Properties

Label 6336.2.k.d.287.8
Level $6336$
Weight $2$
Character 6336.287
Analytic conductor $50.593$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6336,2,Mod(287,6336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6336, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6336.287"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6336 = 2^{6} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6336.k (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,36,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(29)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.5932147207\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.11843234091237376.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4x^{11} + 8x^{10} - 4x^{9} - 12x^{7} + 56x^{6} - 36x^{5} - 108x^{3} + 648x^{2} - 972x + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{11}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 287.8
Root \(1.43058 + 0.976448i\) of defining polynomial
Character \(\chi\) \(=\) 6336.287
Dual form 6336.2.k.d.287.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.09174 q^{5} +0.908256i q^{7} -1.00000i q^{11} +3.39984i q^{13} -1.54396i q^{17} -2.69868 q^{19} -4.94380 q^{23} -3.80809 q^{25} +2.80809i q^{31} +0.991583i q^{35} -8.34363i q^{37} -8.34363i q^{41} -2.69868 q^{43} +1.85588 q^{47} +6.17507 q^{49} +1.09174 q^{53} -1.09174i q^{55} -11.7997i q^{59} -6.48776i q^{61} +3.71175i q^{65} -8.48528 q^{67} +1.85588 q^{71} -2.00000 q^{73} +0.908256 q^{77} -12.7079i q^{79} -8.62461i q^{83} -1.68561i q^{85} +5.64495i q^{89} -3.08792 q^{91} -2.94627 q^{95} +6.80809 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 8 q^{5} + 36 q^{25} - 28 q^{49} + 8 q^{53} - 24 q^{73} + 16 q^{77}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6336\mathbb{Z}\right)^\times\).

\(n\) \(1729\) \(3521\) \(4159\) \(4357\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.09174 0.488243 0.244121 0.969745i \(-0.421500\pi\)
0.244121 + 0.969745i \(0.421500\pi\)
\(6\) 0 0
\(7\) 0.908256i 0.343288i 0.985159 + 0.171644i \(0.0549079\pi\)
−0.985159 + 0.171644i \(0.945092\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 1.00000i − 0.301511i
\(12\) 0 0
\(13\) 3.39984i 0.942945i 0.881881 + 0.471472i \(0.156277\pi\)
−0.881881 + 0.471472i \(0.843723\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 1.54396i − 0.374465i −0.982316 0.187233i \(-0.940048\pi\)
0.982316 0.187233i \(-0.0599518\pi\)
\(18\) 0 0
\(19\) −2.69868 −0.619120 −0.309560 0.950880i \(-0.600182\pi\)
−0.309560 + 0.950880i \(0.600182\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.94380 −1.03085 −0.515426 0.856934i \(-0.672366\pi\)
−0.515426 + 0.856934i \(0.672366\pi\)
\(24\) 0 0
\(25\) −3.80809 −0.761619
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 2.80809i 0.504349i 0.967682 + 0.252174i \(0.0811456\pi\)
−0.967682 + 0.252174i \(0.918854\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.991583i 0.167608i
\(36\) 0 0
\(37\) − 8.34363i − 1.37168i −0.727750 0.685842i \(-0.759434\pi\)
0.727750 0.685842i \(-0.240566\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 8.34363i − 1.30306i −0.758624 0.651528i \(-0.774128\pi\)
0.758624 0.651528i \(-0.225872\pi\)
\(42\) 0 0
\(43\) −2.69868 −0.411545 −0.205772 0.978600i \(-0.565971\pi\)
−0.205772 + 0.978600i \(0.565971\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.85588 0.270707 0.135354 0.990797i \(-0.456783\pi\)
0.135354 + 0.990797i \(0.456783\pi\)
\(48\) 0 0
\(49\) 6.17507 0.882153
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.09174 0.149963 0.0749813 0.997185i \(-0.476110\pi\)
0.0749813 + 0.997185i \(0.476110\pi\)
\(54\) 0 0
\(55\) − 1.09174i − 0.147211i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 11.7997i − 1.53619i −0.640338 0.768094i \(-0.721206\pi\)
0.640338 0.768094i \(-0.278794\pi\)
\(60\) 0 0
\(61\) − 6.48776i − 0.830672i −0.909668 0.415336i \(-0.863664\pi\)
0.909668 0.415336i \(-0.136336\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.71175i 0.460386i
\(66\) 0 0
\(67\) −8.48528 −1.03664 −0.518321 0.855186i \(-0.673443\pi\)
−0.518321 + 0.855186i \(0.673443\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.85588 0.220252 0.110126 0.993918i \(-0.464875\pi\)
0.110126 + 0.993918i \(0.464875\pi\)
\(72\) 0 0
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.908256 0.103505
\(78\) 0 0
\(79\) − 12.7079i − 1.42975i −0.699250 0.714877i \(-0.746483\pi\)
0.699250 0.714877i \(-0.253517\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 8.62461i − 0.946673i −0.880882 0.473337i \(-0.843049\pi\)
0.880882 0.473337i \(-0.156951\pi\)
\(84\) 0 0
\(85\) − 1.68561i − 0.182830i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.64495i 0.598364i 0.954196 + 0.299182i \(0.0967137\pi\)
−0.954196 + 0.299182i \(0.903286\pi\)
\(90\) 0 0
\(91\) −3.08792 −0.323702
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.94627 −0.302281
\(96\) 0 0
\(97\) 6.80809 0.691257 0.345629 0.938371i \(-0.387666\pi\)
0.345629 + 0.938371i \(0.387666\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 14.6246 1.45520 0.727601 0.686000i \(-0.240635\pi\)
0.727601 + 0.686000i \(0.240635\pi\)
\(102\) 0 0
\(103\) − 8.99158i − 0.885967i −0.896530 0.442983i \(-0.853920\pi\)
0.896530 0.442983i \(-0.146080\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.79968i 0.560676i 0.959901 + 0.280338i \(0.0904465\pi\)
−0.959901 + 0.280338i \(0.909553\pi\)
\(108\) 0 0
\(109\) − 5.08545i − 0.487097i −0.969889 0.243549i \(-0.921688\pi\)
0.969889 0.243549i \(-0.0783116\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 4.24264i − 0.399114i −0.979886 0.199557i \(-0.936050\pi\)
0.979886 0.199557i \(-0.0639503\pi\)
\(114\) 0 0
\(115\) −5.39736 −0.503307
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.40231 0.128550
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.61619 −0.860098
\(126\) 0 0
\(127\) 5.27523i 0.468101i 0.972224 + 0.234051i \(0.0751982\pi\)
−0.972224 + 0.234051i \(0.924802\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 4.80809i 0.420085i 0.977692 + 0.210043i \(0.0673603\pi\)
−0.977692 + 0.210043i \(0.932640\pi\)
\(132\) 0 0
\(133\) − 2.45109i − 0.212537i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 12.7279i 1.08742i 0.839273 + 0.543710i \(0.182981\pi\)
−0.839273 + 0.543710i \(0.817019\pi\)
\(138\) 0 0
\(139\) −8.87452 −0.752727 −0.376363 0.926472i \(-0.622826\pi\)
−0.376363 + 0.926472i \(0.622826\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.39984 0.284309
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 7.19191 0.589184 0.294592 0.955623i \(-0.404816\pi\)
0.294592 + 0.955623i \(0.404816\pi\)
\(150\) 0 0
\(151\) 12.7079i 1.03416i 0.855938 + 0.517078i \(0.172980\pi\)
−0.855938 + 0.517078i \(0.827020\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.06572i 0.246245i
\(156\) 0 0
\(157\) − 6.79967i − 0.542673i −0.962485 0.271336i \(-0.912534\pi\)
0.962485 0.271336i \(-0.0874656\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 4.49023i − 0.353880i
\(162\) 0 0
\(163\) −8.48528 −0.664619 −0.332309 0.943170i \(-0.607828\pi\)
−0.332309 + 0.943170i \(0.607828\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3.85340 −0.298185 −0.149093 0.988823i \(-0.547635\pi\)
−0.149093 + 0.988823i \(0.547635\pi\)
\(168\) 0 0
\(169\) 1.44112 0.110855
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 21.6162 1.64345 0.821724 0.569885i \(-0.193012\pi\)
0.821724 + 0.569885i \(0.193012\pi\)
\(174\) 0 0
\(175\) − 3.45872i − 0.261455i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 21.6162i − 1.61567i −0.589409 0.807835i \(-0.700639\pi\)
0.589409 0.807835i \(-0.299361\pi\)
\(180\) 0 0
\(181\) − 18.5145i − 1.37617i −0.725628 0.688087i \(-0.758451\pi\)
0.725628 0.688087i \(-0.241549\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 9.10911i − 0.669715i
\(186\) 0 0
\(187\) −1.54396 −0.112906
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.16532 −0.301392 −0.150696 0.988580i \(-0.548151\pi\)
−0.150696 + 0.988580i \(0.548151\pi\)
\(192\) 0 0
\(193\) −5.43270 −0.391054 −0.195527 0.980698i \(-0.562642\pi\)
−0.195527 + 0.980698i \(0.562642\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 11.3586 0.809264 0.404632 0.914480i \(-0.367400\pi\)
0.404632 + 0.914480i \(0.367400\pi\)
\(198\) 0 0
\(199\) 4.55047i 0.322574i 0.986908 + 0.161287i \(0.0515645\pi\)
−0.986908 + 0.161287i \(0.948436\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) − 9.10911i − 0.636208i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.69868i 0.186672i
\(210\) 0 0
\(211\) −15.6742 −1.07906 −0.539528 0.841968i \(-0.681397\pi\)
−0.539528 + 0.841968i \(0.681397\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.94627 −0.200934
\(216\) 0 0
\(217\) −2.55047 −0.173137
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 5.24921 0.353100
\(222\) 0 0
\(223\) 15.9832i 1.07031i 0.844753 + 0.535156i \(0.179747\pi\)
−0.844753 + 0.535156i \(0.820253\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 22.1667i − 1.47125i −0.677388 0.735626i \(-0.736888\pi\)
0.677388 0.735626i \(-0.263112\pi\)
\(228\) 0 0
\(229\) − 23.7702i − 1.57078i −0.619000 0.785391i \(-0.712462\pi\)
0.619000 0.785391i \(-0.287538\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 14.5195i 0.951202i 0.879661 + 0.475601i \(0.157769\pi\)
−0.879661 + 0.475601i \(0.842231\pi\)
\(234\) 0 0
\(235\) 2.02614 0.132171
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 10.0292 0.648738 0.324369 0.945931i \(-0.394848\pi\)
0.324369 + 0.945931i \(0.394848\pi\)
\(240\) 0 0
\(241\) −15.9832 −1.02957 −0.514783 0.857320i \(-0.672128\pi\)
−0.514783 + 0.857320i \(0.672128\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 6.74160 0.430705
\(246\) 0 0
\(247\) − 9.17507i − 0.583796i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 11.7997i − 0.744789i −0.928075 0.372395i \(-0.878537\pi\)
0.928075 0.372395i \(-0.121463\pi\)
\(252\) 0 0
\(253\) 4.94380i 0.310814i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 1.15472i − 0.0720295i −0.999351 0.0360148i \(-0.988534\pi\)
0.999351 0.0360148i \(-0.0114663\pi\)
\(258\) 0 0
\(259\) 7.57815 0.470883
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3.22957 0.199144 0.0995719 0.995030i \(-0.468253\pi\)
0.0995719 + 0.995030i \(0.468253\pi\)
\(264\) 0 0
\(265\) 1.19191 0.0732182
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3.27523 0.199695 0.0998473 0.995003i \(-0.468165\pi\)
0.0998473 + 0.995003i \(0.468165\pi\)
\(270\) 0 0
\(271\) 12.9083i 0.784121i 0.919940 + 0.392060i \(0.128238\pi\)
−0.919940 + 0.392060i \(0.871762\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.80809i 0.229637i
\(276\) 0 0
\(277\) − 14.9730i − 0.899643i −0.893119 0.449821i \(-0.851488\pi\)
0.893119 0.449821i \(-0.148512\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 0.765482i − 0.0456648i −0.999739 0.0228324i \(-0.992732\pi\)
0.999739 0.0228324i \(-0.00726842\pi\)
\(282\) 0 0
\(283\) −16.2980 −0.968817 −0.484408 0.874842i \(-0.660965\pi\)
−0.484408 + 0.874842i \(0.660965\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7.57815 0.447324
\(288\) 0 0
\(289\) 14.6162 0.859776
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −4.16665 −0.243419 −0.121709 0.992566i \(-0.538838\pi\)
−0.121709 + 0.992566i \(0.538838\pi\)
\(294\) 0 0
\(295\) − 12.8822i − 0.750033i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 16.8081i − 0.972037i
\(300\) 0 0
\(301\) − 2.45109i − 0.141279i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 7.08297i − 0.405570i
\(306\) 0 0
\(307\) −14.8957 −0.850143 −0.425072 0.905160i \(-0.639751\pi\)
−0.425072 + 0.905160i \(0.639751\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −0.170266 −0.00965492 −0.00482746 0.999988i \(-0.501537\pi\)
−0.00482746 + 0.999988i \(0.501537\pi\)
\(312\) 0 0
\(313\) −15.6330 −0.883631 −0.441815 0.897106i \(-0.645665\pi\)
−0.441815 + 0.897106i \(0.645665\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6.34095 −0.356143 −0.178072 0.984018i \(-0.556986\pi\)
−0.178072 + 0.984018i \(0.556986\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4.16665i 0.231839i
\(324\) 0 0
\(325\) − 12.9469i − 0.718164i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.68561i 0.0929307i
\(330\) 0 0
\(331\) −34.4363 −1.89279 −0.946395 0.323011i \(-0.895305\pi\)
−0.946395 + 0.323011i \(0.895305\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −9.26376 −0.506133
\(336\) 0 0
\(337\) −1.26604 −0.0689658 −0.0344829 0.999405i \(-0.510978\pi\)
−0.0344829 + 0.999405i \(0.510978\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.80809 0.152067
\(342\) 0 0
\(343\) 11.9663i 0.646121i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 14.9747i 0.803887i 0.915665 + 0.401943i \(0.131665\pi\)
−0.915665 + 0.401943i \(0.868335\pi\)
\(348\) 0 0
\(349\) 2.62136i 0.140318i 0.997536 + 0.0701590i \(0.0223507\pi\)
−0.997536 + 0.0701590i \(0.977649\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 24.6417i − 1.31154i −0.754959 0.655772i \(-0.772343\pi\)
0.754959 0.655772i \(-0.227657\pi\)
\(354\) 0 0
\(355\) 2.02614 0.107536
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 37.3696 1.97229 0.986145 0.165883i \(-0.0530474\pi\)
0.986145 + 0.165883i \(0.0530474\pi\)
\(360\) 0 0
\(361\) −11.7171 −0.616691
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2.18349 −0.114289
\(366\) 0 0
\(367\) − 0.0168341i 0 0.000878733i −1.00000 0.000439366i \(-0.999860\pi\)
1.00000 0.000439366i \(-0.000139855\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.991583i 0.0514804i
\(372\) 0 0
\(373\) − 27.9485i − 1.44712i −0.690261 0.723560i \(-0.742504\pi\)
0.690261 0.723560i \(-0.257496\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −2.30944 −0.118628 −0.0593140 0.998239i \(-0.518891\pi\)
−0.0593140 + 0.998239i \(0.518891\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −4.16532 −0.212838 −0.106419 0.994321i \(-0.533938\pi\)
−0.106419 + 0.994321i \(0.533938\pi\)
\(384\) 0 0
\(385\) 0.991583 0.0505357
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 20.7248 1.05079 0.525394 0.850859i \(-0.323918\pi\)
0.525394 + 0.850859i \(0.323918\pi\)
\(390\) 0 0
\(391\) 7.63302i 0.386019i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 13.8738i − 0.698067i
\(396\) 0 0
\(397\) 21.6024i 1.08420i 0.840315 + 0.542098i \(0.182370\pi\)
−0.840315 + 0.542098i \(0.817630\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 24.9250i 1.24469i 0.782742 + 0.622346i \(0.213820\pi\)
−0.782742 + 0.622346i \(0.786180\pi\)
\(402\) 0 0
\(403\) −9.54706 −0.475573
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −8.34363 −0.413578
\(408\) 0 0
\(409\) 5.43270 0.268630 0.134315 0.990939i \(-0.457117\pi\)
0.134315 + 0.990939i \(0.457117\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 10.7171 0.527355
\(414\) 0 0
\(415\) − 9.41586i − 0.462207i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 6.55047i − 0.320011i −0.987116 0.160006i \(-0.948849\pi\)
0.987116 0.160006i \(-0.0511512\pi\)
\(420\) 0 0
\(421\) − 5.53901i − 0.269955i −0.990849 0.134977i \(-0.956904\pi\)
0.990849 0.134977i \(-0.0430962\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 5.87954i 0.285200i
\(426\) 0 0
\(427\) 5.89254 0.285160
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −30.7116 −1.47932 −0.739662 0.672979i \(-0.765015\pi\)
−0.739662 + 0.672979i \(0.765015\pi\)
\(432\) 0 0
\(433\) −9.98317 −0.479760 −0.239880 0.970803i \(-0.577108\pi\)
−0.239880 + 0.970803i \(0.577108\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 13.3417 0.638221
\(438\) 0 0
\(439\) − 5.07491i − 0.242212i −0.992640 0.121106i \(-0.961356\pi\)
0.992640 0.121106i \(-0.0386441\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 2.38381i − 0.113258i −0.998395 0.0566292i \(-0.981965\pi\)
0.998395 0.0566292i \(-0.0180353\pi\)
\(444\) 0 0
\(445\) 6.16284i 0.292147i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 12.4446i 0.587298i 0.955913 + 0.293649i \(0.0948697\pi\)
−0.955913 + 0.293649i \(0.905130\pi\)
\(450\) 0 0
\(451\) −8.34363 −0.392886
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −3.37122 −0.158045
\(456\) 0 0
\(457\) 27.0489 1.26529 0.632647 0.774440i \(-0.281969\pi\)
0.632647 + 0.774440i \(0.281969\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0.200323 0.00932997 0.00466499 0.999989i \(-0.498515\pi\)
0.00466499 + 0.999989i \(0.498515\pi\)
\(462\) 0 0
\(463\) − 16.9916i − 0.789666i −0.918753 0.394833i \(-0.870802\pi\)
0.918753 0.394833i \(-0.129198\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 3.26604i − 0.151134i −0.997141 0.0755672i \(-0.975923\pi\)
0.997141 0.0755672i \(-0.0240768\pi\)
\(468\) 0 0
\(469\) − 7.70680i − 0.355867i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.69868i 0.124085i
\(474\) 0 0
\(475\) 10.2768 0.471533
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 16.8289 0.768933 0.384466 0.923139i \(-0.374385\pi\)
0.384466 + 0.923139i \(0.374385\pi\)
\(480\) 0 0
\(481\) 28.3670 1.29342
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 7.43270 0.337501
\(486\) 0 0
\(487\) − 7.41586i − 0.336045i −0.985783 0.168022i \(-0.946262\pi\)
0.985783 0.168022i \(-0.0537381\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 8.18349i − 0.369316i −0.982803 0.184658i \(-0.940882\pi\)
0.982803 0.184658i \(-0.0591177\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.68561i 0.0756099i
\(498\) 0 0
\(499\) −24.3941 −1.09203 −0.546014 0.837776i \(-0.683856\pi\)
−0.546014 + 0.837776i \(0.683856\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6.94132 0.309498 0.154749 0.987954i \(-0.450543\pi\)
0.154749 + 0.987954i \(0.450543\pi\)
\(504\) 0 0
\(505\) 15.9663 0.710492
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −20.7248 −0.918609 −0.459305 0.888279i \(-0.651901\pi\)
−0.459305 + 0.888279i \(0.651901\pi\)
\(510\) 0 0
\(511\) − 1.81651i − 0.0803577i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 9.81651i − 0.432567i
\(516\) 0 0
\(517\) − 1.85588i − 0.0816213i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 14.1302i 0.619057i 0.950890 + 0.309528i \(0.100171\pi\)
−0.950890 + 0.309528i \(0.899829\pi\)
\(522\) 0 0
\(523\) −28.4951 −1.24600 −0.623001 0.782221i \(-0.714087\pi\)
−0.623001 + 0.782221i \(0.714087\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.33558 0.188861
\(528\) 0 0
\(529\) 1.44112 0.0626572
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 28.3670 1.22871
\(534\) 0 0
\(535\) 6.33177i 0.273746i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 6.17507i − 0.265979i
\(540\) 0 0
\(541\) 5.08545i 0.218640i 0.994007 + 0.109320i \(0.0348674\pi\)
−0.994007 + 0.109320i \(0.965133\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 5.55201i − 0.237822i
\(546\) 0 0
\(547\) 2.07485 0.0887141 0.0443571 0.999016i \(-0.485876\pi\)
0.0443571 + 0.999016i \(0.485876\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 11.5420 0.490818
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −28.1667 −1.19346 −0.596730 0.802442i \(-0.703534\pi\)
−0.596730 + 0.802442i \(0.703534\pi\)
\(558\) 0 0
\(559\) − 9.17507i − 0.388064i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 3.26604i 0.137647i 0.997629 + 0.0688237i \(0.0219246\pi\)
−0.997629 + 0.0688237i \(0.978075\pi\)
\(564\) 0 0
\(565\) − 4.63188i − 0.194865i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 4.91518i − 0.206055i −0.994679 0.103028i \(-0.967147\pi\)
0.994679 0.103028i \(-0.0328530\pi\)
\(570\) 0 0
\(571\) 35.4494 1.48351 0.741755 0.670671i \(-0.233994\pi\)
0.741755 + 0.670671i \(0.233994\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 18.8264 0.785117
\(576\) 0 0
\(577\) −42.4074 −1.76545 −0.882723 0.469895i \(-0.844292\pi\)
−0.882723 + 0.469895i \(0.844292\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 7.83335 0.324982
\(582\) 0 0
\(583\) − 1.09174i − 0.0452154i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 28.1667i − 1.16256i −0.813703 0.581281i \(-0.802552\pi\)
0.813703 0.581281i \(-0.197448\pi\)
\(588\) 0 0
\(589\) − 7.57815i − 0.312252i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 26.4332i − 1.08548i −0.839900 0.542741i \(-0.817387\pi\)
0.839900 0.542741i \(-0.182613\pi\)
\(594\) 0 0
\(595\) 1.53096 0.0627634
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −31.8019 −1.29939 −0.649696 0.760194i \(-0.725104\pi\)
−0.649696 + 0.760194i \(0.725104\pi\)
\(600\) 0 0
\(601\) 6.56730 0.267886 0.133943 0.990989i \(-0.457236\pi\)
0.133943 + 0.990989i \(0.457236\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.09174 −0.0443857
\(606\) 0 0
\(607\) − 13.4756i − 0.546956i −0.961878 0.273478i \(-0.911826\pi\)
0.961878 0.273478i \(-0.0881741\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 6.30967i 0.255262i
\(612\) 0 0
\(613\) − 40.1456i − 1.62146i −0.585417 0.810732i \(-0.699069\pi\)
0.585417 0.810732i \(-0.300931\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0.247589i 0.00996756i 0.999988 + 0.00498378i \(0.00158639\pi\)
−0.999988 + 0.00498378i \(0.998414\pi\)
\(618\) 0 0
\(619\) −30.5699 −1.22871 −0.614354 0.789030i \(-0.710583\pi\)
−0.614354 + 0.789030i \(0.710583\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −5.12706 −0.205411
\(624\) 0 0
\(625\) 8.54205 0.341682
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −12.8822 −0.513648
\(630\) 0 0
\(631\) 3.54205i 0.141007i 0.997512 + 0.0705034i \(0.0224606\pi\)
−0.997512 + 0.0705034i \(0.977539\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 5.75921i 0.228547i
\(636\) 0 0
\(637\) 20.9942i 0.831822i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 21.8370i − 0.862511i −0.902230 0.431256i \(-0.858071\pi\)
0.902230 0.431256i \(-0.141929\pi\)
\(642\) 0 0
\(643\) 16.9706 0.669254 0.334627 0.942351i \(-0.391390\pi\)
0.334627 + 0.942351i \(0.391390\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −46.0251 −1.80943 −0.904717 0.426013i \(-0.859918\pi\)
−0.904717 + 0.426013i \(0.859918\pi\)
\(648\) 0 0
\(649\) −11.7997 −0.463178
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −11.1086 −0.434712 −0.217356 0.976092i \(-0.569743\pi\)
−0.217356 + 0.976092i \(0.569743\pi\)
\(654\) 0 0
\(655\) 5.24921i 0.205104i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 7.23238i 0.281733i 0.990029 + 0.140867i \(0.0449889\pi\)
−0.990029 + 0.140867i \(0.955011\pi\)
\(660\) 0 0
\(661\) − 11.4186i − 0.444130i −0.975032 0.222065i \(-0.928720\pi\)
0.975032 0.222065i \(-0.0712798\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 2.67597i − 0.103770i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −6.48776 −0.250457
\(672\) 0 0
\(673\) −41.9663 −1.61768 −0.808842 0.588027i \(-0.799905\pi\)
−0.808842 + 0.588027i \(0.799905\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 23.3586 0.897742 0.448871 0.893596i \(-0.351826\pi\)
0.448871 + 0.893596i \(0.351826\pi\)
\(678\) 0 0
\(679\) 6.18349i 0.237301i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 14.1835i − 0.542716i −0.962478 0.271358i \(-0.912527\pi\)
0.962478 0.271358i \(-0.0874728\pi\)
\(684\) 0 0
\(685\) 13.8956i 0.530925i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3.71175i 0.141406i
\(690\) 0 0
\(691\) 7.70680 0.293181 0.146590 0.989197i \(-0.453170\pi\)
0.146590 + 0.989197i \(0.453170\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −9.68871 −0.367514
\(696\) 0 0
\(697\) −12.8822 −0.487949
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −25.7828 −0.973805 −0.486902 0.873456i \(-0.661873\pi\)
−0.486902 + 0.873456i \(0.661873\pi\)
\(702\) 0 0
\(703\) 22.5168i 0.849237i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 13.2829i 0.499554i
\(708\) 0 0
\(709\) − 10.1709i − 0.381976i −0.981592 0.190988i \(-0.938831\pi\)
0.981592 0.190988i \(-0.0611691\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 13.8826i − 0.519909i
\(714\) 0 0
\(715\) 3.71175 0.138812
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −31.8019 −1.18601 −0.593006 0.805198i \(-0.702059\pi\)
−0.593006 + 0.805198i \(0.702059\pi\)
\(720\) 0 0
\(721\) 8.16665 0.304142
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 17.0657i 0.632933i 0.948604 + 0.316466i \(0.102496\pi\)
−0.948604 + 0.316466i \(0.897504\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 4.16665i 0.154109i
\(732\) 0 0
\(733\) 48.6309i 1.79622i 0.439769 + 0.898111i \(0.355060\pi\)
−0.439769 + 0.898111i \(0.644940\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8.48528i 0.312559i
\(738\) 0 0
\(739\) −2.07485 −0.0763245 −0.0381623 0.999272i \(-0.512150\pi\)
−0.0381623 + 0.999272i \(0.512150\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 46.6333 1.71081 0.855406 0.517959i \(-0.173308\pi\)
0.855406 + 0.517959i \(0.173308\pi\)
\(744\) 0 0
\(745\) 7.85172 0.287665
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −5.26759 −0.192473
\(750\) 0 0
\(751\) − 7.90903i − 0.288605i −0.989534 0.144302i \(-0.953906\pi\)
0.989534 0.144302i \(-0.0460938\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 13.8738i 0.504920i
\(756\) 0 0
\(757\) 29.6498i 1.07764i 0.842421 + 0.538820i \(0.181130\pi\)
−0.842421 + 0.538820i \(0.818870\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 4.34858i − 0.157636i −0.996889 0.0788180i \(-0.974885\pi\)
0.996889 0.0788180i \(-0.0251146\pi\)
\(762\) 0 0
\(763\) 4.61888 0.167215
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 40.1170 1.44854
\(768\) 0 0
\(769\) 18.1667 0.655106 0.327553 0.944833i \(-0.393776\pi\)
0.327553 + 0.944833i \(0.393776\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 8.52444 0.306603 0.153301 0.988179i \(-0.451009\pi\)
0.153301 + 0.988179i \(0.451009\pi\)
\(774\) 0 0
\(775\) − 10.6935i − 0.384121i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 22.5168i 0.806748i
\(780\) 0 0
\(781\) − 1.85588i − 0.0664085i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 7.42350i − 0.264956i
\(786\) 0 0
\(787\) 40.2229 1.43379 0.716896 0.697180i \(-0.245562\pi\)
0.716896 + 0.697180i \(0.245562\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 3.85340 0.137011
\(792\) 0 0
\(793\) 22.0573 0.783278
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −11.1086 −0.393486 −0.196743 0.980455i \(-0.563036\pi\)
−0.196743 + 0.980455i \(0.563036\pi\)
\(798\) 0 0
\(799\) − 2.86540i − 0.101370i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 2.00000i 0.0705785i
\(804\) 0 0
\(805\) − 4.90218i − 0.172779i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 47.3988i − 1.66645i −0.552931 0.833227i \(-0.686491\pi\)
0.552931 0.833227i \(-0.313509\pi\)
\(810\) 0 0
\(811\) 37.4755 1.31594 0.657972 0.753043i \(-0.271415\pi\)
0.657972 + 0.753043i \(0.271415\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −9.26376 −0.324495
\(816\) 0 0
\(817\) 7.28288 0.254796
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 41.4900 1.44801 0.724006 0.689794i \(-0.242299\pi\)
0.724006 + 0.689794i \(0.242299\pi\)
\(822\) 0 0
\(823\) 3.98317i 0.138844i 0.997587 + 0.0694222i \(0.0221156\pi\)
−0.997587 + 0.0694222i \(0.977884\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 41.3586i 1.43818i 0.694918 + 0.719089i \(0.255441\pi\)
−0.694918 + 0.719089i \(0.744559\pi\)
\(828\) 0 0
\(829\) 3.37122i 0.117087i 0.998285 + 0.0585436i \(0.0186457\pi\)
−0.998285 + 0.0585436i \(0.981354\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 9.53406i − 0.330336i
\(834\) 0 0
\(835\) −4.20693 −0.145587
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 12.0268 0.415210 0.207605 0.978213i \(-0.433433\pi\)
0.207605 + 0.978213i \(0.433433\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.57333 0.0541242
\(846\) 0 0
\(847\) − 0.908256i − 0.0312080i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 41.2492i 1.41400i
\(852\) 0 0
\(853\) − 31.6603i − 1.08403i −0.840369 0.542014i \(-0.817662\pi\)
0.840369 0.542014i \(-0.182338\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 30.4283i 1.03941i 0.854346 + 0.519705i \(0.173958\pi\)
−0.854346 + 0.519705i \(0.826042\pi\)
\(858\) 0 0
\(859\) 12.8209 0.437442 0.218721 0.975787i \(-0.429811\pi\)
0.218721 + 0.975787i \(0.429811\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −34.1114 −1.16117 −0.580583 0.814201i \(-0.697175\pi\)
−0.580583 + 0.814201i \(0.697175\pi\)
\(864\) 0 0
\(865\) 23.5994 0.802402
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −12.7079 −0.431087
\(870\) 0 0
\(871\) − 28.8486i − 0.977496i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 8.73396i − 0.295262i
\(876\) 0 0
\(877\) 30.2580i 1.02174i 0.859658 + 0.510870i \(0.170677\pi\)
−0.859658 + 0.510870i \(0.829323\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 26.0440i 0.877444i 0.898623 + 0.438722i \(0.144569\pi\)
−0.898623 + 0.438722i \(0.855431\pi\)
\(882\) 0 0
\(883\) 2.30944 0.0777189 0.0388595 0.999245i \(-0.487628\pi\)
0.0388595 + 0.999245i \(0.487628\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 7.08297 0.237823 0.118911 0.992905i \(-0.462060\pi\)
0.118911 + 0.992905i \(0.462060\pi\)
\(888\) 0 0
\(889\) −4.79126 −0.160694
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −5.00842 −0.167600
\(894\) 0 0
\(895\) − 23.5994i − 0.788839i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) − 1.68561i − 0.0561558i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 20.2131i − 0.671907i
\(906\) 0 0
\(907\) −7.42350 −0.246493 −0.123247 0.992376i \(-0.539331\pi\)
−0.123247 + 0.992376i \(0.539331\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 23.3167 0.772516 0.386258 0.922391i \(-0.373767\pi\)
0.386258 + 0.922391i \(0.373767\pi\)
\(912\) 0 0
\(913\) −8.62461 −0.285433
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −4.36698 −0.144210
\(918\) 0 0
\(919\) − 4.14063i − 0.136587i −0.997665 0.0682934i \(-0.978245\pi\)
0.997665 0.0682934i \(-0.0217554\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 6.30967i 0.207685i
\(924\) 0 0
\(925\) 31.7733i 1.04470i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 40.9884i 1.34479i 0.740195 + 0.672393i \(0.234733\pi\)
−0.740195 + 0.672393i \(0.765267\pi\)
\(930\) 0 0
\(931\) −16.6645 −0.546159
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −1.68561 −0.0551253
\(936\) 0 0
\(937\) −27.9832 −0.914170 −0.457085 0.889423i \(-0.651107\pi\)
−0.457085 + 0.889423i \(0.651107\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −42.5909 −1.38842 −0.694212 0.719770i \(-0.744247\pi\)
−0.694212 + 0.719770i \(0.744247\pi\)
\(942\) 0 0
\(943\) 41.2492i 1.34326i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 52.8486i − 1.71735i −0.512523 0.858674i \(-0.671289\pi\)
0.512523 0.858674i \(-0.328711\pi\)
\(948\) 0 0
\(949\) − 6.79967i − 0.220727i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 21.4478i − 0.694762i −0.937724 0.347381i \(-0.887071\pi\)
0.937724 0.347381i \(-0.112929\pi\)
\(954\) 0 0
\(955\) −4.54746 −0.147152
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −11.5602 −0.373299
\(960\) 0 0
\(961\) 23.1146 0.745633
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −5.93112 −0.190929
\(966\) 0 0
\(967\) 22.8914i 0.736138i 0.929798 + 0.368069i \(0.119981\pi\)
−0.929798 + 0.368069i \(0.880019\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 34.4984i 1.10711i 0.832814 + 0.553553i \(0.186729\pi\)
−0.832814 + 0.553553i \(0.813271\pi\)
\(972\) 0 0
\(973\) − 8.06033i − 0.258402i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 24.3011i 0.777462i 0.921351 + 0.388731i \(0.127086\pi\)
−0.921351 + 0.388731i \(0.872914\pi\)
\(978\) 0 0
\(979\) 5.64495 0.180413
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −20.2287 −0.645197 −0.322598 0.946536i \(-0.604556\pi\)
−0.322598 + 0.946536i \(0.604556\pi\)
\(984\) 0 0
\(985\) 12.4006 0.395117
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 13.3417 0.424242
\(990\) 0 0
\(991\) 7.17507i 0.227924i 0.993485 + 0.113962i \(0.0363542\pi\)
−0.993485 + 0.113962i \(0.963646\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 4.96795i 0.157495i
\(996\) 0 0
\(997\) − 1.71423i − 0.0542901i −0.999632 0.0271450i \(-0.991358\pi\)
0.999632 0.0271450i \(-0.00864160\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6336.2.k.d.287.8 yes 12
3.2 odd 2 6336.2.k.c.287.8 yes 12
4.3 odd 2 inner 6336.2.k.d.287.6 yes 12
8.3 odd 2 6336.2.k.c.287.5 12
8.5 even 2 6336.2.k.c.287.7 yes 12
12.11 even 2 6336.2.k.c.287.6 yes 12
24.5 odd 2 inner 6336.2.k.d.287.7 yes 12
24.11 even 2 inner 6336.2.k.d.287.5 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6336.2.k.c.287.5 12 8.3 odd 2
6336.2.k.c.287.6 yes 12 12.11 even 2
6336.2.k.c.287.7 yes 12 8.5 even 2
6336.2.k.c.287.8 yes 12 3.2 odd 2
6336.2.k.d.287.5 yes 12 24.11 even 2 inner
6336.2.k.d.287.6 yes 12 4.3 odd 2 inner
6336.2.k.d.287.7 yes 12 24.5 odd 2 inner
6336.2.k.d.287.8 yes 12 1.1 even 1 trivial