0.781500\pi\)
0.935629 + 0.352985i \(0.114833\pi\)
\(564\) −4.08262 7.07131i −0.171909 0.297756i
\(565\) 13.8066 0.580850
\(566\) 10.8892 + 18.8607i 0.457709 + 0.792775i
\(567\) 0 0
\(568\) 3.50360 + 6.06841i 0.147008 + 0.254625i
\(569\) −18.7098 32.4063i −0.784355 1.35854i −0.929384 0.369115i \(-0.879661\pi\)
0.145029 0.989427i \(-0.453673\pi\)
\(570\) −3.89930 −0.163324
\(571\) −7.08285 12.2679i −0.296408 0.513394i 0.678903 0.734228i \(-0.262456\pi\)
−0.975311 + 0.220834i \(0.929122\pi\)
\(572\) 5.18208 + 25.3149i 0.216674 + 1.05847i
\(573\) 8.67209 0.362282
\(574\) 0 0
\(575\) −6.27825 + 10.8742i −0.261821 + 0.453488i
\(576\) 13.5959 0.566498
\(577\) −7.48776 12.9692i −0.311720 0.539914i 0.667015 0.745044i \(-0.267572\pi\)
−0.978735 + 0.205130i \(0.934238\pi\)
\(578\) −14.8190 + 25.6673i −0.616391 + 1.06762i
\(579\) 7.01674 0.291606
\(580\) 0.402635 0.0167185
\(581\) 0 0
\(582\) 1.42535 2.46878i 0.0590828 0.102334i
\(583\) −0.311476 0.539492i −0.0129000 0.0223435i
\(584\) 5.35627 + 9.27732i 0.221644 + 0.383898i
\(585\) 3.00004 + 14.6554i 0.124036 + 0.605927i
\(586\) 12.5811 21.7911i 0.519720 0.900182i
\(587\) −6.58821 + 11.4111i −0.271925 + 0.470987i −0.969355 0.245666i \(-0.920993\pi\)
0.697430 + 0.716653i \(0.254327\pi\)
\(588\) 0 0
\(589\) −8.50309 14.7278i −0.350364 0.606848i
\(590\) 7.50003 12.9904i 0.308771 0.534807i
\(591\) 4.22739 7.32205i 0.173892 0.301189i
\(592\) 16.2220 28.0974i 0.666722 1.15480i
\(593\) −22.0663 + 38.2200i −0.906156 + 1.56951i −0.0867989 + 0.996226i \(0.527664\pi\)
−0.819357 + 0.573283i \(0.805670\pi\)
\(594\) −10.4320 18.0688i −0.428032 0.741372i
\(595\) 0 0
\(596\) −3.19965 + 5.54195i −0.131063 + 0.227007i
\(597\) 3.02429 5.23823i 0.123776 0.214387i
\(598\) −6.11376 29.8662i −0.250010 1.22132i
\(599\) 3.01349 + 5.21952i 0.123128 + 0.213264i 0.921000 0.389564i \(-0.127374\pi\)
−0.797872 + 0.602827i \(0.794041\pi\)
\(600\) −0.426087 0.738005i −0.0173949 0.0301289i
\(601\) 1.86260 3.22612i 0.0759770 0.131596i −0.825534 0.564353i \(-0.809126\pi\)
0.901511 + 0.432757i \(0.142459\pi\)
\(602\) 0 0
\(603\) −11.6472 −0.474312
\(604\) −3.45608 −0.140626
\(605\) −6.11632 + 10.5938i −0.248664 + 0.430698i
\(606\) 1.05230 + 1.82263i 0.0427467 + 0.0740394i
\(607\) 6.01651 0.244203 0.122101 0.992518i \(-0.461037\pi\)
0.122101 + 0.992518i \(0.461037\pi\)
\(608\) 11.9358 20.6733i 0.484059 0.838415i
\(609\) 0 0
\(610\) 32.4105 1.31226
\(611\) 8.44814 + 41.2698i 0.341775 + 1.66960i
\(612\) 2.76266 + 4.78506i 0.111674 + 0.193425i
\(613\) 9.80825 0.396152 0.198076 0.980187i \(-0.436531\pi\)
0.198076 + 0.980187i \(0.436531\pi\)
\(614\) 6.34459 + 10.9892i 0.256047 + 0.443486i
\(615\) −1.62962 2.82258i −0.0657126 0.113818i
\(616\) 0 0
\(617\) −16.8838 29.2436i −0.679716 1.17730i −0.975066 0.221914i \(-0.928770\pi\)
0.295350 0.955389i \(-0.404564\pi\)
\(618\) 13.7679 0.553825
\(619\) 2.04671 + 3.54501i 0.0822644 + 0.142486i 0.904222 0.427062i \(-0.140451\pi\)
−0.821958 + 0.569548i \(0.807118\pi\)
\(620\) 6.30215 10.9156i 0.253100 0.438383i
\(621\) 5.52871 + 9.57601i 0.221860 + 0.384272i
\(622\) 1.94936 3.37639i 0.0781621 0.135381i
\(623\) 0 0
\(624\) 6.74393 + 2.24747i 0.269973 + 0.0899709i
\(625\) 1.42115 2.46150i 0.0568459 0.0984599i
\(626\) 17.9459 0.717264
\(627\) −6.10302 −0.243731
\(628\) 36.0695 1.43933
\(629\) 8.47978 0.338111
\(630\) 0 0
\(631\) 13.3868 + 23.1866i 0.532921 + 0.923046i 0.999261 + 0.0384402i \(0.0122389\pi\)
−0.466340 + 0.884605i \(0.654428\pi\)
\(632\) −0.272179 + 0.471427i −0.0108267 + 0.0187524i
\(633\) −0.991071 + 1.71659i −0.0393915 + 0.0682282i
\(634\) 63.5910 2.52552
\(635\) −11.7006 20.2661i −0.464325 0.804234i
\(636\) 0.0990892 0.00392914
\(637\) 0 0
\(638\) 1.40287 0.0555403
\(639\) −14.0395 24.3172i −0.555395 0.961972i
\(640\) −8.14224 −0.321850
\(641\) 9.28610 16.0840i 0.366779 0.635279i −0.622281 0.782794i \(-0.713794\pi\)
0.989060 + 0.147514i \(0.0471273\pi\)
\(642\) −3.54440 + 6.13908i −0.139886 + 0.242290i
\(643\) −1.96695 3.40686i −0.0775690 0.134353i 0.824632 0.565670i \(-0.191382\pi\)
−0.902201 + 0.431317i \(0.858049\pi\)
\(644\) 0 0
\(645\) −0.0143591 −0.000565389
\(646\) 7.43035 0.292343
\(647\) 0.197076 0.00774784 0.00387392 0.999992i \(-0.498767\pi\)
0.00387392 + 0.999992i \(0.498767\pi\)
\(648\) 5.18814 0.203809
\(649\) 11.7387 20.3321i 0.460785 0.798104i
\(650\) −3.89922 19.0480i −0.152940 0.747125i
\(651\) 0 0
\(652\) −3.14172 + 5.44163i −0.123039 + 0.213110i
\(653\) 7.23363 + 12.5290i 0.283074 + 0.490298i 0.972140 0.234400i \(-0.0753125\pi\)
−0.689066 + 0.724698i \(0.741979\pi\)
\(654\) 4.91514 8.51327i 0.192197 0.332895i
\(655\) 1.36813 + 2.36967i 0.0534573 + 0.0925908i
\(656\) 23.7624 0.927765
\(657\) −21.4635 37.1758i −0.837369 1.45037i
\(658\) 0 0
\(659\) 11.7066 + 20.2764i 0.456024 + 0.789857i 0.998746 0.0500552i \(-0.0159397\pi\)
−0.542722 + 0.839912i \(0.682606\pi\)
\(660\) −2.26166 3.91731i −0.0880349 0.152481i
\(661\) 4.04817 0.157456 0.0787278 0.996896i \(-0.474914\pi\)
0.0787278 + 0.996896i \(0.474914\pi\)
\(662\) 18.1657 + 31.4638i 0.706028 + 1.22288i
\(663\) 0.372602 + 1.82019i 0.0144707 + 0.0706904i
\(664\) 11.2587 0.436921
\(665\) 0 0
\(666\) −18.9197 + 32.7699i −0.733125 + 1.26981i
\(667\) −0.743487 −0.0287879
\(668\) 1.74448 + 3.02153i 0.0674959 + 0.116906i
\(669\) 4.57416 7.92268i 0.176847 0.306309i
\(670\) −11.6088 −0.448487
\(671\) 50.7276 1.95832
\(672\) 0 0
\(673\) −3.64704 + 6.31685i −0.140583 + 0.243497i −0.927716 0.373286i \(-0.878231\pi\)
0.787133 + 0.616783i \(0.211564\pi\)
\(674\) −29.8076 51.6283i −1.14815 1.98865i
\(675\) 3.52609 + 6.10737i 0.135719 + 0.235073i
\(676\) 16.9658 + 12.7208i 0.652529 + 0.489260i
\(677\) −7.87553 + 13.6408i −0.302681 + 0.524259i −0.976742 0.214416i \(-0.931215\pi\)
0.674061 + 0.738676i \(0.264548\pi\)
\(678\) −3.82593 + 6.62671i −0.146934 + 0.254497i
\(679\) 0 0
\(680\) −0.622636 1.07844i −0.0238770 0.0413562i
\(681\) 2.23843 3.87707i 0.0857767 0.148570i
\(682\) 21.9582 38.0327i 0.840822 1.45635i
\(683\) −20.7427 + 35.9274i −0.793697 + 1.37472i 0.129967 + 0.991518i \(0.458513\pi\)
−0.923664 + 0.383204i \(0.874820\pi\)
\(684\) −7.44717 + 12.8989i −0.284750 + 0.493201i
\(685\) 9.42819 + 16.3301i 0.360233 + 0.623941i
\(686\) 0 0
\(687\) −3.09725 + 5.36460i −0.118168 + 0.204672i
\(688\) 0.0523445 0.0906634i 0.00199562 0.00345651i
\(689\) −0.484993 0.161628i −0.0184767 0.00615754i
\(690\) 2.66828 + 4.62159i 0.101580 + 0.175941i
\(691\) −23.4108 40.5487i −0.890589 1.54255i −0.839171 0.543868i \(-0.816959\pi\)
−0.0514184 0.998677i \(-0.516374\pi\)
\(692\) −13.5494 + 23.4683i −0.515073 + 0.892132i
\(693\) 0 0
\(694\) −22.2478 −0.844514
\(695\) 0.498992 0.0189278
\(696\) 0.0252292 0.0436983i 0.000956311 0.00165638i
\(697\) 3.10534 + 5.37860i 0.117623 + 0.203729i
\(698\) 45.7152 1.73034
\(699\) −1.98977 + 3.44638i −0.0752600 + 0.130354i
\(700\) 0 0
\(701\) 29.8626 1.12790 0.563948 0.825810i \(-0.309282\pi\)
0.563948 + 0.825810i \(0.309282\pi\)
\(702\) −16.2435 5.41329i −0.613072 0.204311i
\(703\) 11.4293 + 19.7961i 0.431063 + 0.746623i
\(704\) 21.2096 0.799366
\(705\) −3.68709 6.38623i −0.138864 0.240519i
\(706\) −12.1893 21.1124i −0.458749 0.794576i
\(707\) 0 0
\(708\) 1.86721 + 3.23410i 0.0701740 + 0.121545i
\(709\) 26.9332 1.01150 0.505750 0.862680i \(-0.331216\pi\)
0.505750 + 0.862680i \(0.331216\pi\)
\(710\) −13.9932 24.2369i −0.525155 0.909595i
\(711\) 1.09067 1.88909i 0.0409031 0.0708463i
\(712\) 2.30450 + 3.99151i 0.0863647 + 0.149588i
\(713\) −11.6373 + 20.1563i −0.435819 + 0.754861i
\(714\) 0 0
\(715\) 4.68004 + 22.8623i 0.175023 + 0.855003i
\(716\) 0.440002 0.762105i 0.0164436 0.0284812i
\(717\) −8.41180 −0.314144
\(718\) −23.5141 −0.877537
\(719\) 14.4988 0.540713 0.270356 0.962760i \(-0.412859\pi\)
0.270356 + 0.962760i \(0.412859\pi\)
\(720\) 19.0921 0.711519
\(721\) 0 0
\(722\) −8.08799 14.0088i −0.301004 0.521354i
\(723\) −1.56620 + 2.71274i −0.0582476 + 0.100888i
\(724\) 2.26049 3.91528i 0.0840105 0.145510i
\(725\) −0.474180 −0.0176106
\(726\) −3.38977 5.87125i −0.125806 0.217902i
\(727\) 6.26424 0.232328 0.116164 0.993230i \(-0.462940\pi\)
0.116164 + 0.993230i \(0.462940\pi\)
\(728\) 0 0
\(729\) −17.5866 −0.651357
\(730\) −21.3926 37.0531i −0.791776 1.37140i
\(731\) 0.0273621 0.00101203
\(732\) −4.03447 + 6.98790i −0.149118 + 0.258280i
\(733\) −5.99189 + 10.3783i −0.221316 + 0.383330i −0.955208 0.295936i \(-0.904368\pi\)
0.733892 + 0.679266i \(0.237702\pi\)
\(734\) −1.93487 3.35130i −0.0714175 0.123699i
\(735\) 0 0
\(736\) −32.6704 −1.20425
\(737\) −18.1696 −0.669286
\(738\) −27.7140 −1.02017
\(739\) 13.5254 0.497539 0.248770 0.968563i \(-0.419974\pi\)
0.248770 + 0.968563i \(0.419974\pi\)
\(740\) −8.47091 + 14.6721i −0.311397 + 0.539355i
\(741\) −3.74704 + 3.32314i −0.137651 + 0.122079i
\(742\) 0 0
\(743\) 19.2299 33.3072i 0.705477 1.22192i −0.261043 0.965327i \(-0.584066\pi\)
0.966519 0.256594i \(-0.0826003\pi\)
\(744\) −0.789789 1.36795i −0.0289551 0.0501516i
\(745\) −2.88966 + 5.00504i −0.105869 + 0.183371i
\(746\) −3.69107 6.39312i −0.135140 0.234069i
\(747\) −45.1154 −1.65068
\(748\) 4.30973 + 7.46466i 0.157579 + 0.272935i
\(749\) 0 0
\(750\) 4.70855 + 8.15544i 0.171932 + 0.297795i
\(751\) −5.85573 10.1424i −0.213679 0.370102i 0.739184 0.673503i \(-0.235211\pi\)
−0.952863 + 0.303401i \(0.901878\pi\)
\(752\) 53.7635 1.96055
\(753\) 2.54151 + 4.40203i 0.0926178 + 0.160419i
\(754\) 0.861315 0.763875i 0.0313672 0.0278187i
\(755\) −3.12125 −0.113594
\(756\) 0 0
\(757\) −4.65791 + 8.06773i −0.169295 + 0.293227i −0.938172 0.346169i \(-0.887482\pi\)
0.768877 + 0.639396i \(0.220816\pi\)
\(758\) 27.7600 1.00829
\(759\) 4.17627 + 7.23352i 0.151589 + 0.262560i
\(760\) 1.67841 2.90709i 0.0608824 0.105451i
\(761\) 43.9381 1.59276 0.796378 0.604799i \(-0.206747\pi\)
0.796378 + 0.604799i \(0.206747\pi\)
\(762\) 12.9693 0.469830
\(763\) 0 0
\(764\) 16.5079 28.5926i 0.597236 1.03444i
\(765\) 2.49501 + 4.32148i 0.0902072 + 0.156243i
\(766\) 25.5172 + 44.1971i 0.921973 + 1.59690i
\(767\) −3.86381 18.8750i −0.139514 0.681537i
\(768\) 4.32455 7.49035i 0.156049 0.270285i
\(769\) 12.6771 21.9573i 0.457147 0.791802i −0.541662 0.840597i \(-0.682205\pi\)
0.998809 + 0.0487946i \(0.0155380\pi\)
\(770\) 0 0
\(771\) 3.25024 + 5.62957i 0.117054 + 0.202744i
\(772\) 13.3568 23.1347i 0.480723 0.832637i
\(773\) −11.5542 + 20.0125i −0.415576 + 0.719798i −0.995489 0.0948801i \(-0.969753\pi\)
0.579913 + 0.814678i \(0.303087\pi\)
\(774\) −0.0610493 + 0.105741i −0.00219437 + 0.00380076i
\(775\) −7.42200 + 12.8553i −0.266606 + 0.461775i
\(776\) 1.22705 + 2.12532i 0.0440487 + 0.0762946i
\(777\) 0 0
\(778\) 11.4474 19.8275i 0.410410 0.710851i
\(779\) −8.37091 + 14.4988i −0.299919 + 0.519475i
\(780\) −3.52158 1.17360i −0.126093 0.0420215i
\(781\) −21.9015 37.9346i −0.783699 1.35741i
\(782\) −5.08456 8.80672i −0.181824 0.314928i
\(783\) −0.208785 + 0.361626i −0.00746135 + 0.0129234i
\(784\) 0 0
\(785\) 32.5750 1.16265
\(786\) −1.51648 −0.0540911
\(787\) −12.3346 + 21.3642i −0.439682 + 0.761551i −0.997665 0.0683012i \(-0.978242\pi\)
0.557983 + 0.829852i \(0.311575\pi\)
\(788\) −16.0943 27.8761i −0.573334 0.993044i
\(789\) −7.36775 −0.262299
\(790\) 1.08707 1.88285i 0.0386761 0.0669889i
\(791\) 0 0
\(792\) 8.69727 0.309044
\(793\) 31.1449 27.6215i 1.10599 0.980870i
\(794\) 1.57938 + 2.73556i 0.0560500 + 0.0970814i
\(795\) 0.0894893 0.00317386
\(796\) −11.5139 19.9427i −0.408100 0.706849i
\(797\) 5.65686 + 9.79797i 0.200376 + 0.347062i 0.948650 0.316329i \(-0.102450\pi\)
−0.748273 + 0.663390i \(0.769117\pi\)
\(798\) 0 0
\(799\) 7.02597 + 12.1693i 0.248561 + 0.430520i
\(800\) −20.8365 −0.736680
\(801\) −9.23451 15.9946i −0.326285 0.565143i
\(802\) −19.5156 + 33.8019i −0.689118 + 1.19359i
\(803\) −33.4828 57.9940i −1.18158 2.04656i
\(804\) 1.44507 2.50293i 0.0509635 0.0882714i
\(805\) 0 0
\(806\) −7.22754 35.3071i −0.254579 1.24364i
\(807\) −4.05355 + 7.02096i −0.142692 + 0.247149i
\(808\) −1.81180 −0.0637389
\(809\) 16.3708 0.575566 0.287783 0.957696i \(-0.407082\pi\)
0.287783 + 0.957696i \(0.407082\pi\)
\(810\) −20.7211 −0.728067
\(811\) 29.0412 1.01978 0.509888 0.860241i \(-0.329687\pi\)
0.509888 + 0.860241i \(0.329687\pi\)
\(812\) 0 0
\(813\) −6.88373 11.9230i −0.241423 0.418157i
\(814\) −29.5146 + 51.1209i −1.03449 + 1.79179i
\(815\) −2.83735 + 4.91443i −0.0993880 + 0.172145i
\(816\) 2.37122 0.0830093
\(817\) 0.0368794 + 0.0638770i 0.00129025 + 0.00223477i
\(818\) 28.3278 0.990458
\(819\) 0 0
\(820\) −12.4084 −0.433319
\(821\) 6.87589 + 11.9094i 0.239970 + 0.415640i 0.960705 0.277570i \(-0.0895290\pi\)
−0.720735 + 0.693210i \(0.756196\pi\)
\(822\) −10.4505 −0.364504
\(823\) 14.5577 25.2146i 0.507448 0.878926i −0.492515 0.870304i \(-0.663922\pi\)
0.999963 0.00862197i \(-0.00274449\pi\)
\(824\) −5.92623 + 10.2645i −0.206450 + 0.357582i
\(825\) 2.66354 + 4.61338i 0.0927325 + 0.160617i
\(826\) 0 0
\(827\) −22.9118 −0.796722 −0.398361 0.917229i \(-0.630421\pi\)
−0.398361 + 0.917229i \(0.630421\pi\)
\(828\) 20.3843 0.708402
\(829\) 23.3829 0.812121 0.406061 0.913846i \(-0.366902\pi\)
0.406061 + 0.913846i \(0.366902\pi\)
\(830\) −44.9665 −1.56081
\(831\) 3.94287 6.82925i 0.136777 0.236904i
\(832\) 13.0219 11.5488i 0.451454 0.400382i
\(833\) 0 0
\(834\) −0.138275 + 0.239499i −0.00478806 + 0.00829317i
\(835\) 1.57547 + 2.72880i 0.0545214 + 0.0944339i
\(836\) −11.6175 + 20.1221i −0.401801 + 0.695939i
\(837\) 6.53591 + 11.3205i 0.225914 + 0.391295i
\(838\) −45.0045 −1.55466
\(839\) 0.367168 + 0.635954i 0.0126761 + 0.0219556i 0.872294 0.488982i \(-0.162632\pi\)
−0.859618 + 0.510938i \(0.829298\pi\)
\(840\) 0 0
\(841\) 14.4860 + 25.0904i 0.499516 + 0.865187i
\(842\) 24.8506 + 43.0426i 0.856409 + 1.48334i
\(843\) 6.09475 0.209914
\(844\) 3.77314 + 6.53528i 0.129877 + 0.224954i
\(845\) 15.3221 + 11.4884i 0.527096 + 0.395211i
\(846\) −62.7042 −2.15582
\(847\) 0 0
\(848\) −0.326223 + 0.565035i −0.0112026 + 0.0194034i
\(849\) −4.89669 −0.168054
\(850\) −3.24282 5.61674i −0.111228 0.192652i
\(851\) 15.6420 27.0927i 0.536201 0.928727i
\(852\) 6.96750 0.238702
\(853\) −54.3567 −1.86114 −0.930569 0.366118i \(-0.880687\pi\)
−0.930569 + 0.366118i \(0.880687\pi\)
\(854\) 0 0
\(855\) −6.72567 + 11.6492i −0.230013 + 0.398395i
\(856\) −3.05129 5.28500i −0.104291 0.180637i
\(857\) −10.5106 18.2048i −0.359034 0.621864i 0.628766 0.777595i \(-0.283560\pi\)
−0.987800 + 0.155730i \(0.950227\pi\)
\(858\) −12.2700 4.08909i −0.418891 0.139599i
\(859\) −25.6814 + 44.4816i −0.876240 + 1.51769i −0.0208035 + 0.999784i \(0.506622\pi\)
−0.855436 + 0.517908i \(0.826711\pi\)
\(860\) −0.0273336 + 0.0473431i −0.000932066 + 0.00161439i
\(861\) 0 0
\(862\) −12.6884 21.9769i −0.432167 0.748535i
\(863\) −3.55660 + 6.16021i −0.121068 + 0.209696i −0.920189 0.391474i \(-0.871965\pi\)
0.799121 + 0.601170i \(0.205299\pi\)
\(864\) −9.17443 + 15.8906i −0.312121 + 0.540609i
\(865\) −12.2368 + 21.1947i −0.416062 + 0.720641i
\(866\) −19.4577 + 33.7018i −0.661201 + 1.14523i
\(867\) −3.33193 5.77107i −0.113158 0.195996i
\(868\) 0 0
\(869\) 1.70143 2.94696i 0.0577171 0.0999689i
\(870\) −0.100764 + 0.174528i −0.00341622 + 0.00591707i
\(871\) −11.1555 + 9.89349i −0.377989 + 0.335228i
\(872\) 4.23133 + 7.32888i 0.143291 + 0.248187i
\(873\) −4.91701 8.51652i −0.166416 0.288240i
\(874\) 13.7062 23.7399i 0.463620 0.803013i
\(875\) 0 0
\(876\) 10.6518 0.359892
\(877\) 0.512476 0.0173051 0.00865255 0.999963i \(-0.497246\pi\)
0.00865255 + 0.999963i \(0.497246\pi\)
\(878\) 9.30937 16.1243i 0.314176 0.544169i
\(879\) 2.82874 + 4.89953i 0.0954112 + 0.165257i
\(880\) 29.7835 1.00400
\(881\) −18.5464 + 32.1232i −0.624843 + 1.08226i 0.363729 + 0.931505i \(0.381503\pi\)
−0.988571 + 0.150754i \(0.951830\pi\)
\(882\) 0 0
\(883\) −15.5667 −0.523860 −0.261930 0.965087i \(-0.584359\pi\)
−0.261930 + 0.965087i \(0.584359\pi\)
\(884\) 6.71059 + 2.23636i 0.225701 + 0.0752169i
\(885\) 1.68631 + 2.92078i 0.0566847 + 0.0981809i
\(886\) −40.3290 −1.35488
\(887\) 13.7900 + 23.8849i 0.463022 + 0.801977i 0.999110 0.0421849i \(-0.0134319\pi\)
−0.536088 + 0.844162i \(0.680099\pi\)
\(888\) 1.06158 + 1.83871i 0.0356243 + 0.0617030i
\(889\) 0 0
\(890\) −9.20404 15.9419i −0.308520 0.534372i
\(891\) −32.4319 −1.08651
\(892\) −17.4145 30.1627i −0.583079 1.00992i
\(893\) −18.9396 + 32.8043i −0.633789 + 1.09775i
\(894\) −1.60150 2.77388i −0.0535621 0.0927723i
\(895\) 0.397374 0.688272i 0.0132827 0.0230064i
\(896\) 0 0
\(897\) 6.50279 + 2.16711i 0.217122 + 0.0723577i
\(898\) −17.2895 + 29.9463i −0.576959 + 0.999323i
\(899\) −0.878932 −0.0293140
\(900\) 13.0006 0.433355
\(901\) −0.170527 −0.00568109
\(902\) −43.2337 −1.43952
\(903\) 0 0
\(904\) −3.29366 5.70479i −0.109546 0.189738i
\(905\) 2.04149 3.53597i 0.0678615 0.117539i
\(906\) 0.864923 1.49809i 0.0287352 0.0497707i
\(907\) −45.0471 −1.49576 −0.747882 0.663831i \(-0.768929\pi\)
−0.747882 + 0.663831i \(0.768929\pi\)
\(908\) −8.52200 14.7605i −0.282813 0.489846i
\(909\) 7.26019 0.240805
\(910\) 0 0
\(911\) 35.4678 1.17510 0.587550 0.809188i \(-0.300093\pi\)
0.587550 + 0.809188i \(0.300093\pi\)
\(912\) 3.19599 + 5.53562i 0.105830 + 0.183303i
\(913\) −70.3796 −2.32923
\(914\) −17.1689 + 29.7375i −0.567898 + 0.983627i
\(915\) −3.64360 + 6.31090i −0.120454 + 0.208632i
\(916\) 11.7917 + 20.4238i 0.389608 + 0.674820i
\(917\) 0 0
\(918\) −5.71135 −0.188503
\(919\) 17.3724 0.573064 0.286532 0.958071i \(-0.407497\pi\)
0.286532 + 0.958071i \(0.407497\pi\)
\(920\) −4.59412 −0.151464
\(921\) −2.85305 −0.0940111
\(922\) 28.3686 49.1359i 0.934271 1.61820i
\(923\) −34.1024 11.3649i −1.12250 0.374081i
\(924\) 0 0
\(925\) 9.97613 17.2792i 0.328013 0.568136i
\(926\) 16.8706 + 29.2207i 0.554402 + 0.960252i
\(927\) 23.7474 41.1317i 0.779967 1.35094i
\(928\) −0.616877 1.06846i −0.0202500 0.0350740i
\(929\) −10.7600 −0.353025 −0.176512 0.984298i \(-0.556482\pi\)
−0.176512 + 0.984298i \(0.556482\pi\)
\(930\) 3.15437 + 5.46353i 0.103436 + 0.179156i
\(931\) 0 0
\(932\) 7.57532 + 13.1208i 0.248138 + 0.429788i
\(933\) 0.438295 + 0.759149i 0.0143491 + 0.0248534i
\(934\) −11.1079 −0.363463
\(935\) 3.89219 + 6.74148i 0.127288 + 0.220470i
\(936\) 5.33982 4.73573i 0.174537 0.154792i
\(937\) 10.9816 0.358755 0.179377 0.983780i \(-0.442592\pi\)
0.179377 + 0.983780i \(0.442592\pi\)
\(938\) 0 0
\(939\) −2.01749 + 3.49439i −0.0658383 + 0.114035i
\(940\) −28.0745 −0.915690
\(941\) 4.08897 + 7.08231i 0.133297 + 0.230877i 0.924946 0.380100i \(-0.124110\pi\)
−0.791649 + 0.610976i \(0.790777\pi\)
\(942\) −9.02681 + 15.6349i −0.294109 + 0.509412i
\(943\) 22.9127 0.746141
\(944\) −24.5890 −0.800305
\(945\) 0 0
\(946\) −0.0952365 + 0.164954i −0.00309640 + 0.00536313i
\(947\) 2.29689 + 3.97833i 0.0746389 + 0.129278i 0.900929 0.433966i \(-0.142886\pi\)
−0.826290 + 0.563244i \(0.809553\pi\)
\(948\) 0.270636 + 0.468756i 0.00878986 + 0.0152245i
\(949\) −52.1354 17.3746i −1.69239 0.564003i
\(950\) 8.74153 15.1408i 0.283613 0.491231i
\(951\) −7.14892 + 12.3823i −0.231820 + 0.401524i
\(952\) 0 0
\(953\) −10.5714 18.3102i −0.342442 0.593126i 0.642444 0.766333i \(-0.277921\pi\)
−0.984886 + 0.173206i \(0.944587\pi\)
\(954\) 0.380474 0.659000i 0.0123183 0.0213359i
\(955\) 14.9086 25.8225i 0.482432 0.835596i
\(956\) −16.0124 + 27.7344i −0.517879 + 0.896993i
\(957\) −0.157712 + 0.273165i −0.00509809 + 0.00883016i
\(958\) −13.8070 23.9145i −0.446085 0.772641i
\(959\) 0 0
\(960\) −1.52342 + 2.63864i −0.0491681 + 0.0851616i
\(961\) 1.74271 3.01846i 0.0562164 0.0973697i
\(962\) 9.71476 + 47.4573i 0.313216 + 1.53009i
\(963\) 12.2270 + 21.1779i 0.394011 + 0.682447i
\(964\) 5.96274 + 10.3278i 0.192047 + 0.332635i
\(965\) 12.0628 20.8934i 0.388316 0.672582i
\(966\) 0 0
\(967\) −32.0750 −1.03146 −0.515731 0.856750i \(-0.672480\pi\)
−0.515731 + 0.856750i \(0.672480\pi\)
\(968\) 5.83635 0.187587
\(969\) −0.835323 + 1.44682i −0.0268344 + 0.0464786i
\(970\) −4.90079 8.48841i −0.157355 0.272546i
\(971\) 52.0835 1.67144 0.835719 0.549157i \(-0.185051\pi\)
0.835719 + 0.549157i \(0.185051\pi\)
\(972\) 8.67673 15.0285i 0.278306 0.482041i
\(973\) 0 0
\(974\) 34.2241 1.09661
\(975\) 4.14734 + 1.38214i 0.132821 + 0.0442638i
\(976\) −26.5647 46.0114i −0.850315 1.47279i
\(977\) 19.2580 0.616117 0.308058 0.951367i \(-0.400321\pi\)
0.308058 + 0.951367i \(0.400321\pi\)
\(978\) −1.57251 2.72366i −0.0502832 0.0870930i
\(979\) −14.4058 24.9515i −0.460410 0.797454i
\(980\) 0 0
\(981\) −16.9557 29.3681i −0.541353 0.937650i
\(982\) 69.1736 2.20742
\(983\) −8.03657 13.9197i −0.256327 0.443971i 0.708928 0.705280i \(-0.249179\pi\)
−0.965255 + 0.261310i \(0.915846\pi\)
\(984\) −0.777512 + 1.34669i −0.0247862 + 0.0429309i
\(985\) −14.5350 25.1754i −0.463124 0.802155i
\(986\) 0.192012 0.332574i 0.00611490 0.0105913i
\(987\) 0 0
\(988\) 3.82391 + 18.6801i 0.121655 + 0.594294i
\(989\) 0.0504729 0.0874216i 0.00160494 0.00277985i
\(990\) −34.7364 −1.10400
\(991\) 21.4265 0.680635 0.340317 0.940311i \(-0.389466\pi\)
0.340317 + 0.940311i \(0.389466\pi\)
\(992\) −38.6221 −1.22625
\(993\) −8.16876 −0.259228
\(994\) 0 0
\(995\) −10.3984 18.0106i −0.329652 0.570974i
\(996\) 5.59743 9.69504i 0.177362 0.307199i
\(997\) −8.47687 + 14.6824i −0.268465 + 0.464996i −0.968466 0.249147i \(-0.919850\pi\)
0.700000 + 0.714142i \(0.253183\pi\)
\(998\) −45.1763 −1.43003
\(999\) −8.78511 15.2163i −0.277949 0.481421i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 637.2.g.l.373.5 12
7.2 even 3 637.2.f.j.295.5 12
7.3 odd 6 91.2.h.b.74.2 yes 12
7.4 even 3 637.2.h.l.165.2 12
7.5 odd 6 637.2.f.k.295.5 12
7.6 odd 2 91.2.g.b.9.5 12
13.3 even 3 637.2.h.l.471.2 12
21.17 even 6 819.2.s.d.802.5 12
21.20 even 2 819.2.n.d.100.2 12
91.3 odd 6 91.2.g.b.81.5 yes 12
91.9 even 3 8281.2.a.ca.1.2 6
91.16 even 3 637.2.f.j.393.5 12
91.17 odd 6 1183.2.e.g.508.2 12
91.30 even 6 8281.2.a.cf.1.5 6
91.48 odd 6 1183.2.e.h.170.5 12
91.55 odd 6 91.2.h.b.16.2 yes 12
91.61 odd 6 8281.2.a.bz.1.2 6
91.68 odd 6 637.2.f.k.393.5 12
91.69 odd 6 1183.2.e.g.170.2 12
91.81 even 3 inner 637.2.g.l.263.5 12
91.82 odd 6 8281.2.a.ce.1.5 6
91.87 odd 6 1183.2.e.h.508.5 12
273.146 even 6 819.2.s.d.289.5 12
273.185 even 6 819.2.n.d.172.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.g.b.9.5 12 7.6 odd 2
91.2.g.b.81.5 yes 12 91.3 odd 6
91.2.h.b.16.2 yes 12 91.55 odd 6
91.2.h.b.74.2 yes 12 7.3 odd 6
637.2.f.j.295.5 12 7.2 even 3
637.2.f.j.393.5 12 91.16 even 3
637.2.f.k.295.5 12 7.5 odd 6
637.2.f.k.393.5 12 91.68 odd 6
637.2.g.l.263.5 12 91.81 even 3 inner
637.2.g.l.373.5 12 1.1 even 1 trivial
637.2.h.l.165.2 12 7.4 even 3
637.2.h.l.471.2 12 13.3 even 3
819.2.n.d.100.2 12 21.20 even 2
819.2.n.d.172.2 12 273.185 even 6
819.2.s.d.289.5 12 273.146 even 6
819.2.s.d.802.5 12 21.17 even 6
1183.2.e.g.170.2 12 91.69 odd 6
1183.2.e.g.508.2 12 91.17 odd 6
1183.2.e.h.170.5 12 91.48 odd 6
1183.2.e.h.508.5 12 91.87 odd 6
8281.2.a.bz.1.2 6 91.61 odd 6
8281.2.a.ca.1.2 6 91.9 even 3
8281.2.a.ce.1.5 6 91.82 odd 6
8281.2.a.cf.1.5 6 91.30 even 6