Properties

Label 6336.2.d.j
Level $6336$
Weight $2$
Character orbit 6336.d
Analytic conductor $50.593$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6336,2,Mod(3455,6336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6336, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6336.3455"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6336 = 2^{6} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6336.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,12,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.5932147207\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.46138325148368896.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 32x^{8} + 240x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 3168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{4} q^{5} + \beta_{10} q^{7} + q^{11} + \beta_{8} q^{13} + (\beta_{10} - \beta_{4} - \beta_{3}) q^{17} + (\beta_{10} - \beta_{7} + \cdots - \beta_{4}) q^{19} + ( - \beta_{11} + \beta_{2} - 2) q^{23}+ \cdots + (2 \beta_{11} + 2 \beta_{8} - \beta_{2} - 2) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{11} - 24 q^{23} - 4 q^{25} + 24 q^{35} + 16 q^{37} - 24 q^{47} - 4 q^{49} + 48 q^{59} + 8 q^{61} - 72 q^{71} - 16 q^{73} + 24 q^{83} - 40 q^{85} - 40 q^{95} - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} + 32x^{8} + 240x^{4} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 2\nu^{8} + 96\nu^{4} + 619 ) / 127 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -8\nu^{8} - 130\nu^{4} + 64 ) / 127 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 14\nu^{10} + 418\nu^{6} + 2936\nu^{2} ) / 127 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -8\nu^{11} - 257\nu^{7} - 1968\nu^{3} - 127\nu ) / 127 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -18\nu^{10} - 610\nu^{6} - 4936\nu^{2} ) / 127 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -48\nu^{10} - 1542\nu^{6} - 11554\nu^{2} ) / 127 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -32\nu^{11} - \nu^{9} - 1028\nu^{7} - 48\nu^{5} - 7745\nu^{3} - 500\nu ) / 127 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 40\nu^{11} - \nu^{9} + 1285\nu^{7} - 48\nu^{5} + 9713\nu^{3} - 627\nu ) / 127 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 88\nu^{11} - 3\nu^{9} + 2827\nu^{7} - 144\nu^{5} + 21267\nu^{3} - 1373\nu ) / 127 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( -95\nu^{11} - 7\nu^{9} - 3036\nu^{7} - 209\nu^{5} - 22735\nu^{3} - 1468\nu ) / 127 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 150\nu^{11} - 13\nu^{9} + 4787\nu^{7} - 370\nu^{5} + 35757\nu^{3} - 2309\nu ) / 127 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{9} - 3\beta_{8} - 4\beta_{4} ) / 8 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 2\beta_{6} - 3\beta_{5} + 3\beta_{3} ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -5\beta_{9} + 11\beta_{8} + 4\beta_{7} - 16\beta_{4} ) / 8 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( \beta_{2} + 4\beta _1 - 20 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 2\beta_{11} + 4\beta_{10} - 23\beta_{9} + 43\beta_{8} - 28\beta_{7} + 64\beta_{4} ) / 8 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( -32\beta_{6} + 41\beta_{5} - 57\beta_{3} ) / 4 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -16\beta_{11} + 32\beta_{10} + 105\beta_{9} - 171\beta_{8} - 160\beta_{7} + 260\beta_{4} ) / 8 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( -48\beta_{2} - 65\beta _1 + 341 ) / 2 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( -96\beta_{11} - 192\beta_{10} + 477\beta_{9} - 691\beta_{8} + 836\beta_{7} - 1072\beta_{4} ) / 8 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 536\beta_{6} - 595\beta_{5} + 1109\beta_{3} ) / 4 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 514\beta_{11} - 1028\beta_{10} - 2159\beta_{9} + 2835\beta_{8} + 4156\beta_{7} - 4480\beta_{4} ) / 8 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6336\mathbb{Z}\right)^\times\).

\(n\) \(1729\) \(3521\) \(4159\) \(4357\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3455.1
1.49547 1.49547i
−1.49547 1.49547i
1.31579 1.31579i
−1.31579 1.31579i
0.179677 0.179677i
−0.179677 0.179677i
0.179677 + 0.179677i
−0.179677 + 0.179677i
1.31579 + 1.31579i
−1.31579 + 1.31579i
1.49547 + 1.49547i
−1.49547 + 1.49547i
0 0 0 2.99093i 0 2.08290i 0 0 0
3455.2 0 0 0 2.99093i 0 2.08290i 0 0 0
3455.3 0 0 0 2.63158i 0 0.654213i 0 0 0
3455.4 0 0 0 2.63158i 0 0.654213i 0 0 0
3455.5 0 0 0 0.359354i 0 4.15133i 0 0 0
3455.6 0 0 0 0.359354i 0 4.15133i 0 0 0
3455.7 0 0 0 0.359354i 0 4.15133i 0 0 0
3455.8 0 0 0 0.359354i 0 4.15133i 0 0 0
3455.9 0 0 0 2.63158i 0 0.654213i 0 0 0
3455.10 0 0 0 2.63158i 0 0.654213i 0 0 0
3455.11 0 0 0 2.99093i 0 2.08290i 0 0 0
3455.12 0 0 0 2.99093i 0 2.08290i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 3455.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6336.2.d.j 12
3.b odd 2 1 6336.2.d.i 12
4.b odd 2 1 6336.2.d.i 12
8.b even 2 1 3168.2.d.c 12
8.d odd 2 1 3168.2.d.d yes 12
12.b even 2 1 inner 6336.2.d.j 12
24.f even 2 1 3168.2.d.c 12
24.h odd 2 1 3168.2.d.d yes 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3168.2.d.c 12 8.b even 2 1
3168.2.d.c 12 24.f even 2 1
3168.2.d.d yes 12 8.d odd 2 1
3168.2.d.d yes 12 24.h odd 2 1
6336.2.d.i 12 3.b odd 2 1
6336.2.d.i 12 4.b odd 2 1
6336.2.d.j 12 1.a even 1 1 trivial
6336.2.d.j 12 12.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(6336, [\chi])\):

\( T_{5}^{6} + 16T_{5}^{4} + 64T_{5}^{2} + 8 \) Copy content Toggle raw display
\( T_{23}^{6} + 12T_{23}^{5} - 50T_{23}^{4} - 904T_{23}^{3} - 636T_{23}^{2} + 14944T_{23} + 33344 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} \) Copy content Toggle raw display
$3$ \( T^{12} \) Copy content Toggle raw display
$5$ \( (T^{6} + 16 T^{4} + 64 T^{2} + 8)^{2} \) Copy content Toggle raw display
$7$ \( (T^{6} + 22 T^{4} + \cdots + 32)^{2} \) Copy content Toggle raw display
$11$ \( (T - 1)^{12} \) Copy content Toggle raw display
$13$ \( (T^{6} - 22 T^{4} + \cdots - 128)^{2} \) Copy content Toggle raw display
$17$ \( T^{12} + 140 T^{10} + \cdots + 13075456 \) Copy content Toggle raw display
$19$ \( T^{12} + 144 T^{10} + \cdots + 26543104 \) Copy content Toggle raw display
$23$ \( (T^{6} + 12 T^{5} + \cdots + 33344)^{2} \) Copy content Toggle raw display
$29$ \( T^{12} + 164 T^{10} + \cdots + 1024 \) Copy content Toggle raw display
$31$ \( T^{12} + 312 T^{10} + \cdots + 62980096 \) Copy content Toggle raw display
$37$ \( (T^{6} - 8 T^{5} + \cdots - 1984)^{2} \) Copy content Toggle raw display
$41$ \( T^{12} + \cdots + 2264237056 \) Copy content Toggle raw display
$43$ \( T^{12} + 208 T^{10} + \cdots + 1024 \) Copy content Toggle raw display
$47$ \( (T^{6} + 12 T^{5} + \cdots + 128)^{2} \) Copy content Toggle raw display
$53$ \( T^{12} + \cdots + 154355776 \) Copy content Toggle raw display
$59$ \( (T^{6} - 24 T^{5} + \cdots + 7168)^{2} \) Copy content Toggle raw display
$61$ \( (T^{6} - 4 T^{5} + \cdots + 43664)^{2} \) Copy content Toggle raw display
$67$ \( T^{12} + \cdots + 5587861504 \) Copy content Toggle raw display
$71$ \( (T^{6} + 36 T^{5} + \cdots + 162688)^{2} \) Copy content Toggle raw display
$73$ \( (T^{6} + 8 T^{5} + \cdots - 256)^{2} \) Copy content Toggle raw display
$79$ \( (T^{6} + 134 T^{4} + \cdots + 30752)^{2} \) Copy content Toggle raw display
$83$ \( (T^{6} - 12 T^{5} + \cdots + 45568)^{2} \) Copy content Toggle raw display
$89$ \( T^{12} + \cdots + 2092281246784 \) Copy content Toggle raw display
$97$ \( (T^{6} + 12 T^{5} + \cdots + 449536)^{2} \) Copy content Toggle raw display
show more
show less