Properties

Label 6336.2.k.d
Level $6336$
Weight $2$
Character orbit 6336.k
Analytic conductor $50.593$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6336,2,Mod(287,6336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6336, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6336.287"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6336 = 2^{6} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6336.k (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,36,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(29)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.5932147207\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.11843234091237376.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4x^{11} + 8x^{10} - 4x^{9} - 12x^{7} + 56x^{6} - 36x^{5} - 108x^{3} + 648x^{2} - 972x + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{11}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} + 1) q^{5} + ( - \beta_{5} + \beta_{4}) q^{7} - \beta_{4} q^{11} + \beta_{8} q^{13} + \beta_{11} q^{17} + ( - \beta_{10} - \beta_{9}) q^{19} + (\beta_{9} + \beta_{6}) q^{23} + ( - \beta_{3} - \beta_{2} + 3) q^{25}+ \cdots + (\beta_{3} + \beta_{2}) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 8 q^{5} + 36 q^{25} - 28 q^{49} + 8 q^{53} - 24 q^{73} + 16 q^{77}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 4x^{11} + 8x^{10} - 4x^{9} - 12x^{7} + 56x^{6} - 36x^{5} - 108x^{3} + 648x^{2} - 972x + 729 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 377 \nu^{11} - 8 \nu^{10} - 320 \nu^{9} - 920 \nu^{8} + 4647 \nu^{7} + 1695 \nu^{6} - 17111 \nu^{5} + \cdots - 80676 ) / 53217 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 7 \nu^{11} + 20 \nu^{10} - 46 \nu^{9} + 104 \nu^{8} + 177 \nu^{7} + 96 \nu^{6} - 211 \nu^{5} + \cdots + 9963 ) / 729 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 11 \nu^{11} - 52 \nu^{10} + 62 \nu^{9} - 166 \nu^{8} - 381 \nu^{7} - 336 \nu^{6} + 23 \nu^{5} + \cdots - 17739 ) / 729 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 1270 \nu^{11} + 3718 \nu^{10} - 5018 \nu^{9} - 2108 \nu^{8} + 30 \nu^{7} + 21837 \nu^{6} + \cdots + 508356 ) / 53217 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 89 \nu^{11} - 254 \nu^{10} + 352 \nu^{9} + 136 \nu^{8} - 9 \nu^{7} - 1317 \nu^{6} + 2857 \nu^{5} + \cdots - 36612 ) / 1971 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 13 \nu^{11} - 40 \nu^{10} + 47 \nu^{9} + 26 \nu^{8} + 15 \nu^{7} - 228 \nu^{6} + 395 \nu^{5} + \cdots - 4374 ) / 243 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 518 \nu^{11} + 686 \nu^{10} - 373 \nu^{9} - 2140 \nu^{8} - 3240 \nu^{7} + 4614 \nu^{6} + \cdots - 53460 ) / 5913 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 4789 \nu^{11} + 10882 \nu^{10} - 12137 \nu^{9} - 13952 \nu^{8} - 9447 \nu^{7} + 65982 \nu^{6} + \cdots + 910764 ) / 53217 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 76 \nu^{11} - 310 \nu^{10} + 398 \nu^{9} + 44 \nu^{8} - 336 \nu^{7} - 1704 \nu^{6} + 3248 \nu^{5} + \cdots - 47628 ) / 729 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 26 \nu^{11} - 116 \nu^{10} + 139 \nu^{9} - 2 \nu^{8} - 132 \nu^{7} - 708 \nu^{6} + 1060 \nu^{5} + \cdots - 17982 ) / 243 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 6668 \nu^{11} - 10772 \nu^{10} + 9310 \nu^{9} + 21346 \nu^{8} + 33096 \nu^{7} - 68100 \nu^{6} + \cdots - 386856 ) / 53217 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{10} + 3\beta_{8} - \beta_{7} - 3\beta_{6} + 3\beta_{5} - 3\beta_{4} + 3\beta_{2} + 3 ) / 12 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 2\beta_{10} - 3\beta_{9} + 9\beta_{5} + 12\beta_{4} - 3\beta_1 ) / 12 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -2\beta_{10} + 3\beta_{8} - 2\beta_{7} + 3\beta_{6} - 9\beta_{4} + 3\beta_{3} - 3\beta _1 - 9 ) / 6 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -9\beta_{11} - 14\beta_{7} - 3\beta_{3} - 15\beta_{2} - 60 ) / 12 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 12 \beta_{11} - 7 \beta_{10} + 12 \beta_{9} - 9 \beta_{8} + 7 \beta_{7} + 9 \beta_{6} - 39 \beta_{5} + \cdots - 27 ) / 12 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( -8\beta_{10} + 12\beta_{9} + 6\beta_{6} - 3\beta_{5} + 27\beta_{4} + 9\beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 12 \beta_{11} + 37 \beta_{10} - 12 \beta_{9} + 21 \beta_{8} + 37 \beta_{7} + 21 \beta_{6} - 21 \beta_{5} + \cdots + 33 ) / 12 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 15\beta_{11} - 96\beta_{8} + 146\beta_{7} + 27\beta_{3} + 279\beta_{2} - 84 ) / 12 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 72 \beta_{11} - 10 \beta_{10} - 72 \beta_{9} - 39 \beta_{8} + 10 \beta_{7} + 39 \beta_{6} + \cdots + 411 ) / 6 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 110\beta_{10} - 237\beta_{9} - 576\beta_{6} + 9\beta_{5} - 1860\beta_{4} - 147\beta_1 ) / 12 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 216 \beta_{11} - 67 \beta_{10} - 216 \beta_{9} - 471 \beta_{8} - 67 \beta_{7} - 471 \beta_{6} + \cdots + 1431 ) / 12 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6336\mathbb{Z}\right)^\times\).

\(n\) \(1729\) \(3521\) \(4159\) \(4357\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
287.1
1.28752 + 1.15857i
1.15857 + 1.28752i
1.15857 1.28752i
1.28752 1.15857i
1.43058 0.976448i
−0.976448 + 1.43058i
−0.976448 1.43058i
1.43058 + 0.976448i
−1.58915 0.688925i
0.688925 + 1.58915i
0.688925 1.58915i
−1.58915 + 0.688925i
0 0 0 −2.89219 0 4.89219i 0 0 0
287.2 0 0 0 −2.89219 0 4.89219i 0 0 0
287.3 0 0 0 −2.89219 0 4.89219i 0 0 0
287.4 0 0 0 −2.89219 0 4.89219i 0 0 0
287.5 0 0 0 1.09174 0 0.908256i 0 0 0
287.6 0 0 0 1.09174 0 0.908256i 0 0 0
287.7 0 0 0 1.09174 0 0.908256i 0 0 0
287.8 0 0 0 1.09174 0 0.908256i 0 0 0
287.9 0 0 0 3.80044 0 1.80044i 0 0 0
287.10 0 0 0 3.80044 0 1.80044i 0 0 0
287.11 0 0 0 3.80044 0 1.80044i 0 0 0
287.12 0 0 0 3.80044 0 1.80044i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 287.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
24.f even 2 1 inner
24.h odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6336.2.k.d yes 12
3.b odd 2 1 6336.2.k.c 12
4.b odd 2 1 inner 6336.2.k.d yes 12
8.b even 2 1 6336.2.k.c 12
8.d odd 2 1 6336.2.k.c 12
12.b even 2 1 6336.2.k.c 12
24.f even 2 1 inner 6336.2.k.d yes 12
24.h odd 2 1 inner 6336.2.k.d yes 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6336.2.k.c 12 3.b odd 2 1
6336.2.k.c 12 8.b even 2 1
6336.2.k.c 12 8.d odd 2 1
6336.2.k.c 12 12.b even 2 1
6336.2.k.d yes 12 1.a even 1 1 trivial
6336.2.k.d yes 12 4.b odd 2 1 inner
6336.2.k.d yes 12 24.f even 2 1 inner
6336.2.k.d yes 12 24.h odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{3} - 2T_{5}^{2} - 10T_{5} + 12 \) acting on \(S_{2}^{\mathrm{new}}(6336, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} \) Copy content Toggle raw display
$3$ \( T^{12} \) Copy content Toggle raw display
$5$ \( (T^{3} - 2 T^{2} - 10 T + 12)^{4} \) Copy content Toggle raw display
$7$ \( (T^{6} + 28 T^{4} + \cdots + 64)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 1)^{6} \) Copy content Toggle raw display
$13$ \( (T^{6} + 50 T^{4} + \cdots + 1152)^{2} \) Copy content Toggle raw display
$17$ \( (T^{6} + 48 T^{4} + \cdots + 1152)^{2} \) Copy content Toggle raw display
$19$ \( (T^{6} - 78 T^{4} + \cdots - 648)^{2} \) Copy content Toggle raw display
$23$ \( (T^{6} - 58 T^{4} + \cdots - 288)^{2} \) Copy content Toggle raw display
$29$ \( T^{12} \) Copy content Toggle raw display
$31$ \( (T^{6} + 136 T^{4} + \cdots + 16384)^{2} \) Copy content Toggle raw display
$37$ \( (T^{6} + 168 T^{4} + \cdots + 165888)^{2} \) Copy content Toggle raw display
$41$ \( (T^{6} + 168 T^{4} + \cdots + 165888)^{2} \) Copy content Toggle raw display
$43$ \( (T^{6} - 78 T^{4} + \cdots - 648)^{2} \) Copy content Toggle raw display
$47$ \( (T^{6} - 138 T^{4} + \cdots - 2592)^{2} \) Copy content Toggle raw display
$53$ \( (T^{3} - 2 T^{2} - 10 T + 12)^{4} \) Copy content Toggle raw display
$59$ \( (T^{6} + 336 T^{4} + \cdots + 1327104)^{2} \) Copy content Toggle raw display
$61$ \( (T^{6} + 162 T^{4} + \cdots + 93312)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 72)^{6} \) Copy content Toggle raw display
$71$ \( (T^{6} - 138 T^{4} + \cdots - 2592)^{2} \) Copy content Toggle raw display
$73$ \( (T + 2)^{12} \) Copy content Toggle raw display
$79$ \( (T^{6} + 316 T^{4} + \cdots + 627264)^{2} \) Copy content Toggle raw display
$83$ \( (T^{6} + 264 T^{4} + \cdots + 665856)^{2} \) Copy content Toggle raw display
$89$ \( (T^{6} + 310 T^{4} + \cdots + 233928)^{2} \) Copy content Toggle raw display
$97$ \( (T^{3} - 44 T - 16)^{4} \) Copy content Toggle raw display
show more
show less