Properties

Label 6336.2.d.g.3455.8
Level $6336$
Weight $2$
Character 6336.3455
Analytic conductor $50.593$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6336,2,Mod(3455,6336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6336, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6336.3455"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6336 = 2^{6} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6336.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,0,0,0,0,0,0,0,-10,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.5932147207\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.5236158660608.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{8} - 4x^{7} + 3x^{6} + 8x^{5} + 6x^{4} - 16x^{3} - 16x^{2} + 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{9} \)
Twist minimal: no (minimal twist has level 396)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3455.8
Root \(-0.382373 - 1.36154i\) of defining polynomial
Character \(\chi\) \(=\) 6336.3455
Dual form 6336.2.d.g.3455.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.05483i q^{5} +4.18915i q^{7} -1.00000 q^{11} -3.27394 q^{13} +0.332700i q^{17} -8.47431i q^{19} +3.52212 q^{23} +0.777673 q^{25} -9.52712i q^{29} -3.95895i q^{31} -8.60800 q^{35} +1.37648 q^{37} -5.42788i q^{41} +1.53622i q^{43} -6.93286 q^{47} -10.5490 q^{49} +8.83749i q^{53} -2.05483i q^{55} -3.70203 q^{59} -14.8572 q^{61} -6.72739i q^{65} -6.32795i q^{67} +5.77871 q^{71} -8.72042 q^{73} -4.18915i q^{77} -13.2903i q^{79} +0.984127 q^{83} -0.683642 q^{85} +1.46267i q^{89} -13.7150i q^{91} +17.4133 q^{95} +5.99367 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 10 q^{11} - 8 q^{13} + 8 q^{23} - 10 q^{25} + 16 q^{35} + 4 q^{37} - 34 q^{49} + 40 q^{59} - 20 q^{61} + 16 q^{71} + 24 q^{73} + 8 q^{83} + 36 q^{85} + 96 q^{95} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6336\mathbb{Z}\right)^\times\).

\(n\) \(1729\) \(3521\) \(4159\) \(4357\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.05483i 0.918948i 0.888191 + 0.459474i \(0.151962\pi\)
−0.888191 + 0.459474i \(0.848038\pi\)
\(6\) 0 0
\(7\) 4.18915i 1.58335i 0.610941 + 0.791676i \(0.290791\pi\)
−0.610941 + 0.791676i \(0.709209\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) −3.27394 −0.908028 −0.454014 0.890995i \(-0.650008\pi\)
−0.454014 + 0.890995i \(0.650008\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.332700i 0.0806916i 0.999186 + 0.0403458i \(0.0128460\pi\)
−0.999186 + 0.0403458i \(0.987154\pi\)
\(18\) 0 0
\(19\) − 8.47431i − 1.94414i −0.234693 0.972070i \(-0.575408\pi\)
0.234693 0.972070i \(-0.424592\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.52212 0.734413 0.367207 0.930139i \(-0.380314\pi\)
0.367207 + 0.930139i \(0.380314\pi\)
\(24\) 0 0
\(25\) 0.777673 0.155535
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 9.52712i − 1.76914i −0.466406 0.884571i \(-0.654451\pi\)
0.466406 0.884571i \(-0.345549\pi\)
\(30\) 0 0
\(31\) − 3.95895i − 0.711049i −0.934667 0.355524i \(-0.884302\pi\)
0.934667 0.355524i \(-0.115698\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −8.60800 −1.45502
\(36\) 0 0
\(37\) 1.37648 0.226291 0.113146 0.993578i \(-0.463907\pi\)
0.113146 + 0.993578i \(0.463907\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 5.42788i − 0.847692i −0.905734 0.423846i \(-0.860680\pi\)
0.905734 0.423846i \(-0.139320\pi\)
\(42\) 0 0
\(43\) 1.53622i 0.234271i 0.993116 + 0.117136i \(0.0373712\pi\)
−0.993116 + 0.117136i \(0.962629\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −6.93286 −1.01126 −0.505631 0.862750i \(-0.668740\pi\)
−0.505631 + 0.862750i \(0.668740\pi\)
\(48\) 0 0
\(49\) −10.5490 −1.50700
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.83749i 1.21392i 0.794731 + 0.606961i \(0.207612\pi\)
−0.794731 + 0.606961i \(0.792388\pi\)
\(54\) 0 0
\(55\) − 2.05483i − 0.277073i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −3.70203 −0.481964 −0.240982 0.970530i \(-0.577469\pi\)
−0.240982 + 0.970530i \(0.577469\pi\)
\(60\) 0 0
\(61\) −14.8572 −1.90227 −0.951136 0.308771i \(-0.900082\pi\)
−0.951136 + 0.308771i \(0.900082\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 6.72739i − 0.834430i
\(66\) 0 0
\(67\) − 6.32795i − 0.773083i −0.922272 0.386541i \(-0.873670\pi\)
0.922272 0.386541i \(-0.126330\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.77871 0.685807 0.342904 0.939371i \(-0.388590\pi\)
0.342904 + 0.939371i \(0.388590\pi\)
\(72\) 0 0
\(73\) −8.72042 −1.02065 −0.510324 0.859982i \(-0.670475\pi\)
−0.510324 + 0.859982i \(0.670475\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 4.18915i − 0.477399i
\(78\) 0 0
\(79\) − 13.2903i − 1.49527i −0.664109 0.747636i \(-0.731189\pi\)
0.664109 0.747636i \(-0.268811\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0.984127 0.108022 0.0540110 0.998540i \(-0.482799\pi\)
0.0540110 + 0.998540i \(0.482799\pi\)
\(84\) 0 0
\(85\) −0.683642 −0.0741514
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.46267i 0.155043i 0.996991 + 0.0775214i \(0.0247006\pi\)
−0.996991 + 0.0775214i \(0.975299\pi\)
\(90\) 0 0
\(91\) − 13.7150i − 1.43773i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 17.4133 1.78656
\(96\) 0 0
\(97\) 5.99367 0.608565 0.304283 0.952582i \(-0.401583\pi\)
0.304283 + 0.952582i \(0.401583\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 5.11346i − 0.508808i −0.967098 0.254404i \(-0.918121\pi\)
0.967098 0.254404i \(-0.0818793\pi\)
\(102\) 0 0
\(103\) 0.816108i 0.0804135i 0.999191 + 0.0402067i \(0.0128017\pi\)
−0.999191 + 0.0402067i \(0.987198\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 14.1725 1.37011 0.685056 0.728491i \(-0.259778\pi\)
0.685056 + 0.728491i \(0.259778\pi\)
\(108\) 0 0
\(109\) 2.61615 0.250582 0.125291 0.992120i \(-0.460014\pi\)
0.125291 + 0.992120i \(0.460014\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 8.81271i 0.829030i 0.910043 + 0.414515i \(0.136049\pi\)
−0.910043 + 0.414515i \(0.863951\pi\)
\(114\) 0 0
\(115\) 7.23736i 0.674888i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.39373 −0.127763
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.8721i 1.06188i
\(126\) 0 0
\(127\) − 18.0169i − 1.59874i −0.600840 0.799369i \(-0.705167\pi\)
0.600840 0.799369i \(-0.294833\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 16.0276 1.40034 0.700168 0.713978i \(-0.253108\pi\)
0.700168 + 0.713978i \(0.253108\pi\)
\(132\) 0 0
\(133\) 35.5002 3.07826
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 10.1920i − 0.870758i −0.900247 0.435379i \(-0.856614\pi\)
0.900247 0.435379i \(-0.143386\pi\)
\(138\) 0 0
\(139\) 1.58468i 0.134410i 0.997739 + 0.0672052i \(0.0214082\pi\)
−0.997739 + 0.0672052i \(0.978592\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.27394 0.273781
\(144\) 0 0
\(145\) 19.5766 1.62575
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 3.05740i − 0.250472i −0.992127 0.125236i \(-0.960031\pi\)
0.992127 0.125236i \(-0.0399689\pi\)
\(150\) 0 0
\(151\) − 16.3143i − 1.32763i −0.747895 0.663817i \(-0.768935\pi\)
0.747895 0.663817i \(-0.231065\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 8.13497 0.653417
\(156\) 0 0
\(157\) −2.29129 −0.182865 −0.0914325 0.995811i \(-0.529145\pi\)
−0.0914325 + 0.995811i \(0.529145\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 14.7547i 1.16283i
\(162\) 0 0
\(163\) − 0.530812i − 0.0415764i −0.999784 0.0207882i \(-0.993382\pi\)
0.999784 0.0207882i \(-0.00661756\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −17.0224 −1.31723 −0.658616 0.752479i \(-0.728858\pi\)
−0.658616 + 0.752479i \(0.728858\pi\)
\(168\) 0 0
\(169\) −2.28131 −0.175485
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 5.38984i − 0.409782i −0.978785 0.204891i \(-0.934316\pi\)
0.978785 0.204891i \(-0.0656840\pi\)
\(174\) 0 0
\(175\) 3.25779i 0.246266i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −16.0619 −1.20052 −0.600260 0.799805i \(-0.704936\pi\)
−0.600260 + 0.799805i \(0.704936\pi\)
\(180\) 0 0
\(181\) −7.65892 −0.569283 −0.284642 0.958634i \(-0.591875\pi\)
−0.284642 + 0.958634i \(0.591875\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.82843i 0.207950i
\(186\) 0 0
\(187\) − 0.332700i − 0.0243294i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −13.1828 −0.953872 −0.476936 0.878938i \(-0.658253\pi\)
−0.476936 + 0.878938i \(0.658253\pi\)
\(192\) 0 0
\(193\) 17.5508 1.26333 0.631665 0.775241i \(-0.282372\pi\)
0.631665 + 0.775241i \(0.282372\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 11.6432i 0.829541i 0.909926 + 0.414770i \(0.136138\pi\)
−0.909926 + 0.414770i \(0.863862\pi\)
\(198\) 0 0
\(199\) 5.34814i 0.379119i 0.981869 + 0.189560i \(0.0607060\pi\)
−0.981869 + 0.189560i \(0.939294\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 39.9106 2.80117
\(204\) 0 0
\(205\) 11.1534 0.778985
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 8.47431i 0.586180i
\(210\) 0 0
\(211\) − 17.3016i − 1.19109i −0.803321 0.595546i \(-0.796936\pi\)
0.803321 0.595546i \(-0.203064\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −3.15667 −0.215283
\(216\) 0 0
\(217\) 16.5847 1.12584
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 1.08924i − 0.0732702i
\(222\) 0 0
\(223\) − 22.3672i − 1.49782i −0.662674 0.748908i \(-0.730579\pi\)
0.662674 0.748908i \(-0.269421\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 26.0898 1.73164 0.865820 0.500355i \(-0.166797\pi\)
0.865820 + 0.500355i \(0.166797\pi\)
\(228\) 0 0
\(229\) 9.87457 0.652530 0.326265 0.945278i \(-0.394210\pi\)
0.326265 + 0.945278i \(0.394210\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 23.6093i 1.54669i 0.633983 + 0.773347i \(0.281419\pi\)
−0.633983 + 0.773347i \(0.718581\pi\)
\(234\) 0 0
\(235\) − 14.2459i − 0.929297i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3.88758 0.251466 0.125733 0.992064i \(-0.459872\pi\)
0.125733 + 0.992064i \(0.459872\pi\)
\(240\) 0 0
\(241\) −22.7455 −1.46517 −0.732583 0.680678i \(-0.761685\pi\)
−0.732583 + 0.680678i \(0.761685\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 21.6764i − 1.38486i
\(246\) 0 0
\(247\) 27.7444i 1.76533i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −4.93642 −0.311584 −0.155792 0.987790i \(-0.549793\pi\)
−0.155792 + 0.987790i \(0.549793\pi\)
\(252\) 0 0
\(253\) −3.52212 −0.221434
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 26.6561i 1.66276i 0.555702 + 0.831381i \(0.312449\pi\)
−0.555702 + 0.831381i \(0.687551\pi\)
\(258\) 0 0
\(259\) 5.76628i 0.358299i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 19.7901 1.22031 0.610155 0.792282i \(-0.291107\pi\)
0.610155 + 0.792282i \(0.291107\pi\)
\(264\) 0 0
\(265\) −18.1595 −1.11553
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 16.1510i 0.984741i 0.870386 + 0.492371i \(0.163870\pi\)
−0.870386 + 0.492371i \(0.836130\pi\)
\(270\) 0 0
\(271\) 0.854317i 0.0518961i 0.999663 + 0.0259480i \(0.00826045\pi\)
−0.999663 + 0.0259480i \(0.991740\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.777673 −0.0468955
\(276\) 0 0
\(277\) −22.4384 −1.34819 −0.674097 0.738643i \(-0.735467\pi\)
−0.674097 + 0.738643i \(0.735467\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 27.7617i − 1.65612i −0.560637 0.828062i \(-0.689444\pi\)
0.560637 0.828062i \(-0.310556\pi\)
\(282\) 0 0
\(283\) 13.7582i 0.817842i 0.912570 + 0.408921i \(0.134095\pi\)
−0.912570 + 0.408921i \(0.865905\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 22.7382 1.34219
\(288\) 0 0
\(289\) 16.8893 0.993489
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 23.5988i 1.37866i 0.724448 + 0.689330i \(0.242095\pi\)
−0.724448 + 0.689330i \(0.757905\pi\)
\(294\) 0 0
\(295\) − 7.60705i − 0.442900i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −11.5312 −0.666868
\(300\) 0 0
\(301\) −6.43546 −0.370934
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 30.5291i − 1.74809i
\(306\) 0 0
\(307\) − 4.42205i − 0.252380i −0.992006 0.126190i \(-0.959725\pi\)
0.992006 0.126190i \(-0.0402749\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 28.2418 1.60144 0.800722 0.599037i \(-0.204450\pi\)
0.800722 + 0.599037i \(0.204450\pi\)
\(312\) 0 0
\(313\) −5.28764 −0.298875 −0.149437 0.988771i \(-0.547746\pi\)
−0.149437 + 0.988771i \(0.547746\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4.21786i 0.236898i 0.992960 + 0.118449i \(0.0377923\pi\)
−0.992960 + 0.118449i \(0.962208\pi\)
\(318\) 0 0
\(319\) 9.52712i 0.533416i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.81940 0.156876
\(324\) 0 0
\(325\) −2.54606 −0.141230
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 29.0428i − 1.60118i
\(330\) 0 0
\(331\) − 21.1046i − 1.16002i −0.814611 0.580008i \(-0.803050\pi\)
0.814611 0.580008i \(-0.196950\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 13.0029 0.710423
\(336\) 0 0
\(337\) 14.3857 0.783638 0.391819 0.920042i \(-0.371846\pi\)
0.391819 + 0.920042i \(0.371846\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 3.95895i 0.214389i
\(342\) 0 0
\(343\) − 14.8674i − 0.802764i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 10.1450 0.544610 0.272305 0.962211i \(-0.412214\pi\)
0.272305 + 0.962211i \(0.412214\pi\)
\(348\) 0 0
\(349\) 3.67592 0.196768 0.0983838 0.995149i \(-0.468633\pi\)
0.0983838 + 0.995149i \(0.468633\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 0.508364i − 0.0270575i −0.999908 0.0135288i \(-0.995694\pi\)
0.999908 0.0135288i \(-0.00430647\pi\)
\(354\) 0 0
\(355\) 11.8743i 0.630221i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 29.3560 1.54935 0.774676 0.632359i \(-0.217913\pi\)
0.774676 + 0.632359i \(0.217913\pi\)
\(360\) 0 0
\(361\) −52.8139 −2.77968
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 17.9190i − 0.937923i
\(366\) 0 0
\(367\) − 31.1945i − 1.62834i −0.580628 0.814169i \(-0.697193\pi\)
0.580628 0.814169i \(-0.302807\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −37.0216 −1.92207
\(372\) 0 0
\(373\) −10.8720 −0.562929 −0.281464 0.959572i \(-0.590820\pi\)
−0.281464 + 0.959572i \(0.590820\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 31.1912i 1.60643i
\(378\) 0 0
\(379\) 0.305469i 0.0156909i 0.999969 + 0.00784545i \(0.00249731\pi\)
−0.999969 + 0.00784545i \(0.997503\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −18.0390 −0.921748 −0.460874 0.887466i \(-0.652464\pi\)
−0.460874 + 0.887466i \(0.652464\pi\)
\(384\) 0 0
\(385\) 8.60800 0.438704
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 3.06226i − 0.155263i −0.996982 0.0776315i \(-0.975264\pi\)
0.996982 0.0776315i \(-0.0247358\pi\)
\(390\) 0 0
\(391\) 1.17181i 0.0592610i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 27.3092 1.37408
\(396\) 0 0
\(397\) 19.1036 0.958781 0.479391 0.877602i \(-0.340858\pi\)
0.479391 + 0.877602i \(0.340858\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 21.1452i − 1.05594i −0.849262 0.527972i \(-0.822953\pi\)
0.849262 0.527972i \(-0.177047\pi\)
\(402\) 0 0
\(403\) 12.9614i 0.645652i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.37648 −0.0682295
\(408\) 0 0
\(409\) 16.6503 0.823306 0.411653 0.911341i \(-0.364952\pi\)
0.411653 + 0.911341i \(0.364952\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 15.5084i − 0.763118i
\(414\) 0 0
\(415\) 2.02221i 0.0992666i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −26.0057 −1.27046 −0.635232 0.772322i \(-0.719095\pi\)
−0.635232 + 0.772322i \(0.719095\pi\)
\(420\) 0 0
\(421\) −28.5887 −1.39333 −0.696663 0.717398i \(-0.745333\pi\)
−0.696663 + 0.717398i \(0.745333\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0.258732i 0.0125503i
\(426\) 0 0
\(427\) − 62.2392i − 3.01197i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 13.9908 0.673913 0.336957 0.941520i \(-0.390602\pi\)
0.336957 + 0.941520i \(0.390602\pi\)
\(432\) 0 0
\(433\) −10.7986 −0.518947 −0.259473 0.965750i \(-0.583549\pi\)
−0.259473 + 0.965750i \(0.583549\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 29.8476i − 1.42780i
\(438\) 0 0
\(439\) 4.67151i 0.222959i 0.993767 + 0.111480i \(0.0355589\pi\)
−0.993767 + 0.111480i \(0.964441\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 18.0906 0.859509 0.429755 0.902946i \(-0.358600\pi\)
0.429755 + 0.902946i \(0.358600\pi\)
\(444\) 0 0
\(445\) −3.00554 −0.142476
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 24.6355i − 1.16262i −0.813682 0.581311i \(-0.802540\pi\)
0.813682 0.581311i \(-0.197460\pi\)
\(450\) 0 0
\(451\) 5.42788i 0.255589i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 28.1821 1.32120
\(456\) 0 0
\(457\) −19.4637 −0.910476 −0.455238 0.890370i \(-0.650446\pi\)
−0.455238 + 0.890370i \(0.650446\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 1.07568i − 0.0500993i −0.999686 0.0250496i \(-0.992026\pi\)
0.999686 0.0250496i \(-0.00797439\pi\)
\(462\) 0 0
\(463\) − 4.81991i − 0.224000i −0.993708 0.112000i \(-0.964274\pi\)
0.993708 0.112000i \(-0.0357257\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −8.41821 −0.389548 −0.194774 0.980848i \(-0.562397\pi\)
−0.194774 + 0.980848i \(0.562397\pi\)
\(468\) 0 0
\(469\) 26.5088 1.22406
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 1.53622i − 0.0706354i
\(474\) 0 0
\(475\) − 6.59024i − 0.302381i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 21.1234 0.965151 0.482575 0.875854i \(-0.339701\pi\)
0.482575 + 0.875854i \(0.339701\pi\)
\(480\) 0 0
\(481\) −4.50651 −0.205479
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 12.3160i 0.559240i
\(486\) 0 0
\(487\) 8.21718i 0.372356i 0.982516 + 0.186178i \(0.0596101\pi\)
−0.982516 + 0.186178i \(0.940390\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 8.17027 0.368719 0.184360 0.982859i \(-0.440979\pi\)
0.184360 + 0.982859i \(0.440979\pi\)
\(492\) 0 0
\(493\) 3.16967 0.142755
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 24.2079i 1.08587i
\(498\) 0 0
\(499\) − 21.9921i − 0.984501i −0.870454 0.492250i \(-0.836174\pi\)
0.870454 0.492250i \(-0.163826\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −18.0446 −0.804569 −0.402284 0.915515i \(-0.631784\pi\)
−0.402284 + 0.915515i \(0.631784\pi\)
\(504\) 0 0
\(505\) 10.5073 0.467568
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 5.74310i 0.254558i 0.991867 + 0.127279i \(0.0406244\pi\)
−0.991867 + 0.127279i \(0.959376\pi\)
\(510\) 0 0
\(511\) − 36.5312i − 1.61605i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1.67696 −0.0738958
\(516\) 0 0
\(517\) 6.93286 0.304907
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 13.3348i − 0.584208i −0.956386 0.292104i \(-0.905645\pi\)
0.956386 0.292104i \(-0.0943554\pi\)
\(522\) 0 0
\(523\) − 31.7086i − 1.38652i −0.720687 0.693260i \(-0.756174\pi\)
0.720687 0.693260i \(-0.243826\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.31714 0.0573757
\(528\) 0 0
\(529\) −10.5946 −0.460637
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 17.7706i 0.769728i
\(534\) 0 0
\(535\) 29.1222i 1.25906i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 10.5490 0.454378
\(540\) 0 0
\(541\) −31.1160 −1.33778 −0.668890 0.743361i \(-0.733230\pi\)
−0.668890 + 0.743361i \(0.733230\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5.37575i 0.230272i
\(546\) 0 0
\(547\) − 13.1543i − 0.562437i −0.959644 0.281218i \(-0.909261\pi\)
0.959644 0.281218i \(-0.0907385\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −80.7357 −3.43946
\(552\) 0 0
\(553\) 55.6750 2.36754
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 12.1015i 0.512756i 0.966577 + 0.256378i \(0.0825292\pi\)
−0.966577 + 0.256378i \(0.917471\pi\)
\(558\) 0 0
\(559\) − 5.02949i − 0.212725i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −20.2233 −0.852309 −0.426155 0.904650i \(-0.640132\pi\)
−0.426155 + 0.904650i \(0.640132\pi\)
\(564\) 0 0
\(565\) −18.1086 −0.761835
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 9.66888i 0.405340i 0.979247 + 0.202670i \(0.0649619\pi\)
−0.979247 + 0.202670i \(0.935038\pi\)
\(570\) 0 0
\(571\) 17.7620i 0.743318i 0.928369 + 0.371659i \(0.121211\pi\)
−0.928369 + 0.371659i \(0.878789\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.73906 0.114227
\(576\) 0 0
\(577\) −22.1545 −0.922304 −0.461152 0.887321i \(-0.652564\pi\)
−0.461152 + 0.887321i \(0.652564\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 4.12266i 0.171037i
\(582\) 0 0
\(583\) − 8.83749i − 0.366011i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −32.9785 −1.36117 −0.680584 0.732670i \(-0.738274\pi\)
−0.680584 + 0.732670i \(0.738274\pi\)
\(588\) 0 0
\(589\) −33.5494 −1.38238
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 7.23373i 0.297054i 0.988908 + 0.148527i \(0.0474531\pi\)
−0.988908 + 0.148527i \(0.952547\pi\)
\(594\) 0 0
\(595\) − 2.86388i − 0.117408i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 26.9917 1.10285 0.551425 0.834224i \(-0.314084\pi\)
0.551425 + 0.834224i \(0.314084\pi\)
\(600\) 0 0
\(601\) 33.8244 1.37972 0.689862 0.723941i \(-0.257671\pi\)
0.689862 + 0.723941i \(0.257671\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.05483i 0.0835407i
\(606\) 0 0
\(607\) − 18.4992i − 0.750861i −0.926851 0.375430i \(-0.877495\pi\)
0.926851 0.375430i \(-0.122505\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 22.6978 0.918254
\(612\) 0 0
\(613\) −18.8425 −0.761041 −0.380520 0.924772i \(-0.624255\pi\)
−0.380520 + 0.924772i \(0.624255\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 19.5867i − 0.788529i −0.918997 0.394265i \(-0.870999\pi\)
0.918997 0.394265i \(-0.129001\pi\)
\(618\) 0 0
\(619\) 20.9215i 0.840908i 0.907314 + 0.420454i \(0.138129\pi\)
−0.907314 + 0.420454i \(0.861871\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −6.12735 −0.245487
\(624\) 0 0
\(625\) −20.5069 −0.820274
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0.457954i 0.0182598i
\(630\) 0 0
\(631\) − 1.27651i − 0.0508172i −0.999677 0.0254086i \(-0.991911\pi\)
0.999677 0.0254086i \(-0.00808868\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 37.0216 1.46916
\(636\) 0 0
\(637\) 34.5369 1.36840
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 20.0324i − 0.791234i −0.918416 0.395617i \(-0.870531\pi\)
0.918416 0.395617i \(-0.129469\pi\)
\(642\) 0 0
\(643\) 9.71125i 0.382974i 0.981495 + 0.191487i \(0.0613310\pi\)
−0.981495 + 0.191487i \(0.938669\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −31.8921 −1.25381 −0.626904 0.779097i \(-0.715678\pi\)
−0.626904 + 0.779097i \(0.715678\pi\)
\(648\) 0 0
\(649\) 3.70203 0.145318
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 20.6601i − 0.808491i −0.914651 0.404245i \(-0.867534\pi\)
0.914651 0.404245i \(-0.132466\pi\)
\(654\) 0 0
\(655\) 32.9340i 1.28684i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −28.5649 −1.11273 −0.556365 0.830938i \(-0.687804\pi\)
−0.556365 + 0.830938i \(0.687804\pi\)
\(660\) 0 0
\(661\) 20.3230 0.790475 0.395237 0.918579i \(-0.370662\pi\)
0.395237 + 0.918579i \(0.370662\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 72.9468i 2.82876i
\(666\) 0 0
\(667\) − 33.5557i − 1.29928i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 14.8572 0.573557
\(672\) 0 0
\(673\) −40.4387 −1.55880 −0.779398 0.626529i \(-0.784475\pi\)
−0.779398 + 0.626529i \(0.784475\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 25.2867i − 0.971848i −0.874001 0.485924i \(-0.838483\pi\)
0.874001 0.485924i \(-0.161517\pi\)
\(678\) 0 0
\(679\) 25.1084i 0.963573i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 2.12760 0.0814102 0.0407051 0.999171i \(-0.487040\pi\)
0.0407051 + 0.999171i \(0.487040\pi\)
\(684\) 0 0
\(685\) 20.9428 0.800181
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 28.9334i − 1.10228i
\(690\) 0 0
\(691\) 33.9780i 1.29258i 0.763090 + 0.646292i \(0.223681\pi\)
−0.763090 + 0.646292i \(0.776319\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −3.25624 −0.123516
\(696\) 0 0
\(697\) 1.80585 0.0684016
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 43.1893i − 1.63124i −0.578590 0.815618i \(-0.696397\pi\)
0.578590 0.815618i \(-0.303603\pi\)
\(702\) 0 0
\(703\) − 11.6647i − 0.439942i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 21.4211 0.805622
\(708\) 0 0
\(709\) −2.99634 −0.112530 −0.0562650 0.998416i \(-0.517919\pi\)
−0.0562650 + 0.998416i \(0.517919\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 13.9439i − 0.522204i
\(714\) 0 0
\(715\) 6.72739i 0.251590i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −44.6554 −1.66536 −0.832682 0.553751i \(-0.813196\pi\)
−0.832682 + 0.553751i \(0.813196\pi\)
\(720\) 0 0
\(721\) −3.41880 −0.127323
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 7.40899i − 0.275163i
\(726\) 0 0
\(727\) − 22.6022i − 0.838270i −0.907924 0.419135i \(-0.862333\pi\)
0.907924 0.419135i \(-0.137667\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −0.511100 −0.0189037
\(732\) 0 0
\(733\) 28.3580 1.04743 0.523713 0.851895i \(-0.324546\pi\)
0.523713 + 0.851895i \(0.324546\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 6.32795i 0.233093i
\(738\) 0 0
\(739\) 43.9526i 1.61682i 0.588619 + 0.808411i \(0.299672\pi\)
−0.588619 + 0.808411i \(0.700328\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −31.8324 −1.16782 −0.583909 0.811819i \(-0.698478\pi\)
−0.583909 + 0.811819i \(0.698478\pi\)
\(744\) 0 0
\(745\) 6.28245 0.230171
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 59.3710i 2.16937i
\(750\) 0 0
\(751\) − 11.1655i − 0.407433i −0.979030 0.203717i \(-0.934698\pi\)
0.979030 0.203717i \(-0.0653021\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 33.5230 1.22003
\(756\) 0 0
\(757\) −11.7438 −0.426834 −0.213417 0.976961i \(-0.568459\pi\)
−0.213417 + 0.976961i \(0.568459\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 8.11196i 0.294058i 0.989132 + 0.147029i \(0.0469711\pi\)
−0.989132 + 0.147029i \(0.953029\pi\)
\(762\) 0 0
\(763\) 10.9595i 0.396760i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 12.1202 0.437636
\(768\) 0 0
\(769\) −36.1570 −1.30386 −0.651928 0.758281i \(-0.726039\pi\)
−0.651928 + 0.758281i \(0.726039\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 23.8614i − 0.858236i −0.903249 0.429118i \(-0.858825\pi\)
0.903249 0.429118i \(-0.141175\pi\)
\(774\) 0 0
\(775\) − 3.07877i − 0.110593i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −45.9975 −1.64803
\(780\) 0 0
\(781\) −5.77871 −0.206779
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 4.70822i − 0.168043i
\(786\) 0 0
\(787\) 43.8822i 1.56423i 0.623134 + 0.782115i \(0.285859\pi\)
−0.623134 + 0.782115i \(0.714141\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −36.9178 −1.31265
\(792\) 0 0
\(793\) 48.6417 1.72732
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 28.3351i 1.00368i 0.864961 + 0.501840i \(0.167343\pi\)
−0.864961 + 0.501840i \(0.832657\pi\)
\(798\) 0 0
\(799\) − 2.30656i − 0.0816004i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 8.72042 0.307737
\(804\) 0 0
\(805\) −30.3184 −1.06858
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 18.5019i 0.650492i 0.945629 + 0.325246i \(0.105447\pi\)
−0.945629 + 0.325246i \(0.894553\pi\)
\(810\) 0 0
\(811\) − 0.0475401i − 0.00166936i −1.00000 0.000834679i \(-0.999734\pi\)
1.00000 0.000834679i \(-0.000265687\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1.09073 0.0382065
\(816\) 0 0
\(817\) 13.0184 0.455456
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 39.2412i − 1.36953i −0.728765 0.684764i \(-0.759905\pi\)
0.728765 0.684764i \(-0.240095\pi\)
\(822\) 0 0
\(823\) − 37.4363i − 1.30495i −0.757812 0.652473i \(-0.773732\pi\)
0.757812 0.652473i \(-0.226268\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 37.8240 1.31527 0.657635 0.753337i \(-0.271557\pi\)
0.657635 + 0.753337i \(0.271557\pi\)
\(828\) 0 0
\(829\) 14.3390 0.498014 0.249007 0.968502i \(-0.419896\pi\)
0.249007 + 0.968502i \(0.419896\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 3.50966i − 0.121602i
\(834\) 0 0
\(835\) − 34.9781i − 1.21047i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −8.56063 −0.295546 −0.147773 0.989021i \(-0.547210\pi\)
−0.147773 + 0.989021i \(0.547210\pi\)
\(840\) 0 0
\(841\) −61.7660 −2.12986
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 4.68770i − 0.161262i
\(846\) 0 0
\(847\) 4.18915i 0.143941i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 4.84812 0.166192
\(852\) 0 0
\(853\) 54.1181 1.85297 0.926484 0.376335i \(-0.122816\pi\)
0.926484 + 0.376335i \(0.122816\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 22.8279i 0.779788i 0.920860 + 0.389894i \(0.127488\pi\)
−0.920860 + 0.389894i \(0.872512\pi\)
\(858\) 0 0
\(859\) − 0.288906i − 0.00985734i −0.999988 0.00492867i \(-0.998431\pi\)
0.999988 0.00492867i \(-0.00156885\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0.722052 0.0245789 0.0122895 0.999924i \(-0.496088\pi\)
0.0122895 + 0.999924i \(0.496088\pi\)
\(864\) 0 0
\(865\) 11.0752 0.376568
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 13.2903i 0.450842i
\(870\) 0 0
\(871\) 20.7173i 0.701981i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −49.7342 −1.68132
\(876\) 0 0
\(877\) 25.4051 0.857869 0.428935 0.903335i \(-0.358889\pi\)
0.428935 + 0.903335i \(0.358889\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 18.2594i − 0.615175i −0.951520 0.307588i \(-0.900478\pi\)
0.951520 0.307588i \(-0.0995217\pi\)
\(882\) 0 0
\(883\) 10.2183i 0.343872i 0.985108 + 0.171936i \(0.0550023\pi\)
−0.985108 + 0.171936i \(0.944998\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −35.4055 −1.18880 −0.594399 0.804170i \(-0.702610\pi\)
−0.594399 + 0.804170i \(0.702610\pi\)
\(888\) 0 0
\(889\) 75.4755 2.53137
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 58.7512i 1.96603i
\(894\) 0 0
\(895\) − 33.0044i − 1.10321i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −37.7174 −1.25795
\(900\) 0 0
\(901\) −2.94023 −0.0979533
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 15.7378i − 0.523142i
\(906\) 0 0
\(907\) − 23.9880i − 0.796508i −0.917275 0.398254i \(-0.869616\pi\)
0.917275 0.398254i \(-0.130384\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0.671680 0.0222537 0.0111269 0.999938i \(-0.496458\pi\)
0.0111269 + 0.999938i \(0.496458\pi\)
\(912\) 0 0
\(913\) −0.984127 −0.0325699
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 67.1421i 2.21723i
\(918\) 0 0
\(919\) 12.6625i 0.417699i 0.977948 + 0.208849i \(0.0669719\pi\)
−0.977948 + 0.208849i \(0.933028\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −18.9192 −0.622732
\(924\) 0 0
\(925\) 1.07045 0.0351962
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 17.2495i 0.565939i 0.959129 + 0.282969i \(0.0913195\pi\)
−0.959129 + 0.282969i \(0.908681\pi\)
\(930\) 0 0
\(931\) 89.3956i 2.92982i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.683642 0.0223575
\(936\) 0 0
\(937\) 25.9299 0.847091 0.423546 0.905875i \(-0.360785\pi\)
0.423546 + 0.905875i \(0.360785\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 38.5622i − 1.25709i −0.777773 0.628545i \(-0.783651\pi\)
0.777773 0.628545i \(-0.216349\pi\)
\(942\) 0 0
\(943\) − 19.1177i − 0.622556i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −10.0835 −0.327668 −0.163834 0.986488i \(-0.552386\pi\)
−0.163834 + 0.986488i \(0.552386\pi\)
\(948\) 0 0
\(949\) 28.5502 0.926777
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 11.8961i 0.385353i 0.981262 + 0.192677i \(0.0617168\pi\)
−0.981262 + 0.192677i \(0.938283\pi\)
\(954\) 0 0
\(955\) − 27.0884i − 0.876559i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 42.6957 1.37872
\(960\) 0 0
\(961\) 15.3267 0.494410
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 36.0638i 1.16094i
\(966\) 0 0
\(967\) 40.7204i 1.30948i 0.755855 + 0.654739i \(0.227222\pi\)
−0.755855 + 0.654739i \(0.772778\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0.171053 0.00548936 0.00274468 0.999996i \(-0.499126\pi\)
0.00274468 + 0.999996i \(0.499126\pi\)
\(972\) 0 0
\(973\) −6.63845 −0.212819
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 42.4361i 1.35765i 0.734299 + 0.678826i \(0.237511\pi\)
−0.734299 + 0.678826i \(0.762489\pi\)
\(978\) 0 0
\(979\) − 1.46267i − 0.0467471i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −16.0332 −0.511380 −0.255690 0.966759i \(-0.582303\pi\)
−0.255690 + 0.966759i \(0.582303\pi\)
\(984\) 0 0
\(985\) −23.9247 −0.762305
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 5.41075i 0.172052i
\(990\) 0 0
\(991\) − 19.7092i − 0.626085i −0.949739 0.313042i \(-0.898652\pi\)
0.949739 0.313042i \(-0.101348\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −10.9895 −0.348391
\(996\) 0 0
\(997\) −14.9855 −0.474596 −0.237298 0.971437i \(-0.576262\pi\)
−0.237298 + 0.971437i \(0.576262\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6336.2.d.g.3455.8 10
3.2 odd 2 6336.2.d.h.3455.3 10
4.3 odd 2 6336.2.d.h.3455.8 10
8.3 odd 2 396.2.c.a.287.6 yes 10
8.5 even 2 396.2.c.b.287.6 yes 10
12.11 even 2 inner 6336.2.d.g.3455.3 10
24.5 odd 2 396.2.c.a.287.5 10
24.11 even 2 396.2.c.b.287.5 yes 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
396.2.c.a.287.5 10 24.5 odd 2
396.2.c.a.287.6 yes 10 8.3 odd 2
396.2.c.b.287.5 yes 10 24.11 even 2
396.2.c.b.287.6 yes 10 8.5 even 2
6336.2.d.g.3455.3 10 12.11 even 2 inner
6336.2.d.g.3455.8 10 1.1 even 1 trivial
6336.2.d.h.3455.3 10 3.2 odd 2
6336.2.d.h.3455.8 10 4.3 odd 2