Properties

Label 396.2.c.a.287.6
Level $396$
Weight $2$
Character 396.287
Analytic conductor $3.162$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [396,2,Mod(287,396)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(396, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("396.287"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 396 = 2^{2} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 396.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,4,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.16207592004\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.5236158660608.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{8} - 4x^{7} + 3x^{6} + 8x^{5} + 6x^{4} - 16x^{3} - 16x^{2} + 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 287.6
Root \(-0.382373 - 1.36154i\) of defining polynomial
Character \(\chi\) \(=\) 396.287
Dual form 396.2.c.a.287.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.382373 + 1.36154i) q^{2} +(-1.70758 + 1.04123i) q^{4} -2.05483i q^{5} -4.18915i q^{7} +(-2.07061 - 1.92680i) q^{8} +(2.79773 - 0.785711i) q^{10} -1.00000 q^{11} +3.27394 q^{13} +(5.70370 - 1.60182i) q^{14} +(1.83167 - 3.55598i) q^{16} +0.332700i q^{17} -8.47431i q^{19} +(2.13955 + 3.50879i) q^{20} +(-0.382373 - 1.36154i) q^{22} -3.52212 q^{23} +0.777673 q^{25} +(1.25187 + 4.45760i) q^{26} +(4.36188 + 7.15333i) q^{28} +9.52712i q^{29} +3.95895i q^{31} +(5.54199 + 1.13419i) q^{32} +(-0.452984 + 0.127215i) q^{34} -8.60800 q^{35} -1.37648 q^{37} +(11.5381 - 3.24034i) q^{38} +(-3.95925 + 4.25475i) q^{40} -5.42788i q^{41} +1.53622i q^{43} +(1.70758 - 1.04123i) q^{44} +(-1.34676 - 4.79551i) q^{46} +6.93286 q^{47} -10.5490 q^{49} +(0.297361 + 1.05883i) q^{50} +(-5.59052 + 3.40893i) q^{52} -8.83749i q^{53} +2.05483i q^{55} +(-8.07167 + 8.67411i) q^{56} +(-12.9716 + 3.64291i) q^{58} -3.70203 q^{59} +14.8572 q^{61} +(-5.39027 + 1.51380i) q^{62} +(0.574864 + 7.97932i) q^{64} -6.72739i q^{65} -6.32795i q^{67} +(-0.346418 - 0.568112i) q^{68} +(-3.29147 - 11.7201i) q^{70} -5.77871 q^{71} -8.72042 q^{73} +(-0.526328 - 1.87413i) q^{74} +(8.82372 + 14.4706i) q^{76} +4.18915i q^{77} +13.2903i q^{79} +(-7.30693 - 3.76378i) q^{80} +(7.39027 - 2.07547i) q^{82} +0.984127 q^{83} +0.683642 q^{85} +(-2.09162 + 0.587408i) q^{86} +(2.07061 + 1.92680i) q^{88} +1.46267i q^{89} -13.7150i q^{91} +(6.01431 - 3.66735i) q^{92} +(2.65094 + 9.43937i) q^{94} -17.4133 q^{95} +5.99367 q^{97} +(-4.03366 - 14.3629i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 4 q^{4} - 12 q^{8} + 4 q^{10} - 10 q^{11} + 8 q^{13} + 8 q^{14} - 4 q^{16} - 24 q^{20} - 8 q^{23} - 10 q^{25} + 16 q^{26} + 16 q^{28} + 8 q^{34} + 16 q^{35} - 4 q^{37} + 32 q^{38} - 4 q^{44} + 20 q^{46}+ \cdots + 60 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/396\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.382373 + 1.36154i 0.270378 + 0.962754i
\(3\) 0 0
\(4\) −1.70758 + 1.04123i −0.853791 + 0.520616i
\(5\) 2.05483i 0.918948i −0.888191 0.459474i \(-0.848038\pi\)
0.888191 0.459474i \(-0.151962\pi\)
\(6\) 0 0
\(7\) 4.18915i 1.58335i −0.610941 0.791676i \(-0.709209\pi\)
0.610941 0.791676i \(-0.290791\pi\)
\(8\) −2.07061 1.92680i −0.732072 0.681228i
\(9\) 0 0
\(10\) 2.79773 0.785711i 0.884721 0.248464i
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 3.27394 0.908028 0.454014 0.890995i \(-0.349992\pi\)
0.454014 + 0.890995i \(0.349992\pi\)
\(14\) 5.70370 1.60182i 1.52438 0.428104i
\(15\) 0 0
\(16\) 1.83167 3.55598i 0.457918 0.888994i
\(17\) 0.332700i 0.0806916i 0.999186 + 0.0403458i \(0.0128460\pi\)
−0.999186 + 0.0403458i \(0.987154\pi\)
\(18\) 0 0
\(19\) 8.47431i 1.94414i −0.234693 0.972070i \(-0.575408\pi\)
0.234693 0.972070i \(-0.424592\pi\)
\(20\) 2.13955 + 3.50879i 0.478419 + 0.784590i
\(21\) 0 0
\(22\) −0.382373 1.36154i −0.0815222 0.290281i
\(23\) −3.52212 −0.734413 −0.367207 0.930139i \(-0.619686\pi\)
−0.367207 + 0.930139i \(0.619686\pi\)
\(24\) 0 0
\(25\) 0.777673 0.155535
\(26\) 1.25187 + 4.45760i 0.245511 + 0.874208i
\(27\) 0 0
\(28\) 4.36188 + 7.15333i 0.824318 + 1.35185i
\(29\) 9.52712i 1.76914i 0.466406 + 0.884571i \(0.345549\pi\)
−0.466406 + 0.884571i \(0.654451\pi\)
\(30\) 0 0
\(31\) 3.95895i 0.711049i 0.934667 + 0.355524i \(0.115698\pi\)
−0.934667 + 0.355524i \(0.884302\pi\)
\(32\) 5.54199 + 1.13419i 0.979694 + 0.200498i
\(33\) 0 0
\(34\) −0.452984 + 0.127215i −0.0776862 + 0.0218173i
\(35\) −8.60800 −1.45502
\(36\) 0 0
\(37\) −1.37648 −0.226291 −0.113146 0.993578i \(-0.536093\pi\)
−0.113146 + 0.993578i \(0.536093\pi\)
\(38\) 11.5381 3.24034i 1.87173 0.525653i
\(39\) 0 0
\(40\) −3.95925 + 4.25475i −0.626013 + 0.672736i
\(41\) 5.42788i 0.847692i −0.905734 0.423846i \(-0.860680\pi\)
0.905734 0.423846i \(-0.139320\pi\)
\(42\) 0 0
\(43\) 1.53622i 0.234271i 0.993116 + 0.117136i \(0.0373712\pi\)
−0.993116 + 0.117136i \(0.962629\pi\)
\(44\) 1.70758 1.04123i 0.257428 0.156972i
\(45\) 0 0
\(46\) −1.34676 4.79551i −0.198570 0.707060i
\(47\) 6.93286 1.01126 0.505631 0.862750i \(-0.331260\pi\)
0.505631 + 0.862750i \(0.331260\pi\)
\(48\) 0 0
\(49\) −10.5490 −1.50700
\(50\) 0.297361 + 1.05883i 0.0420532 + 0.149742i
\(51\) 0 0
\(52\) −5.59052 + 3.40893i −0.775266 + 0.472734i
\(53\) 8.83749i 1.21392i −0.794731 0.606961i \(-0.792388\pi\)
0.794731 0.606961i \(-0.207612\pi\)
\(54\) 0 0
\(55\) 2.05483i 0.277073i
\(56\) −8.07167 + 8.67411i −1.07862 + 1.15913i
\(57\) 0 0
\(58\) −12.9716 + 3.64291i −1.70325 + 0.478338i
\(59\) −3.70203 −0.481964 −0.240982 0.970530i \(-0.577469\pi\)
−0.240982 + 0.970530i \(0.577469\pi\)
\(60\) 0 0
\(61\) 14.8572 1.90227 0.951136 0.308771i \(-0.0999178\pi\)
0.951136 + 0.308771i \(0.0999178\pi\)
\(62\) −5.39027 + 1.51380i −0.684565 + 0.192252i
\(63\) 0 0
\(64\) 0.574864 + 7.97932i 0.0718580 + 0.997415i
\(65\) 6.72739i 0.834430i
\(66\) 0 0
\(67\) 6.32795i 0.773083i −0.922272 0.386541i \(-0.873670\pi\)
0.922272 0.386541i \(-0.126330\pi\)
\(68\) −0.346418 0.568112i −0.0420093 0.0688938i
\(69\) 0 0
\(70\) −3.29147 11.7201i −0.393405 1.40082i
\(71\) −5.77871 −0.685807 −0.342904 0.939371i \(-0.611410\pi\)
−0.342904 + 0.939371i \(0.611410\pi\)
\(72\) 0 0
\(73\) −8.72042 −1.02065 −0.510324 0.859982i \(-0.670475\pi\)
−0.510324 + 0.859982i \(0.670475\pi\)
\(74\) −0.526328 1.87413i −0.0611843 0.217863i
\(75\) 0 0
\(76\) 8.82372 + 14.4706i 1.01215 + 1.65989i
\(77\) 4.18915i 0.477399i
\(78\) 0 0
\(79\) 13.2903i 1.49527i 0.664109 + 0.747636i \(0.268811\pi\)
−0.664109 + 0.747636i \(0.731189\pi\)
\(80\) −7.30693 3.76378i −0.816939 0.420803i
\(81\) 0 0
\(82\) 7.39027 2.07547i 0.816119 0.229198i
\(83\) 0.984127 0.108022 0.0540110 0.998540i \(-0.482799\pi\)
0.0540110 + 0.998540i \(0.482799\pi\)
\(84\) 0 0
\(85\) 0.683642 0.0741514
\(86\) −2.09162 + 0.587408i −0.225546 + 0.0633419i
\(87\) 0 0
\(88\) 2.07061 + 1.92680i 0.220728 + 0.205398i
\(89\) 1.46267i 0.155043i 0.996991 + 0.0775214i \(0.0247006\pi\)
−0.996991 + 0.0775214i \(0.975299\pi\)
\(90\) 0 0
\(91\) 13.7150i 1.43773i
\(92\) 6.01431 3.66735i 0.627036 0.382347i
\(93\) 0 0
\(94\) 2.65094 + 9.43937i 0.273423 + 0.973597i
\(95\) −17.4133 −1.78656
\(96\) 0 0
\(97\) 5.99367 0.608565 0.304283 0.952582i \(-0.401583\pi\)
0.304283 + 0.952582i \(0.401583\pi\)
\(98\) −4.03366 14.3629i −0.407461 1.45087i
\(99\) 0 0
\(100\) −1.32794 + 0.809738i −0.132794 + 0.0809738i
\(101\) 5.11346i 0.508808i 0.967098 + 0.254404i \(0.0818793\pi\)
−0.967098 + 0.254404i \(0.918121\pi\)
\(102\) 0 0
\(103\) 0.816108i 0.0804135i −0.999191 0.0402067i \(-0.987198\pi\)
0.999191 0.0402067i \(-0.0128017\pi\)
\(104\) −6.77906 6.30824i −0.664742 0.618574i
\(105\) 0 0
\(106\) 12.0326 3.37922i 1.16871 0.328218i
\(107\) 14.1725 1.37011 0.685056 0.728491i \(-0.259778\pi\)
0.685056 + 0.728491i \(0.259778\pi\)
\(108\) 0 0
\(109\) −2.61615 −0.250582 −0.125291 0.992120i \(-0.539986\pi\)
−0.125291 + 0.992120i \(0.539986\pi\)
\(110\) −2.79773 + 0.785711i −0.266753 + 0.0749146i
\(111\) 0 0
\(112\) −14.8965 7.67316i −1.40759 0.725046i
\(113\) 8.81271i 0.829030i 0.910043 + 0.414515i \(0.136049\pi\)
−0.910043 + 0.414515i \(0.863951\pi\)
\(114\) 0 0
\(115\) 7.23736i 0.674888i
\(116\) −9.91994 16.2683i −0.921043 1.51048i
\(117\) 0 0
\(118\) −1.41556 5.04047i −0.130313 0.464012i
\(119\) 1.39373 0.127763
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 5.68100 + 20.2287i 0.514333 + 1.83142i
\(123\) 0 0
\(124\) −4.12219 6.76024i −0.370183 0.607087i
\(125\) 11.8721i 1.06188i
\(126\) 0 0
\(127\) 18.0169i 1.59874i 0.600840 + 0.799369i \(0.294833\pi\)
−0.600840 + 0.799369i \(0.705167\pi\)
\(128\) −10.6443 + 3.83377i −0.940836 + 0.338861i
\(129\) 0 0
\(130\) 9.15961 2.57237i 0.803351 0.225612i
\(131\) 16.0276 1.40034 0.700168 0.713978i \(-0.253108\pi\)
0.700168 + 0.713978i \(0.253108\pi\)
\(132\) 0 0
\(133\) −35.5002 −3.07826
\(134\) 8.61576 2.41964i 0.744288 0.209025i
\(135\) 0 0
\(136\) 0.641047 0.688892i 0.0549693 0.0590720i
\(137\) 10.1920i 0.870758i −0.900247 0.435379i \(-0.856614\pi\)
0.900247 0.435379i \(-0.143386\pi\)
\(138\) 0 0
\(139\) 1.58468i 0.134410i 0.997739 + 0.0672052i \(0.0214082\pi\)
−0.997739 + 0.0672052i \(0.978592\pi\)
\(140\) 14.6989 8.96292i 1.24228 0.757505i
\(141\) 0 0
\(142\) −2.20962 7.86795i −0.185427 0.660264i
\(143\) −3.27394 −0.273781
\(144\) 0 0
\(145\) 19.5766 1.62575
\(146\) −3.33445 11.8732i −0.275961 0.982634i
\(147\) 0 0
\(148\) 2.35045 1.43323i 0.193206 0.117811i
\(149\) 3.05740i 0.250472i 0.992127 + 0.125236i \(0.0399689\pi\)
−0.992127 + 0.125236i \(0.960031\pi\)
\(150\) 0 0
\(151\) 16.3143i 1.32763i 0.747895 + 0.663817i \(0.231065\pi\)
−0.747895 + 0.663817i \(0.768935\pi\)
\(152\) −16.3283 + 17.5470i −1.32440 + 1.42325i
\(153\) 0 0
\(154\) −5.70370 + 1.60182i −0.459617 + 0.129078i
\(155\) 8.13497 0.653417
\(156\) 0 0
\(157\) 2.29129 0.182865 0.0914325 0.995811i \(-0.470855\pi\)
0.0914325 + 0.995811i \(0.470855\pi\)
\(158\) −18.0952 + 5.08184i −1.43958 + 0.404289i
\(159\) 0 0
\(160\) 2.33056 11.3878i 0.184247 0.900288i
\(161\) 14.7547i 1.16283i
\(162\) 0 0
\(163\) 0.530812i 0.0415764i −0.999784 0.0207882i \(-0.993382\pi\)
0.999784 0.0207882i \(-0.00661756\pi\)
\(164\) 5.65168 + 9.26855i 0.441322 + 0.723752i
\(165\) 0 0
\(166\) 0.376304 + 1.33993i 0.0292068 + 0.103999i
\(167\) 17.0224 1.31723 0.658616 0.752479i \(-0.271142\pi\)
0.658616 + 0.752479i \(0.271142\pi\)
\(168\) 0 0
\(169\) −2.28131 −0.175485
\(170\) 0.261406 + 0.930806i 0.0200489 + 0.0713895i
\(171\) 0 0
\(172\) −1.59956 2.62322i −0.121965 0.200019i
\(173\) 5.38984i 0.409782i 0.978785 + 0.204891i \(0.0656840\pi\)
−0.978785 + 0.204891i \(0.934316\pi\)
\(174\) 0 0
\(175\) 3.25779i 0.246266i
\(176\) −1.83167 + 3.55598i −0.138068 + 0.268042i
\(177\) 0 0
\(178\) −1.99148 + 0.559285i −0.149268 + 0.0419202i
\(179\) −16.0619 −1.20052 −0.600260 0.799805i \(-0.704936\pi\)
−0.600260 + 0.799805i \(0.704936\pi\)
\(180\) 0 0
\(181\) 7.65892 0.569283 0.284642 0.958634i \(-0.408125\pi\)
0.284642 + 0.958634i \(0.408125\pi\)
\(182\) 18.6736 5.24426i 1.38418 0.388730i
\(183\) 0 0
\(184\) 7.29295 + 6.78644i 0.537643 + 0.500303i
\(185\) 2.82843i 0.207950i
\(186\) 0 0
\(187\) 0.332700i 0.0243294i
\(188\) −11.8384 + 7.21872i −0.863407 + 0.526479i
\(189\) 0 0
\(190\) −6.65836 23.7088i −0.483048 1.72002i
\(191\) 13.1828 0.953872 0.476936 0.878938i \(-0.341747\pi\)
0.476936 + 0.878938i \(0.341747\pi\)
\(192\) 0 0
\(193\) 17.5508 1.26333 0.631665 0.775241i \(-0.282372\pi\)
0.631665 + 0.775241i \(0.282372\pi\)
\(194\) 2.29182 + 8.16062i 0.164543 + 0.585899i
\(195\) 0 0
\(196\) 18.0133 10.9840i 1.28667 0.784570i
\(197\) 11.6432i 0.829541i −0.909926 0.414770i \(-0.863862\pi\)
0.909926 0.414770i \(-0.136138\pi\)
\(198\) 0 0
\(199\) 5.34814i 0.379119i −0.981869 0.189560i \(-0.939294\pi\)
0.981869 0.189560i \(-0.0607060\pi\)
\(200\) −1.61026 1.49842i −0.113863 0.105955i
\(201\) 0 0
\(202\) −6.96218 + 1.95525i −0.489857 + 0.137571i
\(203\) 39.9106 2.80117
\(204\) 0 0
\(205\) −11.1534 −0.778985
\(206\) 1.11116 0.312057i 0.0774184 0.0217421i
\(207\) 0 0
\(208\) 5.99679 11.6421i 0.415803 0.807232i
\(209\) 8.47431i 0.586180i
\(210\) 0 0
\(211\) 17.3016i 1.19109i −0.803321 0.595546i \(-0.796936\pi\)
0.803321 0.595546i \(-0.203064\pi\)
\(212\) 9.20187 + 15.0907i 0.631987 + 1.03644i
\(213\) 0 0
\(214\) 5.41919 + 19.2965i 0.370449 + 1.31908i
\(215\) 3.15667 0.215283
\(216\) 0 0
\(217\) 16.5847 1.12584
\(218\) −1.00035 3.56200i −0.0677520 0.241249i
\(219\) 0 0
\(220\) −2.13955 3.50879i −0.144249 0.236563i
\(221\) 1.08924i 0.0732702i
\(222\) 0 0
\(223\) 22.3672i 1.49782i 0.662674 + 0.748908i \(0.269421\pi\)
−0.662674 + 0.748908i \(0.730579\pi\)
\(224\) 4.75129 23.2162i 0.317459 1.55120i
\(225\) 0 0
\(226\) −11.9989 + 3.36974i −0.798152 + 0.224152i
\(227\) 26.0898 1.73164 0.865820 0.500355i \(-0.166797\pi\)
0.865820 + 0.500355i \(0.166797\pi\)
\(228\) 0 0
\(229\) −9.87457 −0.652530 −0.326265 0.945278i \(-0.605790\pi\)
−0.326265 + 0.945278i \(0.605790\pi\)
\(230\) −9.85396 + 2.76737i −0.649751 + 0.182475i
\(231\) 0 0
\(232\) 18.3569 19.7270i 1.20519 1.29514i
\(233\) 23.6093i 1.54669i 0.633983 + 0.773347i \(0.281419\pi\)
−0.633983 + 0.773347i \(0.718581\pi\)
\(234\) 0 0
\(235\) 14.2459i 0.929297i
\(236\) 6.32153 3.85467i 0.411496 0.250918i
\(237\) 0 0
\(238\) 0.532925 + 1.89762i 0.0345444 + 0.123005i
\(239\) −3.88758 −0.251466 −0.125733 0.992064i \(-0.540128\pi\)
−0.125733 + 0.992064i \(0.540128\pi\)
\(240\) 0 0
\(241\) −22.7455 −1.46517 −0.732583 0.680678i \(-0.761685\pi\)
−0.732583 + 0.680678i \(0.761685\pi\)
\(242\) 0.382373 + 1.36154i 0.0245799 + 0.0875231i
\(243\) 0 0
\(244\) −25.3699 + 15.4698i −1.62414 + 0.990353i
\(245\) 21.6764i 1.38486i
\(246\) 0 0
\(247\) 27.7444i 1.76533i
\(248\) 7.62812 8.19745i 0.484386 0.520539i
\(249\) 0 0
\(250\) 16.1644 4.53958i 1.02233 0.287108i
\(251\) −4.93642 −0.311584 −0.155792 0.987790i \(-0.549793\pi\)
−0.155792 + 0.987790i \(0.549793\pi\)
\(252\) 0 0
\(253\) 3.52212 0.221434
\(254\) −24.5307 + 6.88916i −1.53919 + 0.432264i
\(255\) 0 0
\(256\) −9.28995 13.0268i −0.580622 0.814173i
\(257\) 26.6561i 1.66276i 0.555702 + 0.831381i \(0.312449\pi\)
−0.555702 + 0.831381i \(0.687551\pi\)
\(258\) 0 0
\(259\) 5.76628i 0.358299i
\(260\) 7.00477 + 11.4876i 0.434418 + 0.712429i
\(261\) 0 0
\(262\) 6.12851 + 21.8222i 0.378621 + 1.34818i
\(263\) −19.7901 −1.22031 −0.610155 0.792282i \(-0.708893\pi\)
−0.610155 + 0.792282i \(0.708893\pi\)
\(264\) 0 0
\(265\) −18.1595 −1.11553
\(266\) −13.5743 48.3349i −0.832294 2.96360i
\(267\) 0 0
\(268\) 6.58887 + 10.8055i 0.402479 + 0.660051i
\(269\) 16.1510i 0.984741i −0.870386 0.492371i \(-0.836130\pi\)
0.870386 0.492371i \(-0.163870\pi\)
\(270\) 0 0
\(271\) 0.854317i 0.0518961i −0.999663 0.0259480i \(-0.991740\pi\)
0.999663 0.0259480i \(-0.00826045\pi\)
\(272\) 1.18307 + 0.609398i 0.0717344 + 0.0369502i
\(273\) 0 0
\(274\) 13.8768 3.89713i 0.838326 0.235434i
\(275\) −0.777673 −0.0468955
\(276\) 0 0
\(277\) 22.4384 1.34819 0.674097 0.738643i \(-0.264533\pi\)
0.674097 + 0.738643i \(0.264533\pi\)
\(278\) −2.15760 + 0.605937i −0.129404 + 0.0363417i
\(279\) 0 0
\(280\) 17.8238 + 16.5859i 1.06518 + 0.991198i
\(281\) 27.7617i 1.65612i −0.560637 0.828062i \(-0.689444\pi\)
0.560637 0.828062i \(-0.310556\pi\)
\(282\) 0 0
\(283\) 13.7582i 0.817842i 0.912570 + 0.408921i \(0.134095\pi\)
−0.912570 + 0.408921i \(0.865905\pi\)
\(284\) 9.86763 6.01698i 0.585536 0.357042i
\(285\) 0 0
\(286\) −1.25187 4.45760i −0.0740244 0.263584i
\(287\) −22.7382 −1.34219
\(288\) 0 0
\(289\) 16.8893 0.993489
\(290\) 7.48556 + 26.6543i 0.439567 + 1.56520i
\(291\) 0 0
\(292\) 14.8908 9.07998i 0.871421 0.531366i
\(293\) 23.5988i 1.37866i −0.724448 0.689330i \(-0.757905\pi\)
0.724448 0.689330i \(-0.242095\pi\)
\(294\) 0 0
\(295\) 7.60705i 0.442900i
\(296\) 2.85015 + 2.65220i 0.165662 + 0.154156i
\(297\) 0 0
\(298\) −4.16278 + 1.16907i −0.241143 + 0.0677223i
\(299\) −11.5312 −0.666868
\(300\) 0 0
\(301\) 6.43546 0.370934
\(302\) −22.2125 + 6.23813i −1.27819 + 0.358964i
\(303\) 0 0
\(304\) −30.1344 15.5222i −1.72833 0.890257i
\(305\) 30.5291i 1.74809i
\(306\) 0 0
\(307\) 4.42205i 0.252380i −0.992006 0.126190i \(-0.959725\pi\)
0.992006 0.126190i \(-0.0402749\pi\)
\(308\) −4.36188 7.15333i −0.248541 0.407599i
\(309\) 0 0
\(310\) 3.11059 + 11.0761i 0.176670 + 0.629080i
\(311\) −28.2418 −1.60144 −0.800722 0.599037i \(-0.795550\pi\)
−0.800722 + 0.599037i \(0.795550\pi\)
\(312\) 0 0
\(313\) −5.28764 −0.298875 −0.149437 0.988771i \(-0.547746\pi\)
−0.149437 + 0.988771i \(0.547746\pi\)
\(314\) 0.876128 + 3.11969i 0.0494427 + 0.176054i
\(315\) 0 0
\(316\) −13.8382 22.6942i −0.778462 1.27665i
\(317\) 4.21786i 0.236898i −0.992960 0.118449i \(-0.962208\pi\)
0.992960 0.118449i \(-0.0377923\pi\)
\(318\) 0 0
\(319\) 9.52712i 0.533416i
\(320\) 16.3961 1.18125i 0.916572 0.0660337i
\(321\) 0 0
\(322\) −20.0891 + 5.64180i −1.11952 + 0.314405i
\(323\) 2.81940 0.156876
\(324\) 0 0
\(325\) 2.54606 0.141230
\(326\) 0.722721 0.202968i 0.0400278 0.0112414i
\(327\) 0 0
\(328\) −10.4584 + 11.2390i −0.577471 + 0.620571i
\(329\) 29.0428i 1.60118i
\(330\) 0 0
\(331\) 21.1046i 1.16002i −0.814611 0.580008i \(-0.803050\pi\)
0.814611 0.580008i \(-0.196950\pi\)
\(332\) −1.68048 + 1.02470i −0.0922282 + 0.0562380i
\(333\) 0 0
\(334\) 6.50890 + 23.1767i 0.356151 + 1.26817i
\(335\) −13.0029 −0.710423
\(336\) 0 0
\(337\) 14.3857 0.783638 0.391819 0.920042i \(-0.371846\pi\)
0.391819 + 0.920042i \(0.371846\pi\)
\(338\) −0.872311 3.10609i −0.0474474 0.168949i
\(339\) 0 0
\(340\) −1.16737 + 0.711830i −0.0633098 + 0.0386044i
\(341\) 3.95895i 0.214389i
\(342\) 0 0
\(343\) 14.8674i 0.802764i
\(344\) 2.95999 3.18091i 0.159592 0.171503i
\(345\) 0 0
\(346\) −7.33848 + 2.06093i −0.394519 + 0.110796i
\(347\) 10.1450 0.544610 0.272305 0.962211i \(-0.412214\pi\)
0.272305 + 0.962211i \(0.412214\pi\)
\(348\) 0 0
\(349\) −3.67592 −0.196768 −0.0983838 0.995149i \(-0.531367\pi\)
−0.0983838 + 0.995149i \(0.531367\pi\)
\(350\) 4.43562 1.24569i 0.237094 0.0665850i
\(351\) 0 0
\(352\) −5.54199 1.13419i −0.295389 0.0604524i
\(353\) 0.508364i 0.0270575i −0.999908 0.0135288i \(-0.995694\pi\)
0.999908 0.0135288i \(-0.00430647\pi\)
\(354\) 0 0
\(355\) 11.8743i 0.630221i
\(356\) −1.52298 2.49763i −0.0807177 0.132374i
\(357\) 0 0
\(358\) −6.14162 21.8689i −0.324594 1.15580i
\(359\) −29.3560 −1.54935 −0.774676 0.632359i \(-0.782087\pi\)
−0.774676 + 0.632359i \(0.782087\pi\)
\(360\) 0 0
\(361\) −52.8139 −2.77968
\(362\) 2.92856 + 10.4279i 0.153922 + 0.548080i
\(363\) 0 0
\(364\) 14.2805 + 23.4196i 0.748504 + 1.22752i
\(365\) 17.9190i 0.937923i
\(366\) 0 0
\(367\) 31.1945i 1.62834i 0.580628 + 0.814169i \(0.302807\pi\)
−0.580628 + 0.814169i \(0.697193\pi\)
\(368\) −6.45138 + 12.5246i −0.336301 + 0.652889i
\(369\) 0 0
\(370\) −3.85102 + 1.08151i −0.200205 + 0.0562252i
\(371\) −37.0216 −1.92207
\(372\) 0 0
\(373\) 10.8720 0.562929 0.281464 0.959572i \(-0.409180\pi\)
0.281464 + 0.959572i \(0.409180\pi\)
\(374\) 0.452984 0.127215i 0.0234233 0.00657815i
\(375\) 0 0
\(376\) −14.3553 13.3583i −0.740316 0.688900i
\(377\) 31.1912i 1.60643i
\(378\) 0 0
\(379\) 0.305469i 0.0156909i 0.999969 + 0.00784545i \(0.00249731\pi\)
−0.999969 + 0.00784545i \(0.997503\pi\)
\(380\) 29.7346 18.1312i 1.52535 0.930113i
\(381\) 0 0
\(382\) 5.04074 + 17.9489i 0.257907 + 0.918345i
\(383\) 18.0390 0.921748 0.460874 0.887466i \(-0.347536\pi\)
0.460874 + 0.887466i \(0.347536\pi\)
\(384\) 0 0
\(385\) 8.60800 0.438704
\(386\) 6.71093 + 23.8961i 0.341577 + 1.21628i
\(387\) 0 0
\(388\) −10.2347 + 6.24080i −0.519588 + 0.316829i
\(389\) 3.06226i 0.155263i 0.996982 + 0.0776315i \(0.0247358\pi\)
−0.996982 + 0.0776315i \(0.975264\pi\)
\(390\) 0 0
\(391\) 1.17181i 0.0592610i
\(392\) 21.8429 + 20.3259i 1.10323 + 1.02661i
\(393\) 0 0
\(394\) 15.8526 4.45203i 0.798644 0.224290i
\(395\) 27.3092 1.37408
\(396\) 0 0
\(397\) −19.1036 −0.958781 −0.479391 0.877602i \(-0.659142\pi\)
−0.479391 + 0.877602i \(0.659142\pi\)
\(398\) 7.28170 2.04498i 0.364999 0.102506i
\(399\) 0 0
\(400\) 1.42444 2.76539i 0.0712222 0.138269i
\(401\) 21.1452i 1.05594i −0.849262 0.527972i \(-0.822953\pi\)
0.849262 0.527972i \(-0.177047\pi\)
\(402\) 0 0
\(403\) 12.9614i 0.645652i
\(404\) −5.32430 8.73165i −0.264894 0.434416i
\(405\) 0 0
\(406\) 15.2607 + 54.3398i 0.757377 + 2.69684i
\(407\) 1.37648 0.0682295
\(408\) 0 0
\(409\) 16.6503 0.823306 0.411653 0.911341i \(-0.364952\pi\)
0.411653 + 0.911341i \(0.364952\pi\)
\(410\) −4.26474 15.1858i −0.210621 0.749971i
\(411\) 0 0
\(412\) 0.849757 + 1.39357i 0.0418645 + 0.0686563i
\(413\) 15.5084i 0.763118i
\(414\) 0 0
\(415\) 2.02221i 0.0992666i
\(416\) 18.1441 + 3.71326i 0.889590 + 0.182058i
\(417\) 0 0
\(418\) −11.5381 + 3.24034i −0.564347 + 0.158490i
\(419\) −26.0057 −1.27046 −0.635232 0.772322i \(-0.719095\pi\)
−0.635232 + 0.772322i \(0.719095\pi\)
\(420\) 0 0
\(421\) 28.5887 1.39333 0.696663 0.717398i \(-0.254667\pi\)
0.696663 + 0.717398i \(0.254667\pi\)
\(422\) 23.5568 6.61567i 1.14673 0.322046i
\(423\) 0 0
\(424\) −17.0281 + 18.2990i −0.826958 + 0.888678i
\(425\) 0.258732i 0.0125503i
\(426\) 0 0
\(427\) 62.2392i 3.01197i
\(428\) −24.2008 + 14.7569i −1.16979 + 0.713302i
\(429\) 0 0
\(430\) 1.20702 + 4.29793i 0.0582079 + 0.207265i
\(431\) −13.9908 −0.673913 −0.336957 0.941520i \(-0.609398\pi\)
−0.336957 + 0.941520i \(0.609398\pi\)
\(432\) 0 0
\(433\) −10.7986 −0.518947 −0.259473 0.965750i \(-0.583549\pi\)
−0.259473 + 0.965750i \(0.583549\pi\)
\(434\) 6.34152 + 22.5807i 0.304403 + 1.08391i
\(435\) 0 0
\(436\) 4.46730 2.72402i 0.213945 0.130457i
\(437\) 29.8476i 1.42780i
\(438\) 0 0
\(439\) 4.67151i 0.222959i −0.993767 0.111480i \(-0.964441\pi\)
0.993767 0.111480i \(-0.0355589\pi\)
\(440\) 3.95925 4.25475i 0.188750 0.202837i
\(441\) 0 0
\(442\) −1.48304 + 0.416496i −0.0705412 + 0.0198107i
\(443\) 18.0906 0.859509 0.429755 0.902946i \(-0.358600\pi\)
0.429755 + 0.902946i \(0.358600\pi\)
\(444\) 0 0
\(445\) 3.00554 0.142476
\(446\) −30.4538 + 8.55259i −1.44203 + 0.404977i
\(447\) 0 0
\(448\) 33.4266 2.40819i 1.57926 0.113776i
\(449\) 24.6355i 1.16262i −0.813682 0.581311i \(-0.802540\pi\)
0.813682 0.581311i \(-0.197460\pi\)
\(450\) 0 0
\(451\) 5.42788i 0.255589i
\(452\) −9.17607 15.0484i −0.431606 0.707818i
\(453\) 0 0
\(454\) 9.97603 + 35.5223i 0.468198 + 1.66714i
\(455\) −28.1821 −1.32120
\(456\) 0 0
\(457\) −19.4637 −0.910476 −0.455238 0.890370i \(-0.650446\pi\)
−0.455238 + 0.890370i \(0.650446\pi\)
\(458\) −3.77577 13.4446i −0.176430 0.628226i
\(459\) 0 0
\(460\) −7.53577 12.3584i −0.351357 0.576213i
\(461\) 1.07568i 0.0500993i 0.999686 + 0.0250496i \(0.00797439\pi\)
−0.999686 + 0.0250496i \(0.992026\pi\)
\(462\) 0 0
\(463\) 4.81991i 0.224000i 0.993708 + 0.112000i \(0.0357257\pi\)
−0.993708 + 0.112000i \(0.964274\pi\)
\(464\) 33.8782 + 17.4506i 1.57276 + 0.810122i
\(465\) 0 0
\(466\) −32.1450 + 9.02754i −1.48909 + 0.418193i
\(467\) −8.41821 −0.389548 −0.194774 0.980848i \(-0.562397\pi\)
−0.194774 + 0.980848i \(0.562397\pi\)
\(468\) 0 0
\(469\) −26.5088 −1.22406
\(470\) 19.3963 5.44723i 0.894685 0.251262i
\(471\) 0 0
\(472\) 7.66547 + 7.13309i 0.352832 + 0.328327i
\(473\) 1.53622i 0.0706354i
\(474\) 0 0
\(475\) 6.59024i 0.302381i
\(476\) −2.37991 + 1.45120i −0.109083 + 0.0665155i
\(477\) 0 0
\(478\) −1.48650 5.29309i −0.0679911 0.242100i
\(479\) −21.1234 −0.965151 −0.482575 0.875854i \(-0.660299\pi\)
−0.482575 + 0.875854i \(0.660299\pi\)
\(480\) 0 0
\(481\) −4.50651 −0.205479
\(482\) −8.69726 30.9689i −0.396149 1.41059i
\(483\) 0 0
\(484\) −1.70758 + 1.04123i −0.0776174 + 0.0473287i
\(485\) 12.3160i 0.559240i
\(486\) 0 0
\(487\) 8.21718i 0.372356i −0.982516 0.186178i \(-0.940390\pi\)
0.982516 0.186178i \(-0.0596101\pi\)
\(488\) −30.7635 28.6269i −1.39260 1.29588i
\(489\) 0 0
\(490\) −29.5133 + 8.28848i −1.33328 + 0.374435i
\(491\) 8.17027 0.368719 0.184360 0.982859i \(-0.440979\pi\)
0.184360 + 0.982859i \(0.440979\pi\)
\(492\) 0 0
\(493\) −3.16967 −0.142755
\(494\) 37.7751 10.6087i 1.69958 0.477308i
\(495\) 0 0
\(496\) 14.0779 + 7.25151i 0.632118 + 0.325602i
\(497\) 24.2079i 1.08587i
\(498\) 0 0
\(499\) 21.9921i 0.984501i −0.870454 0.492250i \(-0.836174\pi\)
0.870454 0.492250i \(-0.163826\pi\)
\(500\) 12.3616 + 20.2726i 0.552830 + 0.906620i
\(501\) 0 0
\(502\) −1.88755 6.72114i −0.0842457 0.299979i
\(503\) 18.0446 0.804569 0.402284 0.915515i \(-0.368216\pi\)
0.402284 + 0.915515i \(0.368216\pi\)
\(504\) 0 0
\(505\) 10.5073 0.467568
\(506\) 1.34676 + 4.79551i 0.0598710 + 0.213186i
\(507\) 0 0
\(508\) −18.7597 30.7653i −0.832329 1.36499i
\(509\) 5.74310i 0.254558i −0.991867 0.127279i \(-0.959376\pi\)
0.991867 0.127279i \(-0.0406244\pi\)
\(510\) 0 0
\(511\) 36.5312i 1.61605i
\(512\) 14.1843 17.6297i 0.626861 0.779131i
\(513\) 0 0
\(514\) −36.2934 + 10.1926i −1.60083 + 0.449575i
\(515\) −1.67696 −0.0738958
\(516\) 0 0
\(517\) −6.93286 −0.304907
\(518\) −7.85102 + 2.20487i −0.344954 + 0.0968763i
\(519\) 0 0
\(520\) −12.9624 + 13.9298i −0.568437 + 0.610863i
\(521\) 13.3348i 0.584208i −0.956386 0.292104i \(-0.905645\pi\)
0.956386 0.292104i \(-0.0943554\pi\)
\(522\) 0 0
\(523\) 31.7086i 1.38652i −0.720687 0.693260i \(-0.756174\pi\)
0.720687 0.693260i \(-0.243826\pi\)
\(524\) −27.3684 + 16.6884i −1.19560 + 0.729038i
\(525\) 0 0
\(526\) −7.56719 26.9450i −0.329945 1.17486i
\(527\) −1.31714 −0.0573757
\(528\) 0 0
\(529\) −10.5946 −0.460637
\(530\) −6.94371 24.7249i −0.301616 1.07398i
\(531\) 0 0
\(532\) 60.6195 36.9639i 2.62819 1.60259i
\(533\) 17.7706i 0.769728i
\(534\) 0 0
\(535\) 29.1222i 1.25906i
\(536\) −12.1927 + 13.1027i −0.526645 + 0.565952i
\(537\) 0 0
\(538\) 21.9902 6.17569i 0.948064 0.266253i
\(539\) 10.5490 0.454378
\(540\) 0 0
\(541\) 31.1160 1.33778 0.668890 0.743361i \(-0.266770\pi\)
0.668890 + 0.743361i \(0.266770\pi\)
\(542\) 1.16319 0.326668i 0.0499632 0.0140316i
\(543\) 0 0
\(544\) −0.377344 + 1.84382i −0.0161785 + 0.0790531i
\(545\) 5.37575i 0.230272i
\(546\) 0 0
\(547\) 13.1543i 0.562437i −0.959644 0.281218i \(-0.909261\pi\)
0.959644 0.281218i \(-0.0907385\pi\)
\(548\) 10.6122 + 17.4036i 0.453330 + 0.743445i
\(549\) 0 0
\(550\) −0.297361 1.05883i −0.0126795 0.0451488i
\(551\) 80.7357 3.43946
\(552\) 0 0
\(553\) 55.6750 2.36754
\(554\) 8.57984 + 30.5508i 0.364523 + 1.29798i
\(555\) 0 0
\(556\) −1.65001 2.70596i −0.0699762 0.114758i
\(557\) 12.1015i 0.512756i −0.966577 0.256378i \(-0.917471\pi\)
0.966577 0.256378i \(-0.0825292\pi\)
\(558\) 0 0
\(559\) 5.02949i 0.212725i
\(560\) −15.7670 + 30.6099i −0.666279 + 1.29350i
\(561\) 0 0
\(562\) 37.7986 10.6153i 1.59444 0.447780i
\(563\) −20.2233 −0.852309 −0.426155 0.904650i \(-0.640132\pi\)
−0.426155 + 0.904650i \(0.640132\pi\)
\(564\) 0 0
\(565\) 18.1086 0.761835
\(566\) −18.7324 + 5.26077i −0.787381 + 0.221127i
\(567\) 0 0
\(568\) 11.9655 + 11.1344i 0.502060 + 0.467191i
\(569\) 9.66888i 0.405340i 0.979247 + 0.202670i \(0.0649619\pi\)
−0.979247 + 0.202670i \(0.935038\pi\)
\(570\) 0 0
\(571\) 17.7620i 0.743318i 0.928369 + 0.371659i \(0.121211\pi\)
−0.928369 + 0.371659i \(0.878789\pi\)
\(572\) 5.59052 3.40893i 0.233752 0.142535i
\(573\) 0 0
\(574\) −8.69448 30.9590i −0.362900 1.29220i
\(575\) −2.73906 −0.114227
\(576\) 0 0
\(577\) −22.1545 −0.922304 −0.461152 0.887321i \(-0.652564\pi\)
−0.461152 + 0.887321i \(0.652564\pi\)
\(578\) 6.45801 + 22.9955i 0.268618 + 0.956486i
\(579\) 0 0
\(580\) −33.4287 + 20.3838i −1.38805 + 0.846391i
\(581\) 4.12266i 0.171037i
\(582\) 0 0
\(583\) 8.83749i 0.366011i
\(584\) 18.0566 + 16.8025i 0.747188 + 0.695294i
\(585\) 0 0
\(586\) 32.1308 9.02356i 1.32731 0.372760i
\(587\) −32.9785 −1.36117 −0.680584 0.732670i \(-0.738274\pi\)
−0.680584 + 0.732670i \(0.738274\pi\)
\(588\) 0 0
\(589\) 33.5494 1.38238
\(590\) −10.3573 + 2.90873i −0.426403 + 0.119750i
\(591\) 0 0
\(592\) −2.52126 + 4.89472i −0.103623 + 0.201172i
\(593\) 7.23373i 0.297054i 0.988908 + 0.148527i \(0.0474531\pi\)
−0.988908 + 0.148527i \(0.952547\pi\)
\(594\) 0 0
\(595\) 2.86388i 0.117408i
\(596\) −3.18347 5.22077i −0.130400 0.213851i
\(597\) 0 0
\(598\) −4.40923 15.7002i −0.180307 0.642030i
\(599\) −26.9917 −1.10285 −0.551425 0.834224i \(-0.685916\pi\)
−0.551425 + 0.834224i \(0.685916\pi\)
\(600\) 0 0
\(601\) 33.8244 1.37972 0.689862 0.723941i \(-0.257671\pi\)
0.689862 + 0.723941i \(0.257671\pi\)
\(602\) 2.46074 + 8.76214i 0.100292 + 0.357118i
\(603\) 0 0
\(604\) −16.9869 27.8579i −0.691188 1.13352i
\(605\) 2.05483i 0.0835407i
\(606\) 0 0
\(607\) 18.4992i 0.750861i 0.926851 + 0.375430i \(0.122505\pi\)
−0.926851 + 0.375430i \(0.877495\pi\)
\(608\) 9.61145 46.9645i 0.389796 1.90466i
\(609\) 0 0
\(610\) 41.5666 11.6735i 1.68298 0.472646i
\(611\) 22.6978 0.918254
\(612\) 0 0
\(613\) 18.8425 0.761041 0.380520 0.924772i \(-0.375745\pi\)
0.380520 + 0.924772i \(0.375745\pi\)
\(614\) 6.02080 1.69087i 0.242980 0.0682380i
\(615\) 0 0
\(616\) 8.07167 8.67411i 0.325217 0.349490i
\(617\) 19.5867i 0.788529i −0.918997 0.394265i \(-0.870999\pi\)
0.918997 0.394265i \(-0.129001\pi\)
\(618\) 0 0
\(619\) 20.9215i 0.840908i 0.907314 + 0.420454i \(0.138129\pi\)
−0.907314 + 0.420454i \(0.861871\pi\)
\(620\) −13.8911 + 8.47039i −0.557881 + 0.340179i
\(621\) 0 0
\(622\) −10.7989 38.4523i −0.432996 1.54180i
\(623\) 6.12735 0.245487
\(624\) 0 0
\(625\) −20.5069 −0.820274
\(626\) −2.02185 7.19933i −0.0808093 0.287743i
\(627\) 0 0
\(628\) −3.91257 + 2.38577i −0.156128 + 0.0952024i
\(629\) 0.457954i 0.0182598i
\(630\) 0 0
\(631\) 1.27651i 0.0508172i 0.999677 + 0.0254086i \(0.00808868\pi\)
−0.999677 + 0.0254086i \(0.991911\pi\)
\(632\) 25.6077 27.5190i 1.01862 1.09465i
\(633\) 0 0
\(634\) 5.74278 1.61279i 0.228075 0.0640522i
\(635\) 37.0216 1.46916
\(636\) 0 0
\(637\) −34.5369 −1.36840
\(638\) 12.9716 3.64291i 0.513549 0.144224i
\(639\) 0 0
\(640\) 7.87776 + 21.8723i 0.311396 + 0.864580i
\(641\) 20.0324i 0.791234i −0.918416 0.395617i \(-0.870531\pi\)
0.918416 0.395617i \(-0.129469\pi\)
\(642\) 0 0
\(643\) 9.71125i 0.382974i 0.981495 + 0.191487i \(0.0613310\pi\)
−0.981495 + 0.191487i \(0.938669\pi\)
\(644\) −15.3631 25.1949i −0.605390 0.992818i
\(645\) 0 0
\(646\) 1.07806 + 3.83873i 0.0424158 + 0.151033i
\(647\) 31.8921 1.25381 0.626904 0.779097i \(-0.284322\pi\)
0.626904 + 0.779097i \(0.284322\pi\)
\(648\) 0 0
\(649\) 3.70203 0.145318
\(650\) 0.973543 + 3.46656i 0.0381855 + 0.135970i
\(651\) 0 0
\(652\) 0.552698 + 0.906404i 0.0216453 + 0.0354975i
\(653\) 20.6601i 0.808491i 0.914651 + 0.404245i \(0.132466\pi\)
−0.914651 + 0.404245i \(0.867534\pi\)
\(654\) 0 0
\(655\) 32.9340i 1.28684i
\(656\) −19.3014 9.94210i −0.753593 0.388174i
\(657\) 0 0
\(658\) 39.5430 11.1052i 1.54155 0.432926i
\(659\) −28.5649 −1.11273 −0.556365 0.830938i \(-0.687804\pi\)
−0.556365 + 0.830938i \(0.687804\pi\)
\(660\) 0 0
\(661\) −20.3230 −0.790475 −0.395237 0.918579i \(-0.629338\pi\)
−0.395237 + 0.918579i \(0.629338\pi\)
\(662\) 28.7348 8.06983i 1.11681 0.313643i
\(663\) 0 0
\(664\) −2.03775 1.89622i −0.0790799 0.0735876i
\(665\) 72.9468i 2.82876i
\(666\) 0 0
\(667\) 33.5557i 1.29928i
\(668\) −29.0671 + 17.7243i −1.12464 + 0.685772i
\(669\) 0 0
\(670\) −4.97194 17.7039i −0.192083 0.683962i
\(671\) −14.8572 −0.573557
\(672\) 0 0
\(673\) −40.4387 −1.55880 −0.779398 0.626529i \(-0.784475\pi\)
−0.779398 + 0.626529i \(0.784475\pi\)
\(674\) 5.50069 + 19.5867i 0.211879 + 0.754450i
\(675\) 0 0
\(676\) 3.89552 2.37537i 0.149828 0.0913604i
\(677\) 25.2867i 0.971848i 0.874001 + 0.485924i \(0.161517\pi\)
−0.874001 + 0.485924i \(0.838483\pi\)
\(678\) 0 0
\(679\) 25.1084i 0.963573i
\(680\) −1.41556 1.31724i −0.0542841 0.0505140i
\(681\) 0 0
\(682\) 5.39027 1.51380i 0.206404 0.0579662i
\(683\) 2.12760 0.0814102 0.0407051 0.999171i \(-0.487040\pi\)
0.0407051 + 0.999171i \(0.487040\pi\)
\(684\) 0 0
\(685\) −20.9428 −0.800181
\(686\) −20.2425 + 5.68489i −0.772864 + 0.217050i
\(687\) 0 0
\(688\) 5.46276 + 2.81385i 0.208266 + 0.107277i
\(689\) 28.9334i 1.10228i
\(690\) 0 0
\(691\) 33.9780i 1.29258i 0.763090 + 0.646292i \(0.223681\pi\)
−0.763090 + 0.646292i \(0.776319\pi\)
\(692\) −5.61207 9.20360i −0.213339 0.349868i
\(693\) 0 0
\(694\) 3.87915 + 13.8128i 0.147251 + 0.524325i
\(695\) 3.25624 0.123516
\(696\) 0 0
\(697\) 1.80585 0.0684016
\(698\) −1.40557 5.00492i −0.0532017 0.189439i
\(699\) 0 0
\(700\) 3.39212 + 5.56295i 0.128210 + 0.210260i
\(701\) 43.1893i 1.63124i 0.578590 + 0.815618i \(0.303603\pi\)
−0.578590 + 0.815618i \(0.696397\pi\)
\(702\) 0 0
\(703\) 11.6647i 0.439942i
\(704\) −0.574864 7.97932i −0.0216660 0.300732i
\(705\) 0 0
\(706\) 0.692158 0.194385i 0.0260497 0.00731576i
\(707\) 21.4211 0.805622
\(708\) 0 0
\(709\) 2.99634 0.112530 0.0562650 0.998416i \(-0.482081\pi\)
0.0562650 + 0.998416i \(0.482081\pi\)
\(710\) −16.1673 + 4.54040i −0.606748 + 0.170398i
\(711\) 0 0
\(712\) 2.81828 3.02862i 0.105619 0.113502i
\(713\) 13.9439i 0.522204i
\(714\) 0 0
\(715\) 6.72739i 0.251590i
\(716\) 27.4269 16.7241i 1.02499 0.625009i
\(717\) 0 0
\(718\) −11.2249 39.9694i −0.418911 1.49164i
\(719\) 44.6554 1.66536 0.832682 0.553751i \(-0.186804\pi\)
0.832682 + 0.553751i \(0.186804\pi\)
\(720\) 0 0
\(721\) −3.41880 −0.127323
\(722\) −20.1946 71.9082i −0.751565 2.67615i
\(723\) 0 0
\(724\) −13.0782 + 7.97471i −0.486049 + 0.296378i
\(725\) 7.40899i 0.275163i
\(726\) 0 0
\(727\) 22.6022i 0.838270i 0.907924 + 0.419135i \(0.137667\pi\)
−0.907924 + 0.419135i \(0.862333\pi\)
\(728\) −26.4262 + 28.3985i −0.979420 + 1.05252i
\(729\) 0 0
\(730\) −24.3974 + 6.85173i −0.902989 + 0.253594i
\(731\) −0.511100 −0.0189037
\(732\) 0 0
\(733\) −28.3580 −1.04743 −0.523713 0.851895i \(-0.675454\pi\)
−0.523713 + 0.851895i \(0.675454\pi\)
\(734\) −42.4725 + 11.9279i −1.56769 + 0.440267i
\(735\) 0 0
\(736\) −19.5196 3.99475i −0.719501 0.147248i
\(737\) 6.32795i 0.233093i
\(738\) 0 0
\(739\) 43.9526i 1.61682i 0.588619 + 0.808411i \(0.299672\pi\)
−0.588619 + 0.808411i \(0.700328\pi\)
\(740\) −2.94505 4.82977i −0.108262 0.177546i
\(741\) 0 0
\(742\) −14.1561 50.4064i −0.519685 1.85048i
\(743\) 31.8324 1.16782 0.583909 0.811819i \(-0.301522\pi\)
0.583909 + 0.811819i \(0.301522\pi\)
\(744\) 0 0
\(745\) 6.28245 0.230171
\(746\) 4.15714 + 14.8026i 0.152204 + 0.541962i
\(747\) 0 0
\(748\) 0.346418 + 0.568112i 0.0126663 + 0.0207722i
\(749\) 59.3710i 2.16937i
\(750\) 0 0
\(751\) 11.1655i 0.407433i 0.979030 + 0.203717i \(0.0653021\pi\)
−0.979030 + 0.203717i \(0.934698\pi\)
\(752\) 12.6987 24.6531i 0.463075 0.899006i
\(753\) 0 0
\(754\) −42.4681 + 11.9267i −1.54660 + 0.434344i
\(755\) 33.5230 1.22003
\(756\) 0 0
\(757\) 11.7438 0.426834 0.213417 0.976961i \(-0.431541\pi\)
0.213417 + 0.976961i \(0.431541\pi\)
\(758\) −0.415908 + 0.116803i −0.0151065 + 0.00424248i
\(759\) 0 0
\(760\) 36.0561 + 33.5519i 1.30789 + 1.21706i
\(761\) 8.11196i 0.294058i 0.989132 + 0.147029i \(0.0469711\pi\)
−0.989132 + 0.147029i \(0.953029\pi\)
\(762\) 0 0
\(763\) 10.9595i 0.396760i
\(764\) −22.5107 + 13.7263i −0.814408 + 0.496601i
\(765\) 0 0
\(766\) 6.89761 + 24.5608i 0.249221 + 0.887417i
\(767\) −12.1202 −0.437636
\(768\) 0 0
\(769\) −36.1570 −1.30386 −0.651928 0.758281i \(-0.726039\pi\)
−0.651928 + 0.758281i \(0.726039\pi\)
\(770\) 3.29147 + 11.7201i 0.118616 + 0.422364i
\(771\) 0 0
\(772\) −29.9694 + 18.2744i −1.07862 + 0.657710i
\(773\) 23.8614i 0.858236i 0.903249 + 0.429118i \(0.141175\pi\)
−0.903249 + 0.429118i \(0.858825\pi\)
\(774\) 0 0
\(775\) 3.07877i 0.110593i
\(776\) −12.4106 11.5486i −0.445513 0.414571i
\(777\) 0 0
\(778\) −4.16940 + 1.17093i −0.149480 + 0.0419798i
\(779\) −45.9975 −1.64803
\(780\) 0 0
\(781\) 5.77871 0.206779
\(782\) 1.59547 0.448068i 0.0570538 0.0160229i
\(783\) 0 0
\(784\) −19.3224 + 37.5121i −0.690084 + 1.33972i
\(785\) 4.70822i 0.168043i
\(786\) 0 0
\(787\) 43.8822i 1.56423i 0.623134 + 0.782115i \(0.285859\pi\)
−0.623134 + 0.782115i \(0.714141\pi\)
\(788\) 12.1232 + 19.8817i 0.431872 + 0.708255i
\(789\) 0 0
\(790\) 10.4423 + 37.1826i 0.371521 + 1.32290i
\(791\) 36.9178 1.31265
\(792\) 0 0
\(793\) 48.6417 1.72732
\(794\) −7.30469 26.0103i −0.259234 0.923071i
\(795\) 0 0
\(796\) 5.56865 + 9.13238i 0.197376 + 0.323689i
\(797\) 28.3351i 1.00368i −0.864961 0.501840i \(-0.832657\pi\)
0.864961 0.501840i \(-0.167343\pi\)
\(798\) 0 0
\(799\) 2.30656i 0.0816004i
\(800\) 4.30986 + 0.882027i 0.152376 + 0.0311844i
\(801\) 0 0
\(802\) 28.7901 8.08537i 1.01661 0.285504i
\(803\) 8.72042 0.307737
\(804\) 0 0
\(805\) 30.3184 1.06858
\(806\) −17.6474 + 4.95608i −0.621604 + 0.174570i
\(807\) 0 0
\(808\) 9.85263 10.5880i 0.346614 0.372484i
\(809\) 18.5019i 0.650492i 0.945629 + 0.325246i \(0.105447\pi\)
−0.945629 + 0.325246i \(0.894553\pi\)
\(810\) 0 0
\(811\) 0.0475401i 0.00166936i −1.00000 0.000834679i \(-0.999734\pi\)
1.00000 0.000834679i \(-0.000265687\pi\)
\(812\) −68.1506 + 41.5562i −2.39162 + 1.45834i
\(813\) 0 0
\(814\) 0.526328 + 1.87413i 0.0184478 + 0.0656882i
\(815\) −1.09073 −0.0382065
\(816\) 0 0
\(817\) 13.0184 0.455456
\(818\) 6.36663 + 22.6701i 0.222604 + 0.792641i
\(819\) 0 0
\(820\) 19.0453 11.6132i 0.665090 0.405552i
\(821\) 39.2412i 1.36953i 0.728765 + 0.684764i \(0.240095\pi\)
−0.728765 + 0.684764i \(0.759905\pi\)
\(822\) 0 0
\(823\) 37.4363i 1.30495i 0.757812 + 0.652473i \(0.226268\pi\)
−0.757812 + 0.652473i \(0.773732\pi\)
\(824\) −1.57248 + 1.68984i −0.0547799 + 0.0588684i
\(825\) 0 0
\(826\) −21.1153 + 5.92999i −0.734695 + 0.206331i
\(827\) 37.8240 1.31527 0.657635 0.753337i \(-0.271557\pi\)
0.657635 + 0.753337i \(0.271557\pi\)
\(828\) 0 0
\(829\) −14.3390 −0.498014 −0.249007 0.968502i \(-0.580104\pi\)
−0.249007 + 0.968502i \(0.580104\pi\)
\(830\) 2.75333 0.773240i 0.0955693 0.0268395i
\(831\) 0 0
\(832\) 1.88207 + 26.1238i 0.0652491 + 0.905681i
\(833\) 3.50966i 0.121602i
\(834\) 0 0
\(835\) 34.9781i 1.21047i
\(836\) −8.82372 14.4706i −0.305175 0.500475i
\(837\) 0 0
\(838\) −9.94389 35.4079i −0.343506 1.22314i
\(839\) 8.56063 0.295546 0.147773 0.989021i \(-0.452790\pi\)
0.147773 + 0.989021i \(0.452790\pi\)
\(840\) 0 0
\(841\) −61.7660 −2.12986
\(842\) 10.9315 + 38.9246i 0.376725 + 1.34143i
\(843\) 0 0
\(844\) 18.0150 + 29.5439i 0.620102 + 1.01694i
\(845\) 4.68770i 0.161262i
\(846\) 0 0
\(847\) 4.18915i 0.143941i
\(848\) −31.4259 16.1874i −1.07917 0.555877i
\(849\) 0 0
\(850\) −0.352274 + 0.0989320i −0.0120829 + 0.00339334i
\(851\) 4.84812 0.166192
\(852\) 0 0
\(853\) −54.1181 −1.85297 −0.926484 0.376335i \(-0.877184\pi\)
−0.926484 + 0.376335i \(0.877184\pi\)
\(854\) 84.7412 23.7986i 2.89978 0.814371i
\(855\) 0 0
\(856\) −29.3458 27.3077i −1.00302 0.933358i
\(857\) 22.8279i 0.779788i 0.920860 + 0.389894i \(0.127488\pi\)
−0.920860 + 0.389894i \(0.872512\pi\)
\(858\) 0 0
\(859\) 0.288906i 0.00985734i −0.999988 0.00492867i \(-0.998431\pi\)
0.999988 0.00492867i \(-0.00156885\pi\)
\(860\) −5.39027 + 3.28682i −0.183807 + 0.112080i
\(861\) 0 0
\(862\) −5.34970 19.0490i −0.182212 0.648813i
\(863\) −0.722052 −0.0245789 −0.0122895 0.999924i \(-0.503912\pi\)
−0.0122895 + 0.999924i \(0.503912\pi\)
\(864\) 0 0
\(865\) 11.0752 0.376568
\(866\) −4.12908 14.7027i −0.140312 0.499618i
\(867\) 0 0
\(868\) −28.3197 + 17.2685i −0.961232 + 0.586130i
\(869\) 13.2903i 0.450842i
\(870\) 0 0
\(871\) 20.7173i 0.701981i
\(872\) 5.41704 + 5.04081i 0.183444 + 0.170703i
\(873\) 0 0
\(874\) −40.6386 + 11.4129i −1.37462 + 0.386047i
\(875\) −49.7342 −1.68132
\(876\) 0 0
\(877\) −25.4051 −0.857869 −0.428935 0.903335i \(-0.641111\pi\)
−0.428935 + 0.903335i \(0.641111\pi\)
\(878\) 6.36045 1.78626i 0.214655 0.0602833i
\(879\) 0 0
\(880\) 7.30693 + 3.76378i 0.246317 + 0.126877i
\(881\) 18.2594i 0.615175i −0.951520 0.307588i \(-0.900478\pi\)
0.951520 0.307588i \(-0.0995217\pi\)
\(882\) 0 0
\(883\) 10.2183i 0.343872i 0.985108 + 0.171936i \(0.0550023\pi\)
−0.985108 + 0.171936i \(0.944998\pi\)
\(884\) −1.13415 1.85997i −0.0381456 0.0625575i
\(885\) 0 0
\(886\) 6.91734 + 24.6310i 0.232393 + 0.827496i
\(887\) 35.4055 1.18880 0.594399 0.804170i \(-0.297390\pi\)
0.594399 + 0.804170i \(0.297390\pi\)
\(888\) 0 0
\(889\) 75.4755 2.53137
\(890\) 1.14924 + 4.09216i 0.0385225 + 0.137170i
\(891\) 0 0
\(892\) −23.2894 38.1938i −0.779787 1.27882i
\(893\) 58.7512i 1.96603i
\(894\) 0 0
\(895\) 33.0044i 1.10321i
\(896\) 16.0603 + 44.5908i 0.536536 + 1.48968i
\(897\) 0 0
\(898\) 33.5422 9.41995i 1.11932 0.314348i
\(899\) −37.7174 −1.25795
\(900\) 0 0
\(901\) 2.94023 0.0979533
\(902\) −7.39027 + 2.07547i −0.246069 + 0.0691057i
\(903\) 0 0
\(904\) 16.9803 18.2477i 0.564758 0.606909i
\(905\) 15.7378i 0.523142i
\(906\) 0 0
\(907\) 23.9880i 0.796508i −0.917275 0.398254i \(-0.869616\pi\)
0.917275 0.398254i \(-0.130384\pi\)
\(908\) −44.5505 + 27.1655i −1.47846 + 0.901519i
\(909\) 0 0
\(910\) −10.7761 38.3710i −0.357223 1.27199i
\(911\) −0.671680 −0.0222537 −0.0111269 0.999938i \(-0.503542\pi\)
−0.0111269 + 0.999938i \(0.503542\pi\)
\(912\) 0 0
\(913\) −0.984127 −0.0325699
\(914\) −7.44241 26.5007i −0.246173 0.876564i
\(915\) 0 0
\(916\) 16.8616 10.2817i 0.557125 0.339718i
\(917\) 67.1421i 2.21723i
\(918\) 0 0
\(919\) 12.6625i 0.417699i −0.977948 0.208849i \(-0.933028\pi\)
0.977948 0.208849i \(-0.0669719\pi\)
\(920\) 13.9450 14.9858i 0.459752 0.494066i
\(921\) 0 0
\(922\) −1.46458 + 0.411310i −0.0482333 + 0.0135458i
\(923\) −18.9192 −0.622732
\(924\) 0 0
\(925\) −1.07045 −0.0351962
\(926\) −6.56250 + 1.84300i −0.215657 + 0.0605648i
\(927\) 0 0
\(928\) −10.8055 + 52.7992i −0.354709 + 1.73322i
\(929\) 17.2495i 0.565939i 0.959129 + 0.282969i \(0.0913195\pi\)
−0.959129 + 0.282969i \(0.908681\pi\)
\(930\) 0 0
\(931\) 89.3956i 2.92982i
\(932\) −24.5827 40.3148i −0.805234 1.32055i
\(933\) 0 0
\(934\) −3.21889 11.4617i −0.105325 0.375039i
\(935\) −0.683642 −0.0223575
\(936\) 0 0
\(937\) 25.9299 0.847091 0.423546 0.905875i \(-0.360785\pi\)
0.423546 + 0.905875i \(0.360785\pi\)
\(938\) −10.1362 36.0928i −0.330960 1.17847i
\(939\) 0 0
\(940\) 14.8332 + 24.3260i 0.483807 + 0.793426i
\(941\) 38.5622i 1.25709i 0.777773 + 0.628545i \(0.216349\pi\)
−0.777773 + 0.628545i \(0.783651\pi\)
\(942\) 0 0
\(943\) 19.1177i 0.622556i
\(944\) −6.78091 + 13.1643i −0.220700 + 0.428463i
\(945\) 0 0
\(946\) 2.09162 0.587408i 0.0680046 0.0190983i
\(947\) −10.0835 −0.327668 −0.163834 0.986488i \(-0.552386\pi\)
−0.163834 + 0.986488i \(0.552386\pi\)
\(948\) 0 0
\(949\) −28.5502 −0.926777
\(950\) 8.97288 2.51993i 0.291119 0.0817573i
\(951\) 0 0
\(952\) −2.88588 2.68545i −0.0935318 0.0870358i
\(953\) 11.8961i 0.385353i 0.981262 + 0.192677i \(0.0617168\pi\)
−0.981262 + 0.192677i \(0.938283\pi\)
\(954\) 0 0
\(955\) 27.0884i 0.876559i
\(956\) 6.63836 4.04787i 0.214700 0.130917i
\(957\) 0 0
\(958\) −8.07700 28.7603i −0.260956 0.929203i
\(959\) −42.6957 −1.37872
\(960\) 0 0
\(961\) 15.3267 0.494410
\(962\) −1.72317 6.13579i −0.0555571 0.197826i
\(963\) 0 0
\(964\) 38.8398 23.6833i 1.25095 0.762789i
\(965\) 36.0638i 1.16094i
\(966\) 0 0
\(967\) 40.7204i 1.30948i −0.755855 0.654739i \(-0.772778\pi\)
0.755855 0.654739i \(-0.227222\pi\)
\(968\) −2.07061 1.92680i −0.0665520 0.0619298i
\(969\) 0 0
\(970\) 16.7687 4.70930i 0.538410 0.151206i
\(971\) 0.171053 0.00548936 0.00274468 0.999996i \(-0.499126\pi\)
0.00274468 + 0.999996i \(0.499126\pi\)
\(972\) 0 0
\(973\) 6.63845 0.212819
\(974\) 11.1880 3.14203i 0.358487 0.100677i
\(975\) 0 0
\(976\) 27.2136 52.8320i 0.871085 1.69111i
\(977\) 42.4361i 1.35765i 0.734299 + 0.678826i \(0.237511\pi\)
−0.734299 + 0.678826i \(0.762489\pi\)
\(978\) 0 0
\(979\) 1.46267i 0.0467471i
\(980\) −22.5702 37.0143i −0.720979 1.18238i
\(981\) 0 0
\(982\) 3.12409 + 11.1241i 0.0996937 + 0.354986i
\(983\) 16.0332 0.511380 0.255690 0.966759i \(-0.417697\pi\)
0.255690 + 0.966759i \(0.417697\pi\)
\(984\) 0 0
\(985\) −23.9247 −0.762305
\(986\) −1.21200 4.31563i −0.0385978 0.137438i
\(987\) 0 0
\(988\) 28.8883 + 47.3758i 0.919060 + 1.50723i
\(989\) 5.41075i 0.172052i
\(990\) 0 0
\(991\) 19.7092i 0.626085i 0.949739 + 0.313042i \(0.101348\pi\)
−0.949739 + 0.313042i \(0.898652\pi\)
\(992\) −4.49019 + 21.9405i −0.142564 + 0.696610i
\(993\) 0 0
\(994\) −32.9601 + 9.25645i −1.04543 + 0.293597i
\(995\) −10.9895 −0.348391
\(996\) 0 0
\(997\) 14.9855 0.474596 0.237298 0.971437i \(-0.423738\pi\)
0.237298 + 0.971437i \(0.423738\pi\)
\(998\) 29.9431 8.40918i 0.947832 0.266188i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 396.2.c.a.287.6 yes 10
3.2 odd 2 396.2.c.b.287.5 yes 10
4.3 odd 2 396.2.c.b.287.6 yes 10
8.3 odd 2 6336.2.d.g.3455.8 10
8.5 even 2 6336.2.d.h.3455.8 10
12.11 even 2 inner 396.2.c.a.287.5 10
24.5 odd 2 6336.2.d.g.3455.3 10
24.11 even 2 6336.2.d.h.3455.3 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
396.2.c.a.287.5 10 12.11 even 2 inner
396.2.c.a.287.6 yes 10 1.1 even 1 trivial
396.2.c.b.287.5 yes 10 3.2 odd 2
396.2.c.b.287.6 yes 10 4.3 odd 2
6336.2.d.g.3455.3 10 24.5 odd 2
6336.2.d.g.3455.8 10 8.3 odd 2
6336.2.d.h.3455.3 10 24.11 even 2
6336.2.d.h.3455.8 10 8.5 even 2