Properties

Label 91.2.g.b.9.5
Level $91$
Weight $2$
Character 91.9
Analytic conductor $0.727$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.g (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.726638658394\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - x^{11} + 7 x^{10} - 2 x^{9} + 33 x^{8} - 11 x^{7} + 55 x^{6} + 17 x^{5} + 47 x^{4} + x^{3} + 8 x^{2} + x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 9.5
Root \(1.16700 - 2.02131i\) of defining polynomial
Character \(\chi\) \(=\) 91.9
Dual form 91.2.g.b.81.5

$q$-expansion

\(f(q)\) \(=\) \(q+(0.952780 + 1.65026i) q^{2} +0.428448 q^{3} +(-0.815580 + 1.41263i) q^{4} +(0.736565 - 1.27577i) q^{5} +(0.408216 + 0.707051i) q^{6} +(-2.62736 + 0.311376i) q^{7} +0.702849 q^{8} -2.81643 q^{9} +O(q^{10})\) \(q+(0.952780 + 1.65026i) q^{2} +0.428448 q^{3} +(-0.815580 + 1.41263i) q^{4} +(0.736565 - 1.27577i) q^{5} +(0.408216 + 0.707051i) q^{6} +(-2.62736 + 0.311376i) q^{7} +0.702849 q^{8} -2.81643 q^{9} +2.80714 q^{10} -4.39361 q^{11} +(-0.349433 + 0.605236i) q^{12} +(2.69752 - 2.39236i) q^{13} +(-3.01715 - 4.03917i) q^{14} +(0.315580 - 0.546600i) q^{15} +(2.30082 + 3.98514i) q^{16} +(0.601356 - 1.04158i) q^{17} +(-2.68344 - 4.64786i) q^{18} +3.24209 q^{19} +(1.20145 + 2.08098i) q^{20} +(-1.12569 + 0.133408i) q^{21} +(-4.18615 - 7.25062i) q^{22} +(2.21855 + 3.84264i) q^{23} +0.301134 q^{24} +(1.41494 + 2.45075i) q^{25} +(6.51816 + 2.17223i) q^{26} -2.49204 q^{27} +(1.70297 - 3.96543i) q^{28} +(-0.0837807 + 0.145112i) q^{29} +1.20271 q^{30} +(-2.62272 - 4.54268i) q^{31} +(-3.68150 + 6.37655i) q^{32} -1.88243 q^{33} +2.29184 q^{34} +(-1.53798 + 3.58126i) q^{35} +(2.29702 - 3.97856i) q^{36} +(-3.52527 - 6.10595i) q^{37} +(3.08900 + 5.35031i) q^{38} +(1.15575 - 1.02500i) q^{39} +(0.517694 - 0.896672i) q^{40} +(-2.58195 + 4.47206i) q^{41} +(-1.29269 - 1.73057i) q^{42} +(-0.0113752 - 0.0197024i) q^{43} +(3.58334 - 6.20653i) q^{44} +(-2.07449 + 3.59311i) q^{45} +(-4.22758 + 7.32239i) q^{46} +(-5.84178 + 10.1183i) q^{47} +(0.985780 + 1.70742i) q^{48} +(6.80609 - 1.63620i) q^{49} +(-2.69626 + 4.67006i) q^{50} +(0.257649 - 0.446262i) q^{51} +(1.17946 + 5.76175i) q^{52} +(0.0708929 + 0.122790i) q^{53} +(-2.37436 - 4.11252i) q^{54} +(-3.23618 + 5.60523i) q^{55} +(-1.84664 + 0.218850i) q^{56} +1.38907 q^{57} -0.319298 q^{58} +(2.67177 - 4.62764i) q^{59} +(0.514760 + 0.891591i) q^{60} +11.5457 q^{61} +(4.99774 - 8.65635i) q^{62} +(7.39980 - 0.876969i) q^{63} -4.82736 q^{64} +(-1.06519 - 5.20354i) q^{65} +(-1.79355 - 3.10651i) q^{66} +4.13546 q^{67} +(0.980907 + 1.69898i) q^{68} +(0.950533 + 1.64637i) q^{69} +(-7.37537 + 0.874075i) q^{70} +(4.98486 + 8.63403i) q^{71} -1.97953 q^{72} +(-7.62080 - 13.1996i) q^{73} +(6.71762 - 11.6353i) q^{74} +(0.606229 + 1.05002i) q^{75} +(-2.64418 + 4.57986i) q^{76} +(11.5436 - 1.36807i) q^{77} +(2.79269 + 0.930689i) q^{78} +(-0.387251 + 0.670738i) q^{79} +6.77881 q^{80} +7.38159 q^{81} -9.84011 q^{82} -16.0186 q^{83} +(0.729632 - 1.69898i) q^{84} +(-0.885875 - 1.53438i) q^{85} +(0.0216761 - 0.0375441i) q^{86} +(-0.0358956 + 0.0621731i) q^{87} -3.08805 q^{88} +(-3.27880 - 5.67904i) q^{89} -7.90611 q^{90} +(-6.34245 + 7.12554i) q^{91} -7.23762 q^{92} +(-1.12370 - 1.94630i) q^{93} -22.2637 q^{94} +(2.38801 - 4.13616i) q^{95} +(-1.57733 + 2.73202i) q^{96} +(-1.74583 - 3.02387i) q^{97} +(9.18486 + 9.67291i) q^{98} +12.3743 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q + 2q^{2} - 2q^{3} - 4q^{4} + q^{5} - 9q^{6} + 9q^{7} - 6q^{8} - 6q^{9} + O(q^{10}) \) \( 12q + 2q^{2} - 2q^{3} - 4q^{4} + q^{5} - 9q^{6} + 9q^{7} - 6q^{8} - 6q^{9} - 8q^{10} - 8q^{11} + 5q^{12} - 2q^{13} - 2q^{14} - 2q^{15} + 8q^{16} + 5q^{17} + 3q^{18} + 2q^{19} - q^{20} - 9q^{21} - 5q^{22} - q^{23} + 22q^{24} + 7q^{25} + 5q^{26} - 8q^{27} - 7q^{28} + 3q^{29} + 10q^{30} + 16q^{31} + 8q^{32} - 32q^{33} + 32q^{34} + 8q^{35} - 21q^{36} - 13q^{37} - 17q^{38} - 23q^{39} - 5q^{40} - 8q^{41} + 2q^{42} - 11q^{43} + 21q^{44} - 7q^{45} + 16q^{46} - q^{47} + 21q^{48} - 3q^{49} + 6q^{50} - 20q^{51} - 25q^{52} - 2q^{53} - 18q^{54} + 9q^{55} - 18q^{56} + 42q^{57} + 16q^{58} + 13q^{59} + 20q^{60} + 10q^{61} + 5q^{62} + 32q^{63} - 30q^{64} + 19q^{65} + 18q^{66} + 22q^{67} + 29q^{68} + 23q^{69} - 39q^{70} + 6q^{71} - 50q^{72} - 30q^{73} - 3q^{74} - 3q^{75} - 9q^{76} + 11q^{77} + 16q^{78} + 7q^{79} + 14q^{80} + 12q^{81} - 2q^{82} - 54q^{83} + 5q^{84} - q^{85} - 7q^{86} + 16q^{87} + 4q^{89} - 16q^{90} - 20q^{91} + 54q^{92} - 7q^{93} - 90q^{94} - 6q^{95} + 19q^{96} - 35q^{97} + 62q^{98} - 20q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/91\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(66\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.952780 + 1.65026i 0.673717 + 1.16691i 0.976842 + 0.213962i \(0.0686367\pi\)
−0.303125 + 0.952951i \(0.598030\pi\)
\(3\) 0.428448 0.247364 0.123682 0.992322i \(-0.460530\pi\)
0.123682 + 0.992322i \(0.460530\pi\)
\(4\) −0.815580 + 1.41263i −0.407790 + 0.706313i
\(5\) 0.736565 1.27577i 0.329402 0.570541i −0.652991 0.757365i \(-0.726486\pi\)
0.982393 + 0.186825i \(0.0598196\pi\)
\(6\) 0.408216 + 0.707051i 0.166654 + 0.288653i
\(7\) −2.62736 + 0.311376i −0.993050 + 0.117689i
\(8\) 0.702849 0.248495
\(9\) −2.81643 −0.938811
\(10\) 2.80714 0.887695
\(11\) −4.39361 −1.32472 −0.662362 0.749184i \(-0.730446\pi\)
−0.662362 + 0.749184i \(0.730446\pi\)
\(12\) −0.349433 + 0.605236i −0.100873 + 0.174717i
\(13\) 2.69752 2.39236i 0.748158 0.663520i
\(14\) −3.01715 4.03917i −0.806368 1.07951i
\(15\) 0.315580 0.546600i 0.0814823 0.141131i
\(16\) 2.30082 + 3.98514i 0.575205 + 0.996284i
\(17\) 0.601356 1.04158i 0.145850 0.252620i −0.783840 0.620963i \(-0.786742\pi\)
0.929690 + 0.368343i \(0.120075\pi\)
\(18\) −2.68344 4.64786i −0.632493 1.09551i
\(19\) 3.24209 0.743787 0.371893 0.928275i \(-0.378709\pi\)
0.371893 + 0.928275i \(0.378709\pi\)
\(20\) 1.20145 + 2.08098i 0.268653 + 0.465321i
\(21\) −1.12569 + 0.133408i −0.245645 + 0.0291121i
\(22\) −4.18615 7.25062i −0.892490 1.54584i
\(23\) 2.21855 + 3.84264i 0.462600 + 0.801246i 0.999090 0.0426603i \(-0.0135833\pi\)
−0.536490 + 0.843907i \(0.680250\pi\)
\(24\) 0.301134 0.0614687
\(25\) 1.41494 + 2.45075i 0.282989 + 0.490151i
\(26\) 6.51816 + 2.17223i 1.27832 + 0.426010i
\(27\) −2.49204 −0.479593
\(28\) 1.70297 3.96543i 0.321831 0.749396i
\(29\) −0.0837807 + 0.145112i −0.0155577 + 0.0269467i −0.873699 0.486466i \(-0.838286\pi\)
0.858142 + 0.513413i \(0.171619\pi\)
\(30\) 1.20271 0.219584
\(31\) −2.62272 4.54268i −0.471054 0.815889i 0.528398 0.848997i \(-0.322793\pi\)
−0.999452 + 0.0331076i \(0.989460\pi\)
\(32\) −3.68150 + 6.37655i −0.650803 + 1.12722i
\(33\) −1.88243 −0.327690
\(34\) 2.29184 0.393047
\(35\) −1.53798 + 3.58126i −0.259966 + 0.605343i
\(36\) 2.29702 3.97856i 0.382837 0.663094i
\(37\) −3.52527 6.10595i −0.579552 1.00381i −0.995531 0.0944386i \(-0.969894\pi\)
0.415979 0.909374i \(-0.363439\pi\)
\(38\) 3.08900 + 5.35031i 0.501102 + 0.867934i
\(39\) 1.15575 1.02500i 0.185068 0.164131i
\(40\) 0.517694 0.896672i 0.0818546 0.141776i
\(41\) −2.58195 + 4.47206i −0.403233 + 0.698419i −0.994114 0.108339i \(-0.965447\pi\)
0.590881 + 0.806758i \(0.298780\pi\)
\(42\) −1.29269 1.73057i −0.199467 0.267033i
\(43\) −0.0113752 0.0197024i −0.00173470 0.00300459i 0.865157 0.501502i \(-0.167219\pi\)
−0.866891 + 0.498497i \(0.833886\pi\)
\(44\) 3.58334 6.20653i 0.540209 0.935670i
\(45\) −2.07449 + 3.59311i −0.309246 + 0.535630i
\(46\) −4.22758 + 7.32239i −0.623323 + 1.07963i
\(47\) −5.84178 + 10.1183i −0.852111 + 1.47590i 0.0271891 + 0.999630i \(0.491344\pi\)
−0.879300 + 0.476269i \(0.841989\pi\)
\(48\) 0.985780 + 1.70742i 0.142285 + 0.246445i
\(49\) 6.80609 1.63620i 0.972299 0.233742i
\(50\) −2.69626 + 4.67006i −0.381309 + 0.660446i
\(51\) 0.257649 0.446262i 0.0360781 0.0624892i
\(52\) 1.17946 + 5.76175i 0.163561 + 0.799010i
\(53\) 0.0708929 + 0.122790i 0.00973788 + 0.0168665i 0.870853 0.491543i \(-0.163567\pi\)
−0.861115 + 0.508410i \(0.830234\pi\)
\(54\) −2.37436 4.11252i −0.323110 0.559643i
\(55\) −3.23618 + 5.60523i −0.436367 + 0.755809i
\(56\) −1.84664 + 0.218850i −0.246768 + 0.0292451i
\(57\) 1.38907 0.183986
\(58\) −0.319298 −0.0419259
\(59\) 2.67177 4.62764i 0.347835 0.602468i −0.638030 0.770012i \(-0.720250\pi\)
0.985865 + 0.167544i \(0.0535837\pi\)
\(60\) 0.514760 + 0.891591i 0.0664553 + 0.115104i
\(61\) 11.5457 1.47828 0.739141 0.673551i \(-0.235232\pi\)
0.739141 + 0.673551i \(0.235232\pi\)
\(62\) 4.99774 8.65635i 0.634714 1.09936i
\(63\) 7.39980 0.876969i 0.932287 0.110488i
\(64\) −4.82736 −0.603420
\(65\) −1.06519 5.20354i −0.132121 0.645420i
\(66\) −1.79355 3.10651i −0.220770 0.382385i
\(67\) 4.13546 0.505226 0.252613 0.967567i \(-0.418710\pi\)
0.252613 + 0.967567i \(0.418710\pi\)
\(68\) 0.980907 + 1.69898i 0.118952 + 0.206032i
\(69\) 0.950533 + 1.64637i 0.114431 + 0.198200i
\(70\) −7.37537 + 0.874075i −0.881526 + 0.104472i
\(71\) 4.98486 + 8.63403i 0.591594 + 1.02467i 0.994018 + 0.109217i \(0.0348344\pi\)
−0.402424 + 0.915453i \(0.631832\pi\)
\(72\) −1.97953 −0.233289
\(73\) −7.62080 13.1996i −0.891947 1.54490i −0.837539 0.546378i \(-0.816006\pi\)
−0.0544080 0.998519i \(-0.517327\pi\)
\(74\) 6.71762 11.6353i 0.780908 1.35257i
\(75\) 0.606229 + 1.05002i 0.0700013 + 0.121246i
\(76\) −2.64418 + 4.57986i −0.303309 + 0.525346i
\(77\) 11.5436 1.36807i 1.31552 0.155906i
\(78\) 2.79269 + 0.930689i 0.316210 + 0.105380i
\(79\) −0.387251 + 0.670738i −0.0435691 + 0.0754639i −0.886988 0.461793i \(-0.847206\pi\)
0.843418 + 0.537257i \(0.180540\pi\)
\(80\) 6.77881 0.757894
\(81\) 7.38159 0.820177
\(82\) −9.84011 −1.08666
\(83\) −16.0186 −1.75827 −0.879136 0.476571i \(-0.841879\pi\)
−0.879136 + 0.476571i \(0.841879\pi\)
\(84\) 0.729632 1.69898i 0.0796094 0.185374i
\(85\) −0.885875 1.53438i −0.0960866 0.166427i
\(86\) 0.0216761 0.0375441i 0.00233740 0.00404849i
\(87\) −0.0358956 + 0.0621731i −0.00384842 + 0.00666565i
\(88\) −3.08805 −0.329187
\(89\) −3.27880 5.67904i −0.347552 0.601977i 0.638262 0.769819i \(-0.279654\pi\)
−0.985814 + 0.167842i \(0.946320\pi\)
\(90\) −7.90611 −0.833378
\(91\) −6.34245 + 7.12554i −0.664870 + 0.746959i
\(92\) −7.23762 −0.754574
\(93\) −1.12370 1.94630i −0.116522 0.201822i
\(94\) −22.2637 −2.29633
\(95\) 2.38801 4.13616i 0.245005 0.424361i
\(96\) −1.57733 + 2.73202i −0.160986 + 0.278835i
\(97\) −1.74583 3.02387i −0.177262 0.307027i 0.763680 0.645595i \(-0.223391\pi\)
−0.940942 + 0.338568i \(0.890057\pi\)
\(98\) 9.18486 + 9.67291i 0.927811 + 0.977111i
\(99\) 12.3743 1.24367
\(100\) −4.61600 −0.461600
\(101\) 2.57780 0.256500 0.128250 0.991742i \(-0.459064\pi\)
0.128250 + 0.991742i \(0.459064\pi\)
\(102\) 0.981933 0.0972258
\(103\) 8.43173 14.6042i 0.830803 1.43899i −0.0665997 0.997780i \(-0.521215\pi\)
0.897402 0.441213i \(-0.145452\pi\)
\(104\) 1.89595 1.68146i 0.185913 0.164881i
\(105\) −0.658944 + 1.53438i −0.0643064 + 0.149740i
\(106\) −0.135091 + 0.233984i −0.0131212 + 0.0227265i
\(107\) −4.34132 7.51939i −0.419692 0.726927i 0.576217 0.817297i \(-0.304528\pi\)
−0.995908 + 0.0903697i \(0.971195\pi\)
\(108\) 2.03245 3.52031i 0.195573 0.338742i
\(109\) 6.02026 + 10.4274i 0.576637 + 0.998764i 0.995862 + 0.0908816i \(0.0289685\pi\)
−0.419225 + 0.907882i \(0.637698\pi\)
\(110\) −12.3335 −1.17595
\(111\) −1.51040 2.61608i −0.143360 0.248307i
\(112\) −7.28597 9.75398i −0.688459 0.921665i
\(113\) −4.68616 8.11667i −0.440837 0.763552i 0.556915 0.830570i \(-0.311985\pi\)
−0.997752 + 0.0670176i \(0.978652\pi\)
\(114\) 1.32348 + 2.29233i 0.123955 + 0.214696i
\(115\) 6.53643 0.609525
\(116\) −0.136660 0.236701i −0.0126885 0.0219772i
\(117\) −7.59739 + 6.73791i −0.702379 + 0.622920i
\(118\) 10.1824 0.937369
\(119\) −1.25566 + 2.92385i −0.115106 + 0.268029i
\(120\) 0.221805 0.384177i 0.0202479 0.0350704i
\(121\) 8.30385 0.754895
\(122\) 11.0006 + 19.0535i 0.995944 + 1.72503i
\(123\) −1.10623 + 1.91605i −0.0997453 + 0.172764i
\(124\) 8.55614 0.768364
\(125\) 11.5344 1.03167
\(126\) 8.49761 + 11.3761i 0.757027 + 1.01346i
\(127\) −7.94269 + 13.7571i −0.704800 + 1.22075i 0.261964 + 0.965078i \(0.415630\pi\)
−0.966764 + 0.255672i \(0.917703\pi\)
\(128\) 2.76359 + 4.78667i 0.244269 + 0.423086i
\(129\) −0.00487367 0.00844145i −0.000429103 0.000743228i
\(130\) 7.57232 6.71567i 0.664136 0.589004i
\(131\) −0.928725 + 1.60860i −0.0811430 + 0.140544i −0.903741 0.428079i \(-0.859190\pi\)
0.822598 + 0.568623i \(0.192524\pi\)
\(132\) 1.53527 2.65917i 0.133628 0.231451i
\(133\) −8.51816 + 1.00951i −0.738618 + 0.0875356i
\(134\) 3.94018 + 6.82459i 0.340380 + 0.589555i
\(135\) −1.83555 + 3.17926i −0.157979 + 0.273627i
\(136\) 0.422662 0.732072i 0.0362430 0.0627747i
\(137\) 6.40011 11.0853i 0.546798 0.947082i −0.451693 0.892173i \(-0.649180\pi\)
0.998491 0.0549088i \(-0.0174868\pi\)
\(138\) −1.81130 + 3.13726i −0.154188 + 0.267061i
\(139\) 0.169365 + 0.293348i 0.0143653 + 0.0248815i 0.873119 0.487508i \(-0.162094\pi\)
−0.858753 + 0.512389i \(0.828761\pi\)
\(140\) −3.80463 5.09339i −0.321550 0.430470i
\(141\) −2.50290 + 4.33514i −0.210782 + 0.365085i
\(142\) −9.49894 + 16.4527i −0.797134 + 1.38068i
\(143\) −11.8519 + 10.5111i −0.991104 + 0.878982i
\(144\) −6.48010 11.2239i −0.540009 0.935322i
\(145\) 0.123420 + 0.213769i 0.0102495 + 0.0177526i
\(146\) 14.5219 25.1526i 1.20184 2.08165i
\(147\) 2.91605 0.701024i 0.240512 0.0578195i
\(148\) 11.5006 0.945341
\(149\) 3.92316 0.321398 0.160699 0.987003i \(-0.448625\pi\)
0.160699 + 0.987003i \(0.448625\pi\)
\(150\) −1.15521 + 2.00088i −0.0943222 + 0.163371i
\(151\) 1.05939 + 1.83492i 0.0862122 + 0.149324i 0.905907 0.423476i \(-0.139190\pi\)
−0.819695 + 0.572800i \(0.805857\pi\)
\(152\) 2.27870 0.184827
\(153\) −1.69368 + 2.93354i −0.136926 + 0.237162i
\(154\) 13.2562 + 17.7466i 1.06822 + 1.43006i
\(155\) −7.72721 −0.620664
\(156\) 0.505336 + 2.46861i 0.0404593 + 0.197647i
\(157\) 11.0564 + 19.1502i 0.882397 + 1.52836i 0.848668 + 0.528925i \(0.177405\pi\)
0.0337285 + 0.999431i \(0.489262\pi\)
\(158\) −1.47586 −0.117413
\(159\) 0.0303739 + 0.0526091i 0.00240881 + 0.00417217i
\(160\) 5.42333 + 9.39348i 0.428752 + 0.742620i
\(161\) −7.02545 9.40522i −0.553683 0.741235i
\(162\) 7.03303 + 12.1816i 0.552567 + 0.957074i
\(163\) 3.85214 0.301723 0.150861 0.988555i \(-0.451795\pi\)
0.150861 + 0.988555i \(0.451795\pi\)
\(164\) −4.21157 7.29465i −0.328868 0.569616i
\(165\) −1.38653 + 2.40155i −0.107942 + 0.186960i
\(166\) −15.2622 26.4349i −1.18458 2.05175i
\(167\) −1.06947 + 1.85238i −0.0827582 + 0.143341i −0.904434 0.426614i \(-0.859706\pi\)
0.821676 + 0.569956i \(0.193040\pi\)
\(168\) −0.791188 + 0.0937658i −0.0610415 + 0.00723419i
\(169\) 1.55326 12.9069i 0.119482 0.992836i
\(170\) 1.68809 2.92385i 0.129470 0.224249i
\(171\) −9.13113 −0.698275
\(172\) 0.0371095 0.00282957
\(173\) −16.6133 −1.26308 −0.631542 0.775342i \(-0.717578\pi\)
−0.631542 + 0.775342i \(0.717578\pi\)
\(174\) −0.136803 −0.0103710
\(175\) −4.48068 5.99845i −0.338708 0.453440i
\(176\) −10.1089 17.5091i −0.761988 1.31980i
\(177\) 1.14471 1.98270i 0.0860419 0.149029i
\(178\) 6.24795 10.8218i 0.468303 0.811125i
\(179\) −0.539496 −0.0403238 −0.0201619 0.999797i \(-0.506418\pi\)
−0.0201619 + 0.999797i \(0.506418\pi\)
\(180\) −3.38382 5.86094i −0.252215 0.436849i
\(181\) 2.77164 0.206014 0.103007 0.994681i \(-0.467154\pi\)
0.103007 + 0.994681i \(0.467154\pi\)
\(182\) −17.8020 3.67765i −1.31957 0.272606i
\(183\) 4.94675 0.365674
\(184\) 1.55931 + 2.70080i 0.114954 + 0.199105i
\(185\) −10.3864 −0.763621
\(186\) 2.14127 3.70879i 0.157006 0.271942i
\(187\) −2.64213 + 4.57629i −0.193211 + 0.334652i
\(188\) −9.52887 16.5045i −0.694964 1.20371i
\(189\) 6.54749 0.775960i 0.476260 0.0564428i
\(190\) 9.10100 0.660256
\(191\) −20.2407 −1.46457 −0.732284 0.680999i \(-0.761546\pi\)
−0.732284 + 0.680999i \(0.761546\pi\)
\(192\) −2.06827 −0.149265
\(193\) −16.3771 −1.17885 −0.589425 0.807823i \(-0.700646\pi\)
−0.589425 + 0.807823i \(0.700646\pi\)
\(194\) 3.32678 5.76216i 0.238849 0.413699i
\(195\) −0.456378 2.22944i −0.0326819 0.159654i
\(196\) −3.23958 + 10.9489i −0.231398 + 0.782064i
\(197\) −9.86676 + 17.0897i −0.702977 + 1.21759i 0.264439 + 0.964402i \(0.414813\pi\)
−0.967417 + 0.253190i \(0.918520\pi\)
\(198\) 11.7900 + 20.4209i 0.837879 + 1.45125i
\(199\) 7.05873 12.2261i 0.500380 0.866683i −0.499620 0.866245i \(-0.666527\pi\)
1.00000 0.000438630i \(-0.000139620\pi\)
\(200\) 0.994491 + 1.72251i 0.0703212 + 0.121800i
\(201\) 1.77183 0.124975
\(202\) 2.45607 + 4.25404i 0.172809 + 0.299313i
\(203\) 0.174938 0.407351i 0.0122782 0.0285904i
\(204\) 0.420267 + 0.727924i 0.0294246 + 0.0509649i
\(205\) 3.80354 + 6.58793i 0.265651 + 0.460121i
\(206\) 32.1343 2.23890
\(207\) −6.24840 10.8225i −0.434294 0.752219i
\(208\) 15.7404 + 5.24562i 1.09140 + 0.363718i
\(209\) −14.2445 −0.985313
\(210\) −3.15996 + 0.374495i −0.218058 + 0.0258426i
\(211\) 2.31317 4.00652i 0.159245 0.275820i −0.775352 0.631530i \(-0.782427\pi\)
0.934597 + 0.355709i \(0.115761\pi\)
\(212\) −0.231275 −0.0158840
\(213\) 2.13575 + 3.69923i 0.146339 + 0.253467i
\(214\) 8.27265 14.3287i 0.565507 0.979487i
\(215\) −0.0335143 −0.00228565
\(216\) −1.75152 −0.119176
\(217\) 8.30532 + 11.1186i 0.563802 + 0.754781i
\(218\) −11.4720 + 19.8700i −0.776980 + 1.34577i
\(219\) −3.26511 5.65534i −0.220636 0.382152i
\(220\) −5.27873 9.14303i −0.355892 0.616423i
\(221\) −0.869656 4.24834i −0.0584994 0.285774i
\(222\) 2.87815 4.98510i 0.193169 0.334578i
\(223\) 10.6761 18.4916i 0.714926 1.23829i −0.248061 0.968744i \(-0.579793\pi\)
0.962988 0.269545i \(-0.0868732\pi\)
\(224\) 7.68714 17.8998i 0.513619 1.19598i
\(225\) −3.98509 6.90239i −0.265673 0.460159i
\(226\) 8.92976 15.4668i 0.593999 1.02884i
\(227\) 5.22451 9.04911i 0.346763 0.600611i −0.638910 0.769282i \(-0.720614\pi\)
0.985672 + 0.168671i \(0.0539476\pi\)
\(228\) −1.13289 + 1.96223i −0.0750278 + 0.129952i
\(229\) −7.22901 + 12.5210i −0.477706 + 0.827412i −0.999673 0.0255538i \(-0.991865\pi\)
0.521967 + 0.852966i \(0.325198\pi\)
\(230\) 6.22778 + 10.7868i 0.410648 + 0.711262i
\(231\) 4.94584 0.586145i 0.325412 0.0385655i
\(232\) −0.0588852 + 0.101992i −0.00386600 + 0.00669611i
\(233\) 4.64413 8.04388i 0.304247 0.526972i −0.672846 0.739783i \(-0.734928\pi\)
0.977093 + 0.212811i \(0.0682617\pi\)
\(234\) −18.3580 6.11795i −1.20010 0.399943i
\(235\) 8.60570 + 14.9055i 0.561374 + 0.972328i
\(236\) 4.35808 + 7.54842i 0.283687 + 0.491360i
\(237\) −0.165917 + 0.287376i −0.0107774 + 0.0186671i
\(238\) −6.02150 + 0.713623i −0.390316 + 0.0462573i
\(239\) 19.6332 1.26997 0.634983 0.772526i \(-0.281007\pi\)
0.634983 + 0.772526i \(0.281007\pi\)
\(240\) 2.90437 0.187476
\(241\) −3.65552 + 6.33155i −0.235473 + 0.407851i −0.959410 0.282015i \(-0.908997\pi\)
0.723937 + 0.689866i \(0.242331\pi\)
\(242\) 7.91174 + 13.7035i 0.508586 + 0.880897i
\(243\) 10.6387 0.682475
\(244\) −9.41648 + 16.3098i −0.602828 + 1.04413i
\(245\) 2.92572 9.88816i 0.186917 0.631731i
\(246\) −4.21597 −0.268801
\(247\) 8.74562 7.75624i 0.556470 0.493518i
\(248\) −1.84337 3.19282i −0.117054 0.202744i
\(249\) −6.86314 −0.434934
\(250\) 10.9898 + 19.0349i 0.695055 + 1.20387i
\(251\) 5.93191 + 10.2744i 0.374419 + 0.648512i 0.990240 0.139374i \(-0.0445089\pi\)
−0.615821 + 0.787886i \(0.711176\pi\)
\(252\) −4.79629 + 11.1684i −0.302138 + 0.703542i
\(253\) −9.74746 16.8831i −0.612817 1.06143i
\(254\) −30.2706 −1.89934
\(255\) −0.379551 0.657402i −0.0237684 0.0411681i
\(256\) −10.0935 + 17.4825i −0.630846 + 1.09266i
\(257\) 7.58608 + 13.1395i 0.473206 + 0.819618i 0.999530 0.0306670i \(-0.00976315\pi\)
−0.526323 + 0.850285i \(0.676430\pi\)
\(258\) 0.00928708 0.0160857i 0.000578188 0.00100145i
\(259\) 11.1634 + 14.9449i 0.693662 + 0.928630i
\(260\) 8.21940 + 2.73919i 0.509745 + 0.169877i
\(261\) 0.235963 0.408699i 0.0146057 0.0252979i
\(262\) −3.53948 −0.218670
\(263\) 17.1964 1.06037 0.530187 0.847880i \(-0.322122\pi\)
0.530187 + 0.847880i \(0.322122\pi\)
\(264\) −1.32307 −0.0814291
\(265\) 0.208869 0.0128307
\(266\) −9.78189 13.0954i −0.599766 0.802928i
\(267\) −1.40479 2.43317i −0.0859719 0.148908i
\(268\) −3.37279 + 5.84185i −0.206026 + 0.356848i
\(269\) −9.46102 + 16.3870i −0.576849 + 0.999131i 0.418989 + 0.907991i \(0.362384\pi\)
−0.995838 + 0.0911401i \(0.970949\pi\)
\(270\) −6.99549 −0.425732
\(271\) −16.0667 27.8283i −0.975982 1.69045i −0.676657 0.736298i \(-0.736572\pi\)
−0.299324 0.954151i \(-0.596761\pi\)
\(272\) 5.53444 0.335575
\(273\) −2.71741 + 3.05292i −0.164465 + 0.184771i
\(274\) 24.3916 1.47355
\(275\) −6.21672 10.7677i −0.374882 0.649315i
\(276\) −3.10094 −0.186655
\(277\) −9.20269 + 15.9395i −0.552936 + 0.957714i 0.445125 + 0.895469i \(0.353159\pi\)
−0.998061 + 0.0622450i \(0.980174\pi\)
\(278\) −0.322734 + 0.558992i −0.0193563 + 0.0335261i
\(279\) 7.38671 + 12.7942i 0.442231 + 0.765966i
\(280\) −1.08097 + 2.51708i −0.0646002 + 0.150424i
\(281\) −14.2252 −0.848603 −0.424302 0.905521i \(-0.639480\pi\)
−0.424302 + 0.905521i \(0.639480\pi\)
\(282\) −9.53883 −0.568029
\(283\) −11.4289 −0.679378 −0.339689 0.940538i \(-0.610322\pi\)
−0.339689 + 0.940538i \(0.610322\pi\)
\(284\) −16.2622 −0.964983
\(285\) 1.02314 1.77213i 0.0606055 0.104972i
\(286\) −28.6383 9.54396i −1.69342 0.564346i
\(287\) 5.39123 12.5537i 0.318234 0.741022i
\(288\) 10.3687 17.9591i 0.610981 1.05825i
\(289\) 7.77674 + 13.4697i 0.457455 + 0.792336i
\(290\) −0.235184 + 0.407351i −0.0138105 + 0.0239205i
\(291\) −0.747997 1.29557i −0.0438483 0.0759476i
\(292\) 24.8615 1.45491
\(293\) 6.60231 + 11.4355i 0.385711 + 0.668071i 0.991868 0.127274i \(-0.0406228\pi\)
−0.606156 + 0.795345i \(0.707289\pi\)
\(294\) 3.93523 + 4.14433i 0.229507 + 0.241702i
\(295\) −3.93586 6.81712i −0.229155 0.396908i
\(296\) −2.47773 4.29156i −0.144015 0.249442i
\(297\) 10.9490 0.635328
\(298\) 3.73791 + 6.47425i 0.216531 + 0.375043i
\(299\) 15.1776 + 5.05805i 0.877741 + 0.292515i
\(300\) −1.97771 −0.114183
\(301\) 0.0360216 + 0.0482235i 0.00207625 + 0.00277955i
\(302\) −2.01874 + 3.49656i −0.116165 + 0.201204i
\(303\) 1.10445 0.0634490
\(304\) 7.45947 + 12.9202i 0.427830 + 0.741023i
\(305\) 8.50420 14.7297i 0.486949 0.843420i
\(306\) −6.45481 −0.368997
\(307\) −6.65903 −0.380051 −0.190026 0.981779i \(-0.560857\pi\)
−0.190026 + 0.981779i \(0.560857\pi\)
\(308\) −7.48218 + 17.4226i −0.426337 + 0.992744i
\(309\) 3.61255 6.25713i 0.205511 0.355955i
\(310\) −7.36233 12.7519i −0.418152 0.724261i
\(311\) 1.02298 + 1.77186i 0.0580081 + 0.100473i 0.893571 0.448922i \(-0.148192\pi\)
−0.835563 + 0.549395i \(0.814858\pi\)
\(312\) 0.812315 0.720419i 0.0459883 0.0407857i
\(313\) −4.70883 + 8.15594i −0.266159 + 0.461001i −0.967867 0.251464i \(-0.919088\pi\)
0.701708 + 0.712465i \(0.252421\pi\)
\(314\) −21.0686 + 36.4919i −1.18897 + 2.05936i
\(315\) 4.33162 10.0864i 0.244059 0.568302i
\(316\) −0.631667 1.09408i −0.0355341 0.0615468i
\(317\) 16.6856 28.9004i 0.937159 1.62321i 0.166421 0.986055i \(-0.446779\pi\)
0.770738 0.637153i \(-0.219888\pi\)
\(318\) −0.0578792 + 0.100250i −0.00324571 + 0.00562173i
\(319\) 0.368100 0.637568i 0.0206097 0.0356970i
\(320\) −3.55567 + 6.15860i −0.198768 + 0.344276i
\(321\) −1.86003 3.22167i −0.103817 0.179816i
\(322\) 8.82739 20.5549i 0.491931 1.14548i
\(323\) 1.94965 3.37689i 0.108481 0.187895i
\(324\) −6.02027 + 10.4274i −0.334460 + 0.579301i
\(325\) 9.67992 + 3.22592i 0.536946 + 0.178942i
\(326\) 3.67024 + 6.35704i 0.203276 + 0.352084i
\(327\) 2.57937 + 4.46760i 0.142639 + 0.247059i
\(328\) −1.81472 + 3.14318i −0.100201 + 0.173553i
\(329\) 12.1979 28.4033i 0.672492 1.56593i
\(330\) −5.28425 −0.290888
\(331\) 19.0660 1.04796 0.523980 0.851731i \(-0.324447\pi\)
0.523980 + 0.851731i \(0.324447\pi\)
\(332\) 13.0645 22.6283i 0.717005 1.24189i
\(333\) 9.92870 + 17.1970i 0.544089 + 0.942390i
\(334\) −4.07589 −0.223023
\(335\) 3.04603 5.27588i 0.166423 0.288252i
\(336\) −3.12165 4.17907i −0.170300 0.227987i
\(337\) −31.2849 −1.70420 −0.852098 0.523382i \(-0.824670\pi\)
−0.852098 + 0.523382i \(0.824670\pi\)
\(338\) 22.7797 9.73412i 1.23905 0.529466i
\(339\) −2.00777 3.47757i −0.109047 0.188876i
\(340\) 2.89001 0.156733
\(341\) 11.5232 + 19.9588i 0.624017 + 1.08083i
\(342\) −8.69996 15.0688i −0.470440 0.814826i
\(343\) −17.3726 + 6.41814i −0.938033 + 0.346547i
\(344\) −0.00799504 0.0138478i −0.000431064 0.000746624i
\(345\) 2.80052 0.150775
\(346\) −15.8288 27.4163i −0.850961 1.47391i
\(347\) −5.83759 + 10.1110i −0.313378 + 0.542787i −0.979091 0.203420i \(-0.934794\pi\)
0.665713 + 0.746208i \(0.268128\pi\)
\(348\) −0.0585515 0.101414i −0.00313869 0.00543637i
\(349\) −11.9952 + 20.7763i −0.642089 + 1.11213i 0.342877 + 0.939380i \(0.388599\pi\)
−0.984966 + 0.172750i \(0.944735\pi\)
\(350\) 5.62992 13.1095i 0.300932 0.700732i
\(351\) −6.72233 + 5.96184i −0.358811 + 0.318219i
\(352\) 16.1751 28.0161i 0.862135 1.49326i
\(353\) 12.7934 0.680922 0.340461 0.940259i \(-0.389417\pi\)
0.340461 + 0.940259i \(0.389417\pi\)
\(354\) 4.36264 0.231872
\(355\) 14.6867 0.779488
\(356\) 10.6965 0.566912
\(357\) −0.537984 + 1.25272i −0.0284731 + 0.0663009i
\(358\) −0.514021 0.890310i −0.0271668 0.0470544i
\(359\) −6.16986 + 10.6865i −0.325633 + 0.564012i −0.981640 0.190742i \(-0.938911\pi\)
0.656008 + 0.754754i \(0.272244\pi\)
\(360\) −1.45805 + 2.52542i −0.0768460 + 0.133101i
\(361\) −8.48884 −0.446781
\(362\) 2.64076 + 4.57393i 0.138795 + 0.240401i
\(363\) 3.55776 0.186734
\(364\) −4.89294 14.7710i −0.256460 0.774208i
\(365\) −22.4528 −1.17524
\(366\) 4.71316 + 8.16344i 0.246361 + 0.426710i
\(367\) 2.03077 0.106005 0.0530026 0.998594i \(-0.483121\pi\)
0.0530026 + 0.998594i \(0.483121\pi\)
\(368\) −10.2090 + 17.6825i −0.532179 + 0.921762i
\(369\) 7.27188 12.5953i 0.378559 0.655684i
\(370\) −9.89593 17.1403i −0.514465 0.891079i
\(371\) −0.224495 0.300540i −0.0116552 0.0156033i
\(372\) 3.66586 0.190066
\(373\) −3.87400 −0.200588 −0.100294 0.994958i \(-0.531978\pi\)
−0.100294 + 0.994958i \(0.531978\pi\)
\(374\) −10.0695 −0.520679
\(375\) 4.94190 0.255199
\(376\) −4.10588 + 7.11160i −0.211745 + 0.366753i
\(377\) 0.121160 + 0.591877i 0.00624007 + 0.0304832i
\(378\) 7.51886 + 10.0658i 0.386728 + 0.517727i
\(379\) 7.28396 12.6162i 0.374152 0.648050i −0.616048 0.787709i \(-0.711267\pi\)
0.990200 + 0.139659i \(0.0446006\pi\)
\(380\) 3.89523 + 6.74673i 0.199821 + 0.346100i
\(381\) −3.40303 + 5.89422i −0.174342 + 0.301970i
\(382\) −19.2850 33.4025i −0.986705 1.70902i
\(383\) −26.7818 −1.36849 −0.684243 0.729254i \(-0.739867\pi\)
−0.684243 + 0.729254i \(0.739867\pi\)
\(384\) 1.18405 + 2.05084i 0.0604234 + 0.104656i
\(385\) 6.75730 15.7347i 0.344384 0.801912i
\(386\) −15.6038 27.0266i −0.794212 1.37562i
\(387\) 0.0320375 + 0.0554905i 0.00162856 + 0.00282074i
\(388\) 5.69545 0.289143
\(389\) −6.00738 10.4051i −0.304586 0.527559i 0.672583 0.740022i \(-0.265185\pi\)
−0.977169 + 0.212463i \(0.931852\pi\)
\(390\) 3.24434 2.87731i 0.164284 0.145698i
\(391\) 5.33655 0.269881
\(392\) 4.78365 1.15000i 0.241611 0.0580837i
\(393\) −0.397910 + 0.689200i −0.0200719 + 0.0347655i
\(394\) −37.6034 −1.89443
\(395\) 0.570470 + 0.988084i 0.0287035 + 0.0497159i
\(396\) −10.0922 + 17.4803i −0.507154 + 0.878417i
\(397\) −1.65765 −0.0831951 −0.0415975 0.999134i \(-0.513245\pi\)
−0.0415975 + 0.999134i \(0.513245\pi\)
\(398\) 26.9017 1.34846
\(399\) −3.64958 + 0.432522i −0.182708 + 0.0216532i
\(400\) −6.51106 + 11.2775i −0.325553 + 0.563874i
\(401\) 10.2414 + 17.7386i 0.511430 + 0.885823i 0.999912 + 0.0132488i \(0.00421735\pi\)
−0.488482 + 0.872574i \(0.662449\pi\)
\(402\) 1.68816 + 2.92398i 0.0841978 + 0.145835i
\(403\) −17.9425 5.97951i −0.893782 0.297861i
\(404\) −2.10240 + 3.64146i −0.104598 + 0.181169i
\(405\) 5.43702 9.41720i 0.270168 0.467944i
\(406\) 0.838913 0.0994218i 0.0416346 0.00493422i
\(407\) 15.4887 + 26.8272i 0.767746 + 1.32978i
\(408\) 0.181089 0.313655i 0.00896522 0.0155282i
\(409\) −7.43293 + 12.8742i −0.367535 + 0.636589i −0.989180 0.146710i \(-0.953131\pi\)
0.621645 + 0.783299i \(0.286465\pi\)
\(410\) −7.24788 + 12.5537i −0.357947 + 0.619983i
\(411\) 2.74211 4.74948i 0.135258 0.234274i
\(412\) 13.7535 + 23.8217i 0.677586 + 1.17361i
\(413\) −5.57878 + 12.9904i −0.274514 + 0.639217i
\(414\) 11.9067 20.6230i 0.585182 1.01357i
\(415\) −11.7988 + 20.4360i −0.579178 + 1.00317i
\(416\) 5.32404 + 26.0083i 0.261032 + 1.27516i
\(417\) 0.0725639 + 0.125684i 0.00355347 + 0.00615479i
\(418\) −13.5719 23.5072i −0.663822 1.14977i
\(419\) 11.8087 20.4533i 0.576895 0.999211i −0.418938 0.908015i \(-0.637598\pi\)
0.995833 0.0911962i \(-0.0290690\pi\)
\(420\) −1.63008 2.18225i −0.0795399 0.106483i
\(421\) 26.0822 1.27117 0.635585 0.772031i \(-0.280759\pi\)
0.635585 + 0.772031i \(0.280759\pi\)
\(422\) 8.81576 0.429144
\(423\) 16.4530 28.4974i 0.799971 1.38559i
\(424\) 0.0498269 + 0.0863028i 0.00241981 + 0.00419123i
\(425\) 3.40354 0.165096
\(426\) −4.06980 + 7.04910i −0.197182 + 0.341530i
\(427\) −30.3349 + 3.59507i −1.46801 + 0.173978i
\(428\) 14.1628 0.684584
\(429\) −5.07791 + 4.50345i −0.245164 + 0.217429i
\(430\) −0.0319317 0.0553074i −0.00153988 0.00266716i
\(431\) −13.3172 −0.641466 −0.320733 0.947170i \(-0.603929\pi\)
−0.320733 + 0.947170i \(0.603929\pi\)
\(432\) −5.73373 9.93110i −0.275864 0.477810i
\(433\) −10.2110 17.6860i −0.490711 0.849937i 0.509232 0.860629i \(-0.329930\pi\)
−0.999943 + 0.0106929i \(0.996596\pi\)
\(434\) −10.4355 + 24.2996i −0.500921 + 1.16642i
\(435\) 0.0528790 + 0.0915890i 0.00253535 + 0.00439136i
\(436\) −19.6400 −0.940586
\(437\) 7.19275 + 12.4582i 0.344076 + 0.595957i
\(438\) 6.22187 10.7766i 0.297292 0.514925i
\(439\) 4.88537 + 8.46171i 0.233166 + 0.403855i 0.958738 0.284291i \(-0.0917581\pi\)
−0.725572 + 0.688146i \(0.758425\pi\)
\(440\) −2.27455 + 3.93963i −0.108435 + 0.187814i
\(441\) −19.1689 + 4.60824i −0.912804 + 0.219440i
\(442\) 6.18229 5.48290i 0.294061 0.260795i
\(443\) −10.5819 + 18.3285i −0.502763 + 0.870811i 0.497232 + 0.867618i \(0.334350\pi\)
−0.999995 + 0.00319331i \(0.998984\pi\)
\(444\) 4.92739 0.233844
\(445\) −9.66019 −0.457937
\(446\) 40.6880 1.92663
\(447\) 1.68087 0.0795023
\(448\) 12.6832 1.50312i 0.599227 0.0710160i
\(449\) 9.07320 + 15.7152i 0.428191 + 0.741648i 0.996712 0.0810200i \(-0.0258178\pi\)
−0.568522 + 0.822668i \(0.692484\pi\)
\(450\) 7.59384 13.1529i 0.357977 0.620034i
\(451\) 11.3441 19.6485i 0.534172 0.925213i
\(452\) 15.2877 0.719075
\(453\) 0.453895 + 0.786168i 0.0213258 + 0.0369374i
\(454\) 19.9112 0.934480
\(455\) 4.41890 + 13.3399i 0.207161 + 0.625385i
\(456\) 0.976304 0.0457196
\(457\) 9.00991 + 15.6056i 0.421466 + 0.730000i 0.996083 0.0884220i \(-0.0281824\pi\)
−0.574617 + 0.818422i \(0.694849\pi\)
\(458\) −27.5506 −1.28736
\(459\) −1.49860 + 2.59565i −0.0699487 + 0.121155i
\(460\) −5.33098 + 9.23352i −0.248558 + 0.430515i
\(461\) 14.8873 + 25.7855i 0.693370 + 1.20095i 0.970727 + 0.240185i \(0.0772082\pi\)
−0.277357 + 0.960767i \(0.589458\pi\)
\(462\) 5.67959 + 7.60347i 0.264238 + 0.353745i
\(463\) 17.7067 0.822900 0.411450 0.911432i \(-0.365023\pi\)
0.411450 + 0.911432i \(0.365023\pi\)
\(464\) −0.771057 −0.0357954
\(465\) −3.31070 −0.153530
\(466\) 17.6994 0.819907
\(467\) 2.91461 5.04825i 0.134872 0.233605i −0.790677 0.612234i \(-0.790271\pi\)
0.925549 + 0.378629i \(0.123604\pi\)
\(468\) −3.32186 16.2276i −0.153553 0.750120i
\(469\) −10.8654 + 1.28768i −0.501715 + 0.0594596i
\(470\) −16.3987 + 28.4033i −0.756414 + 1.31015i
\(471\) 4.73709 + 8.20488i 0.218274 + 0.378061i
\(472\) 1.87785 3.25253i 0.0864350 0.149710i
\(473\) 0.0499782 + 0.0865648i 0.00229800 + 0.00398025i
\(474\) −0.632328 −0.0290438
\(475\) 4.58738 + 7.94557i 0.210483 + 0.364568i
\(476\) −3.10622 4.15841i −0.142373 0.190600i
\(477\) −0.199665 0.345830i −0.00914203 0.0158345i
\(478\) 18.7061 + 32.4000i 0.855598 + 1.48194i
\(479\) 14.4913 0.662125 0.331062 0.943609i \(-0.392593\pi\)
0.331062 + 0.943609i \(0.392593\pi\)
\(480\) 2.32361 + 4.02461i 0.106058 + 0.183698i
\(481\) −24.1171 8.03724i −1.09965 0.366467i
\(482\) −13.9316 −0.634569
\(483\) −3.01004 4.02964i −0.136961 0.183355i
\(484\) −6.77245 + 11.7302i −0.307839 + 0.533192i
\(485\) −5.14367 −0.233562
\(486\) 10.1364 + 17.5567i 0.459795 + 0.796389i
\(487\) 8.98006 15.5539i 0.406926 0.704816i −0.587618 0.809139i \(-0.699934\pi\)
0.994543 + 0.104323i \(0.0332675\pi\)
\(488\) 8.11491 0.367345
\(489\) 1.65044 0.0746354
\(490\) 19.1056 4.59303i 0.863104 0.207492i
\(491\) 18.1505 31.4375i 0.819119 1.41876i −0.0872134 0.996190i \(-0.527796\pi\)
0.906332 0.422566i \(-0.138870\pi\)
\(492\) −1.80444 3.12537i −0.0813503 0.140903i
\(493\) 0.100764 + 0.174528i 0.00453818 + 0.00786036i
\(494\) 21.1325 + 7.04258i 0.950796 + 0.316861i
\(495\) 9.11449 15.7868i 0.409666 0.709562i
\(496\) 12.0688 20.9038i 0.541905 0.938607i
\(497\) −15.7855 21.1326i −0.708075 0.947925i
\(498\) −6.53906 11.3260i −0.293022 0.507530i
\(499\) −11.8538 + 20.5314i −0.530649 + 0.919112i 0.468711 + 0.883352i \(0.344719\pi\)
−0.999360 + 0.0357602i \(0.988615\pi\)
\(500\) −9.40726 + 16.2938i −0.420705 + 0.728683i
\(501\) −0.458213 + 0.793648i −0.0204714 + 0.0354576i
\(502\) −11.3036 + 19.5784i −0.504505 + 0.873828i
\(503\) −13.8876 24.0540i −0.619217 1.07252i −0.989629 0.143648i \(-0.954117\pi\)
0.370411 0.928868i \(-0.379217\pi\)
\(504\) 5.20094 0.616377i 0.231668 0.0274556i
\(505\) 1.89871 3.28867i 0.0844916 0.146344i
\(506\) 18.5744 32.1717i 0.825731 1.43021i
\(507\) 0.665491 5.52992i 0.0295555 0.245592i
\(508\) −12.9558 22.4401i −0.574820 0.995618i
\(509\) −4.35208 7.53802i −0.192902 0.334117i 0.753308 0.657667i \(-0.228457\pi\)
−0.946211 + 0.323551i \(0.895123\pi\)
\(510\) 0.723257 1.25272i 0.0320264 0.0554713i
\(511\) 24.1326 + 32.3072i 1.06757 + 1.42919i
\(512\) −27.4134 −1.21151
\(513\) −8.07941 −0.356715
\(514\) −14.4557 + 25.0380i −0.637615 + 1.10438i
\(515\) −12.4210 21.5139i −0.547336 0.948014i
\(516\) 0.0158995 0.000699935
\(517\) 25.6665 44.4557i 1.12881 1.95516i
\(518\) −14.0267 + 32.6618i −0.616298 + 1.43508i
\(519\) −7.11792 −0.312442
\(520\) −0.748668 3.65730i −0.0328313 0.160383i
\(521\) 4.28573 + 7.42310i 0.187761 + 0.325212i 0.944504 0.328501i \(-0.106544\pi\)
−0.756742 + 0.653713i \(0.773210\pi\)
\(522\) 0.899282 0.0393605
\(523\) −14.9746 25.9369i −0.654796 1.13414i −0.981945 0.189167i \(-0.939421\pi\)
0.327149 0.944973i \(-0.393912\pi\)
\(524\) −1.51490 2.62388i −0.0661786 0.114625i
\(525\) −1.91974 2.57002i −0.0837842 0.112165i
\(526\) 16.3844 + 28.3786i 0.714393 + 1.23736i
\(527\) −6.30874 −0.274813
\(528\) −4.33114 7.50175i −0.188489 0.326472i
\(529\) 1.65606 2.86838i 0.0720027 0.124712i
\(530\) 0.199006 + 0.344689i 0.00864427 + 0.0149723i
\(531\) −7.52486 + 13.0334i −0.326551 + 0.565603i
\(532\) 5.52118 12.8563i 0.239373 0.557391i
\(533\) 3.73391 + 18.2404i 0.161734 + 0.790081i
\(534\) 2.67692 4.63656i 0.115842 0.200643i
\(535\) −12.7907 −0.552989
\(536\) 2.90660 0.125546
\(537\) −0.231146 −0.00997467
\(538\) −36.0571 −1.55453
\(539\) −29.9033 + 7.18882i −1.28803 + 0.309644i
\(540\) −2.99407 5.18588i −0.128844 0.223165i
\(541\) −5.24095 + 9.07760i −0.225326 + 0.390276i −0.956417 0.292003i \(-0.905678\pi\)
0.731091 + 0.682280i \(0.239011\pi\)
\(542\) 30.6160 53.0285i 1.31507 2.27777i
\(543\) 1.18750 0.0509606
\(544\) 4.42778 + 7.66914i 0.189840 + 0.328812i
\(545\) 17.7373 0.759781
\(546\) −7.62721 1.57568i −0.326415 0.0674329i
\(547\) 15.2216 0.650829 0.325415 0.945571i \(-0.394496\pi\)
0.325415 + 0.945571i \(0.394496\pi\)
\(548\) 10.4396 + 18.0819i 0.445957 + 0.772421i
\(549\) −32.5178 −1.38783
\(550\) 11.8463 20.5184i 0.505129 0.874909i
\(551\) −0.271625 + 0.470468i −0.0115716 + 0.0200426i
\(552\) 0.668081 + 1.15715i 0.0284354 + 0.0492516i
\(553\) 0.808597 1.88285i 0.0343850 0.0800671i
\(554\) −35.0726 −1.49009
\(555\) −4.45002 −0.188893
\(556\) −0.552521 −0.0234321
\(557\) 11.8597 0.502513 0.251256 0.967921i \(-0.419156\pi\)
0.251256 + 0.967921i \(0.419156\pi\)
\(558\) −14.0758 + 24.3800i −0.595877 + 1.03209i
\(559\) −0.0778200 0.0259342i −0.00329144 0.00109690i
\(560\) −17.8104 + 2.11076i −0.752627 + 0.0891958i
\(561\) −1.13201 + 1.96070i −0.0477936 + 0.0827809i
\(562\) −13.5535 23.4753i −0.571719 0.990246i
\(563\) −3.84675 + 6.66276i −0.162121 + 0.280802i −0.935629 0.352985i \(-0.885167\pi\)
0.773508 + 0.633786i \(0.218500\pi\)
\(564\) −4.08262 7.07131i −0.171909 0.297756i
\(565\) −13.8066 −0.580850
\(566\) −10.8892 18.8607i −0.457709 0.792775i
\(567\) −19.3941 + 2.29845i −0.814477 + 0.0965258i
\(568\) 3.50360 + 6.06841i 0.147008 + 0.254625i
\(569\) −18.7098 32.4063i −0.784355 1.35854i −0.929384 0.369115i \(-0.879661\pi\)
0.145029 0.989427i \(-0.453673\pi\)
\(570\) 3.89930 0.163324
\(571\) −7.08285 12.2679i −0.296408 0.513394i 0.678903 0.734228i \(-0.262456\pi\)
−0.975311 + 0.220834i \(0.929122\pi\)
\(572\) −5.18208 25.3149i −0.216674 1.05847i
\(573\) −8.67209 −0.362282
\(574\) 25.8536 3.06397i 1.07911 0.127888i
\(575\) −6.27825 + 10.8742i −0.261821 + 0.453488i
\(576\) 13.5959 0.566498
\(577\) 7.48776 + 12.9692i 0.311720 + 0.539914i 0.978735 0.205130i \(-0.0657617\pi\)
−0.667015 + 0.745044i \(0.732428\pi\)
\(578\) −14.8190 + 25.6673i −0.616391 + 1.06762i
\(579\) −7.01674 −0.291606
\(580\) −0.402635 −0.0167185
\(581\) 42.0867 4.98781i 1.74605 0.206929i
\(582\) 1.42535 2.46878i 0.0590828 0.102334i
\(583\) −0.311476 0.539492i −0.0129000 0.0223435i
\(584\) −5.35627 9.27732i −0.221644 0.383898i
\(585\) 3.00004 + 14.6554i 0.124036 + 0.605927i
\(586\) −12.5811 + 21.7911i −0.519720 + 0.900182i
\(587\) 6.58821 11.4111i 0.271925 0.470987i −0.697430 0.716653i \(-0.745673\pi\)
0.969355 + 0.245666i \(0.0790066\pi\)
\(588\) −1.38799 + 4.69103i −0.0572397 + 0.193455i
\(589\) −8.50309 14.7278i −0.350364 0.606848i
\(590\) 7.50003 12.9904i 0.308771 0.534807i
\(591\) −4.22739 + 7.32205i −0.173892 + 0.301189i
\(592\) 16.2220 28.0974i 0.666722 1.15480i
\(593\) 22.0663 38.2200i 0.906156 1.56951i 0.0867989 0.996226i \(-0.472336\pi\)
0.819357 0.573283i \(-0.194330\pi\)
\(594\) 10.4320 + 18.0688i 0.428032 + 0.741372i
\(595\) 2.80529 + 3.75554i 0.115006 + 0.153962i
\(596\) −3.19965 + 5.54195i −0.131063 + 0.227007i
\(597\) 3.02429 5.23823i 0.123776 0.214387i
\(598\) 6.11376 + 29.8662i 0.250010 + 1.22132i
\(599\) 3.01349 + 5.21952i 0.123128 + 0.213264i 0.921000 0.389564i \(-0.127374\pi\)
−0.797872 + 0.602827i \(0.794041\pi\)
\(600\) 0.426087 + 0.738005i 0.0173949 + 0.0301289i
\(601\) −1.86260 + 3.22612i −0.0759770 + 0.131596i −0.901511 0.432757i \(-0.857541\pi\)
0.825534 + 0.564353i \(0.190874\pi\)
\(602\) −0.0452607 + 0.105392i −0.00184469 + 0.00429544i
\(603\) −11.6472 −0.474312
\(604\) −3.45608 −0.140626
\(605\) 6.11632 10.5938i 0.248664 0.430698i
\(606\) 1.05230 + 1.82263i 0.0427467 + 0.0740394i
\(607\) −6.01651 −0.244203 −0.122101 0.992518i \(-0.538963\pi\)
−0.122101 + 0.992518i \(0.538963\pi\)
\(608\) −11.9358 + 20.6733i −0.484059 + 0.838415i
\(609\) 0.0749517 0.174528i 0.00303720 0.00707225i
\(610\) 32.4105 1.31226
\(611\) 8.44814 + 41.2698i 0.341775 + 1.66960i
\(612\) −2.76266 4.78506i −0.111674 0.193425i
\(613\) 9.80825 0.396152 0.198076 0.980187i \(-0.436531\pi\)
0.198076 + 0.980187i \(0.436531\pi\)
\(614\) −6.34459 10.9892i −0.256047 0.443486i
\(615\) 1.62962 + 2.82258i 0.0657126 + 0.113818i
\(616\) 8.11342 0.961543i 0.326899 0.0387417i
\(617\) −16.8838 29.2436i −0.679716 1.17730i −0.975066 0.221914i \(-0.928770\pi\)
0.295350 0.955389i \(-0.404564\pi\)
\(618\) 13.7679 0.553825
\(619\) −2.04671 3.54501i −0.0822644 0.142486i 0.821958 0.569548i \(-0.192882\pi\)
−0.904222 + 0.427062i \(0.859549\pi\)
\(620\) 6.30215 10.9156i 0.253100 0.438383i
\(621\) −5.52871 9.57601i −0.221860 0.384272i
\(622\) −1.94936 + 3.37639i −0.0781621 + 0.135381i
\(623\) 10.3829 + 13.9000i 0.415983 + 0.556891i
\(624\) 6.74393 + 2.24747i 0.269973 + 0.0899709i
\(625\) 1.42115 2.46150i 0.0568459 0.0984599i
\(626\) −17.9459 −0.717264
\(627\) −6.10302 −0.243731
\(628\) −36.0695 −1.43933
\(629\) −8.47978 −0.338111
\(630\) 20.7722 2.46177i 0.827586 0.0980794i
\(631\) 13.3868 + 23.1866i 0.532921 + 0.923046i 0.999261 + 0.0384402i \(0.0122389\pi\)
−0.466340 + 0.884605i \(0.654428\pi\)
\(632\) −0.272179 + 0.471427i −0.0108267 + 0.0187524i
\(633\) 0.991071 1.71659i 0.0393915 0.0682282i
\(634\) 63.5910 2.52552
\(635\) 11.7006 + 20.2661i 0.464325 + 0.804234i
\(636\) −0.0990892 −0.00392914
\(637\) 14.4452 20.6963i 0.572340 0.820016i
\(638\) 1.40287 0.0555403
\(639\) −14.0395 24.3172i −0.555395 0.961972i
\(640\) 8.14224 0.321850
\(641\) 9.28610 16.0840i 0.366779 0.635279i −0.622281 0.782794i \(-0.713794\pi\)
0.989060 + 0.147514i \(0.0471273\pi\)
\(642\) 3.54440 6.13908i 0.139886 0.242290i
\(643\) 1.96695 + 3.40686i 0.0775690 + 0.134353i 0.902201 0.431317i \(-0.141951\pi\)
−0.824632 + 0.565670i \(0.808618\pi\)
\(644\) 19.0159 2.25362i 0.749330 0.0888051i
\(645\) −0.0143591 −0.000565389
\(646\) 7.43035 0.292343
\(647\) −0.197076 −0.00774784 −0.00387392 0.999992i \(-0.501233\pi\)
−0.00387392 + 0.999992i \(0.501233\pi\)
\(648\) 5.18814 0.203809
\(649\) −11.7387 + 20.3321i −0.460785 + 0.798104i
\(650\) 3.89922 + 19.0480i 0.152940 + 0.747125i
\(651\) 3.55839 + 4.76375i 0.139464 + 0.186706i
\(652\) −3.14172 + 5.44163i −0.123039 + 0.213110i
\(653\) 7.23363 + 12.5290i 0.283074 + 0.490298i 0.972140 0.234400i \(-0.0753125\pi\)
−0.689066 + 0.724698i \(0.741979\pi\)
\(654\) −4.91514 + 8.51327i −0.192197 + 0.332895i
\(655\) 1.36813 + 2.36967i 0.0534573 + 0.0925908i
\(656\) −23.7624 −0.927765
\(657\) 21.4635 + 37.1758i 0.837369 + 1.45037i
\(658\) 58.4949 6.93238i 2.28037 0.270252i
\(659\) 11.7066 + 20.2764i 0.456024 + 0.789857i 0.998746 0.0500552i \(-0.0159397\pi\)
−0.542722 + 0.839912i \(0.682606\pi\)
\(660\) −2.26166 3.91731i −0.0880349 0.152481i
\(661\) −4.04817 −0.157456 −0.0787278 0.996896i \(-0.525086\pi\)
−0.0787278 + 0.996896i \(0.525086\pi\)
\(662\) 18.1657 + 31.4638i 0.706028 + 1.22288i
\(663\) −0.372602 1.82019i −0.0144707 0.0706904i
\(664\) −11.2587 −0.436921
\(665\) −4.98628 + 11.6108i −0.193360 + 0.450246i
\(666\) −18.9197 + 32.7699i −0.733125 + 1.26981i
\(667\) −0.743487 −0.0287879
\(668\) −1.74448 3.02153i −0.0674959 0.116906i
\(669\) 4.57416 7.92268i 0.176847 0.306309i
\(670\) 11.6088 0.448487
\(671\) −50.7276 −1.95832
\(672\) 3.29354 7.66914i 0.127051 0.295844i
\(673\) −3.64704 + 6.31685i −0.140583 + 0.243497i −0.927716 0.373286i \(-0.878231\pi\)
0.787133 + 0.616783i \(0.211564\pi\)
\(674\) −29.8076 51.6283i −1.14815 1.98865i
\(675\) −3.52609 6.10737i −0.135719 0.235073i
\(676\) 16.9658 + 12.7208i 0.652529 + 0.489260i
\(677\) 7.87553 13.6408i 0.302681 0.524259i −0.674061 0.738676i \(-0.735452\pi\)
0.976742 + 0.214416i \(0.0687849\pi\)
\(678\) 3.82593 6.62671i 0.146934 0.254497i
\(679\) 5.52849 + 7.40119i 0.212164 + 0.284032i
\(680\) −0.622636 1.07844i −0.0238770 0.0413562i
\(681\) 2.23843 3.87707i 0.0857767 0.148570i
\(682\) −21.9582 + 38.0327i −0.840822 + 1.45635i
\(683\) −20.7427 + 35.9274i −0.793697 + 1.37472i 0.129967 + 0.991518i \(0.458513\pi\)
−0.923664 + 0.383204i \(0.874820\pi\)
\(684\) 7.44717 12.8989i 0.284750 0.493201i
\(685\) −9.42819 16.3301i −0.360233 0.623941i
\(686\) −27.1439 22.5543i −1.03636 0.861127i
\(687\) −3.09725 + 5.36460i −0.118168 + 0.204672i
\(688\) 0.0523445 0.0906634i 0.00199562 0.00345651i
\(689\) 0.484993 + 0.161628i 0.0184767 + 0.00615754i
\(690\) 2.66828 + 4.62159i 0.101580 + 0.175941i
\(691\) 23.4108 + 40.5487i 0.890589 + 1.54255i 0.839171 + 0.543868i \(0.183041\pi\)
0.0514184 + 0.998677i \(0.483626\pi\)
\(692\) 13.5494 23.4683i 0.515073 0.892132i
\(693\) −32.5118 + 3.85307i −1.23502 + 0.146366i
\(694\) −22.2478 −0.844514
\(695\) 0.498992 0.0189278
\(696\) −0.0252292 + 0.0436983i −0.000956311 + 0.00165638i
\(697\) 3.10534 + 5.37860i 0.117623 + 0.203729i
\(698\) −45.7152 −1.73034
\(699\) 1.98977 3.44638i 0.0752600 0.130354i
\(700\) 12.1279 1.43731i 0.458392 0.0543252i
\(701\) 29.8626 1.12790 0.563948 0.825810i \(-0.309282\pi\)
0.563948 + 0.825810i \(0.309282\pi\)
\(702\) −16.2435 5.41329i −0.613072 0.204311i
\(703\) −11.4293 19.7961i −0.431063 0.746623i
\(704\) 21.2096 0.799366
\(705\) 3.68709 + 6.38623i 0.138864 + 0.240519i
\(706\) 12.1893 + 21.1124i 0.458749 + 0.794576i
\(707\) −6.77281 + 0.802663i −0.254718 + 0.0301873i
\(708\) 1.86721 + 3.23410i 0.0701740 + 0.121545i
\(709\) 26.9332 1.01150 0.505750 0.862680i \(-0.331216\pi\)
0.505750 + 0.862680i \(0.331216\pi\)
\(710\) 13.9932 + 24.2369i 0.525155 + 0.909595i
\(711\) 1.09067 1.88909i 0.0409031 0.0708463i
\(712\) −2.30450 3.99151i −0.0863647 0.149588i
\(713\) 11.6373 20.1563i 0.435819 0.754861i
\(714\) −2.57990 + 0.305750i −0.0965502 + 0.0114424i
\(715\) 4.68004 + 22.8623i 0.175023 + 0.855003i
\(716\) 0.440002 0.762105i 0.0164436 0.0284812i
\(717\) 8.41180 0.314144
\(718\) −23.5141 −0.877537
\(719\) −14.4988 −0.540713 −0.270356 0.962760i \(-0.587141\pi\)
−0.270356 + 0.962760i \(0.587141\pi\)
\(720\) −19.0921 −0.711519
\(721\) −17.6058 + 40.9959i −0.655675 + 1.52677i
\(722\) −8.08799 14.0088i −0.301004 0.521354i
\(723\) −1.56620 + 2.71274i −0.0582476 + 0.100888i
\(724\) −2.26049 + 3.91528i −0.0840105 + 0.145510i
\(725\) −0.474180 −0.0176106
\(726\) 3.38977 + 5.87125i 0.125806 + 0.217902i
\(727\) −6.26424 −0.232328 −0.116164 0.993230i \(-0.537060\pi\)
−0.116164 + 0.993230i \(0.537060\pi\)
\(728\) −4.45779 + 5.00817i −0.165217 + 0.185615i
\(729\) −17.5866 −0.651357
\(730\) −21.3926 37.0531i −0.791776 1.37140i
\(731\) −0.0273621 −0.00101203
\(732\) −4.03447 + 6.98790i −0.149118 + 0.258280i
\(733\) 5.99189 10.3783i 0.221316 0.383330i −0.733892 0.679266i \(-0.762298\pi\)
0.955208 + 0.295936i \(0.0956316\pi\)
\(734\) 1.93487 + 3.35130i 0.0714175 + 0.123699i
\(735\) 1.25352 4.23656i 0.0462367 0.156268i
\(736\) −32.6704 −1.20425
\(737\) −18.1696 −0.669286
\(738\) 27.7140 1.02017
\(739\) 13.5254 0.497539 0.248770 0.968563i \(-0.419974\pi\)
0.248770 + 0.968563i \(0.419974\pi\)
\(740\) 8.47091 14.6721i 0.311397 0.539355i
\(741\) 3.74704 3.32314i 0.137651 0.122079i
\(742\) 0.282075 0.656825i 0.0103553 0.0241128i
\(743\) 19.2299 33.3072i 0.705477 1.22192i −0.261043 0.965327i \(-0.584066\pi\)
0.966519 0.256594i \(-0.0826003\pi\)
\(744\) −0.789789 1.36795i −0.0289551 0.0501516i
\(745\) 2.88966 5.00504i 0.105869 0.183371i
\(746\) −3.69107 6.39312i −0.135140 0.234069i
\(747\) 45.1154 1.65068
\(748\) −4.30973 7.46466i −0.157579 0.272935i
\(749\) 13.7476 + 18.4044i 0.502326 + 0.672482i
\(750\) 4.70855 + 8.15544i 0.171932 + 0.297795i
\(751\) −5.85573 10.1424i −0.213679 0.370102i 0.739184 0.673503i \(-0.235211\pi\)
−0.952863 + 0.303401i \(0.901878\pi\)
\(752\) −53.7635 −1.96055
\(753\) 2.54151 + 4.40203i 0.0926178 + 0.160419i
\(754\) −0.861315 + 0.763875i −0.0313672 + 0.0278187i
\(755\) 3.12125 0.113594
\(756\) −4.24386 + 9.88201i −0.154348 + 0.359405i
\(757\) −4.65791 + 8.06773i −0.169295 + 0.293227i −0.938172 0.346169i \(-0.887482\pi\)
0.768877 + 0.639396i \(0.220816\pi\)
\(758\) 27.7600 1.00829
\(759\) −4.17627 7.23352i −0.151589 0.262560i
\(760\) 1.67841 2.90709i 0.0608824 0.105451i
\(761\) −43.9381 −1.59276 −0.796378 0.604799i \(-0.793253\pi\)
−0.796378 + 0.604799i \(0.793253\pi\)
\(762\) −12.9693 −0.469830
\(763\) −19.0643 25.5220i −0.690173 0.923959i
\(764\) 16.5079 28.5926i 0.597236 1.03444i
\(765\) 2.49501 + 4.32148i 0.0902072 + 0.156243i
\(766\) −25.5172 44.1971i −0.921973 1.59690i
\(767\) −3.86381 18.8750i −0.139514 0.681537i
\(768\) −4.32455 + 7.49035i −0.156049 + 0.270285i
\(769\) −12.6771 + 21.9573i −0.457147 + 0.791802i −0.998809 0.0487946i \(-0.984462\pi\)
0.541662 + 0.840597i \(0.317795\pi\)
\(770\) 32.4045 3.84035i 1.16778 0.138397i
\(771\) 3.25024 + 5.62957i 0.117054 + 0.202744i
\(772\) 13.3568 23.1347i 0.480723 0.832637i
\(773\) 11.5542 20.0125i 0.415576 0.719798i −0.579913 0.814678i \(-0.696913\pi\)
0.995489 + 0.0948801i \(0.0302468\pi\)
\(774\) −0.0610493 + 0.105741i −0.00219437 + 0.00380076i
\(775\) 7.42200 12.8553i 0.266606 0.461775i
\(776\) −1.22705 2.12532i −0.0440487 0.0762946i