Properties

Label 2-6336-12.11-c1-0-53
Degree $2$
Conductor $6336$
Sign $0.816 + 0.577i$
Analytic cond. $50.5932$
Root an. cond. $7.11289$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.359i·5-s + 4.15i·7-s + 11-s + 1.77·13-s + 2.30i·17-s − 3.49i·19-s − 8.02·23-s + 4.87·25-s − 7.15i·29-s − 10.6i·31-s + 1.49·35-s − 0.323·37-s − 12.6i·41-s − 11.7i·43-s − 4.28·47-s + ⋯
L(s)  = 1  − 0.160i·5-s + 1.56i·7-s + 0.301·11-s + 0.491·13-s + 0.557i·17-s − 0.801i·19-s − 1.67·23-s + 0.974·25-s − 1.32i·29-s − 1.90i·31-s + 0.252·35-s − 0.0532·37-s − 1.97i·41-s − 1.79i·43-s − 0.624·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.816 + 0.577i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.816 + 0.577i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6336\)    =    \(2^{6} \cdot 3^{2} \cdot 11\)
Sign: $0.816 + 0.577i$
Analytic conductor: \(50.5932\)
Root analytic conductor: \(7.11289\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{6336} (3455, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 6336,\ (\ :1/2),\ 0.816 + 0.577i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.736176035\)
\(L(\frac12)\) \(\approx\) \(1.736176035\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 - T \)
good5 \( 1 + 0.359iT - 5T^{2} \)
7 \( 1 - 4.15iT - 7T^{2} \)
13 \( 1 - 1.77T + 13T^{2} \)
17 \( 1 - 2.30iT - 17T^{2} \)
19 \( 1 + 3.49iT - 19T^{2} \)
23 \( 1 + 8.02T + 23T^{2} \)
29 \( 1 + 7.15iT - 29T^{2} \)
31 \( 1 + 10.6iT - 31T^{2} \)
37 \( 1 + 0.323T + 37T^{2} \)
41 \( 1 + 12.6iT - 41T^{2} \)
43 \( 1 + 11.7iT - 43T^{2} \)
47 \( 1 + 4.28T + 47T^{2} \)
53 \( 1 - 12.1iT - 53T^{2} \)
59 \( 1 + 0.755T + 59T^{2} \)
61 \( 1 - 13.8T + 61T^{2} \)
67 \( 1 + 6.03iT - 67T^{2} \)
71 \( 1 - 3.14T + 71T^{2} \)
73 \( 1 + 1.39T + 73T^{2} \)
79 \( 1 - 9.80iT - 79T^{2} \)
83 \( 1 - 1.07T + 83T^{2} \)
89 \( 1 + 5.97iT - 89T^{2} \)
97 \( 1 - 14.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.127051707473970977868183495386, −7.31049457486329443500857721404, −6.29132321881802770016282977171, −5.90935747147147687904341243058, −5.27391566590162099352766725723, −4.26749537448372353279501535123, −3.62362681587991602036057073636, −2.37020122709485771967277504750, −2.07104611200558152217726760903, −0.50779767433980920515412579004, 0.965996366080803961313240828523, 1.67865047153266758342495684331, 3.15180560039211854299471101454, 3.59511047858315342106223943839, 4.49390733166821384465044329152, 5.07266425636753248913147947079, 6.22821937064683431678776688519, 6.71009234637906940636776869774, 7.32643205839788349209265571663, 8.113454470429720275384109325186

Graph of the $Z$-function along the critical line