Properties

Label 6336.2.d.e.3455.5
Level $6336$
Weight $2$
Character 6336.3455
Analytic conductor $50.593$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6336,2,Mod(3455,6336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6336, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6336.3455"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6336 = 2^{6} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6336.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,8,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.5932147207\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.1768034304.5
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 9x^{6} - 2x^{5} + 34x^{4} - 18x^{3} + 51x^{2} + 18x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 1584)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3455.5
Root \(0.697356 - 1.20786i\) of defining polynomial
Character \(\chi\) \(=\) 6336.3455
Dual form 6336.2.d.e.3455.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.558208i q^{5} -0.558208i q^{7} +1.00000 q^{11} +1.30678 q^{13} +5.94784i q^{17} -6.72638i q^{19} -4.99518 q^{23} +4.68840 q^{25} -3.46410i q^{29} -2.48374i q^{31} +0.311596 q^{35} -9.62209 q^{37} -2.48374i q^{41} -2.87532i q^{43} +6.92887 q^{47} +6.68840 q^{49} -7.48641i q^{53} +0.558208i q^{55} +3.32013 q^{59} -2.69322 q^{61} +0.729454i q^{65} -5.02118i q^{67} -4.99518 q^{71} +1.32013 q^{73} -0.558208i q^{77} +11.3375i q^{79} +11.6884 q^{83} -3.32013 q^{85} +1.56915i q^{89} -0.729454i q^{91} +3.75472 q^{95} +3.68840 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{11} + 8 q^{13} + 16 q^{23} - 16 q^{25} + 56 q^{35} - 8 q^{37} - 16 q^{47} + 16 q^{59} - 24 q^{61} + 16 q^{71} + 40 q^{83} - 16 q^{85} - 8 q^{95} - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6336\mathbb{Z}\right)^\times\).

\(n\) \(1729\) \(3521\) \(4159\) \(4357\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.558208i 0.249638i 0.992180 + 0.124819i \(0.0398350\pi\)
−0.992180 + 0.124819i \(0.960165\pi\)
\(6\) 0 0
\(7\) − 0.558208i − 0.210983i −0.994420 0.105491i \(-0.966358\pi\)
0.994420 0.105491i \(-0.0336415\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 1.30678 0.362435 0.181218 0.983443i \(-0.441996\pi\)
0.181218 + 0.983443i \(0.441996\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.94784i 1.44256i 0.692642 + 0.721282i \(0.256447\pi\)
−0.692642 + 0.721282i \(0.743553\pi\)
\(18\) 0 0
\(19\) − 6.72638i − 1.54314i −0.636146 0.771569i \(-0.719472\pi\)
0.636146 0.771569i \(-0.280528\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.99518 −1.04157 −0.520784 0.853689i \(-0.674360\pi\)
−0.520784 + 0.853689i \(0.674360\pi\)
\(24\) 0 0
\(25\) 4.68840 0.937681
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 3.46410i − 0.643268i −0.946864 0.321634i \(-0.895768\pi\)
0.946864 0.321634i \(-0.104232\pi\)
\(30\) 0 0
\(31\) − 2.48374i − 0.446093i −0.974808 0.223046i \(-0.928400\pi\)
0.974808 0.223046i \(-0.0716001\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.311596 0.0526693
\(36\) 0 0
\(37\) −9.62209 −1.58186 −0.790931 0.611905i \(-0.790403\pi\)
−0.790931 + 0.611905i \(0.790403\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 2.48374i − 0.387895i −0.981012 0.193947i \(-0.937871\pi\)
0.981012 0.193947i \(-0.0621291\pi\)
\(42\) 0 0
\(43\) − 2.87532i − 0.438482i −0.975671 0.219241i \(-0.929642\pi\)
0.975671 0.219241i \(-0.0703580\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.92887 1.01068 0.505340 0.862920i \(-0.331367\pi\)
0.505340 + 0.862920i \(0.331367\pi\)
\(48\) 0 0
\(49\) 6.68840 0.955486
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 7.48641i − 1.02834i −0.857689 0.514169i \(-0.828100\pi\)
0.857689 0.514169i \(-0.171900\pi\)
\(54\) 0 0
\(55\) 0.558208i 0.0752687i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.32013 0.432244 0.216122 0.976366i \(-0.430659\pi\)
0.216122 + 0.976366i \(0.430659\pi\)
\(60\) 0 0
\(61\) −2.69322 −0.344832 −0.172416 0.985024i \(-0.555157\pi\)
−0.172416 + 0.985024i \(0.555157\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.729454i 0.0904776i
\(66\) 0 0
\(67\) − 5.02118i − 0.613435i −0.951801 0.306717i \(-0.900769\pi\)
0.951801 0.306717i \(-0.0992306\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −4.99518 −0.592819 −0.296410 0.955061i \(-0.595789\pi\)
−0.296410 + 0.955061i \(0.595789\pi\)
\(72\) 0 0
\(73\) 1.32013 0.154510 0.0772548 0.997011i \(-0.475385\pi\)
0.0772548 + 0.997011i \(0.475385\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 0.558208i − 0.0636137i
\(78\) 0 0
\(79\) 11.3375i 1.27557i 0.770216 + 0.637783i \(0.220148\pi\)
−0.770216 + 0.637783i \(0.779852\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 11.6884 1.28297 0.641485 0.767136i \(-0.278319\pi\)
0.641485 + 0.767136i \(0.278319\pi\)
\(84\) 0 0
\(85\) −3.32013 −0.360119
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.56915i 0.166329i 0.996536 + 0.0831646i \(0.0265027\pi\)
−0.996536 + 0.0831646i \(0.973497\pi\)
\(90\) 0 0
\(91\) − 0.729454i − 0.0764676i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.75472 0.385226
\(96\) 0 0
\(97\) 3.68840 0.374501 0.187250 0.982312i \(-0.440042\pi\)
0.187250 + 0.982312i \(0.440042\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 9.85261i − 0.980371i −0.871618 0.490185i \(-0.836929\pi\)
0.871618 0.490185i \(-0.163071\pi\)
\(102\) 0 0
\(103\) − 5.56088i − 0.547930i −0.961740 0.273965i \(-0.911665\pi\)
0.961740 0.273965i \(-0.0883352\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 7.93369 0.766979 0.383489 0.923545i \(-0.374722\pi\)
0.383489 + 0.923545i \(0.374722\pi\)
\(108\) 0 0
\(109\) −10.6173 −1.01695 −0.508475 0.861077i \(-0.669791\pi\)
−0.508475 + 0.861077i \(0.669791\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 9.21012i 0.866415i 0.901294 + 0.433208i \(0.142618\pi\)
−0.901294 + 0.433208i \(0.857382\pi\)
\(114\) 0 0
\(115\) − 2.78835i − 0.260015i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3.32013 0.304356
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 5.40814i 0.483719i
\(126\) 0 0
\(127\) − 7.48641i − 0.664312i −0.943225 0.332156i \(-0.892224\pi\)
0.943225 0.332156i \(-0.107776\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −7.62209 −0.665945 −0.332973 0.942936i \(-0.608052\pi\)
−0.332973 + 0.942936i \(0.608052\pi\)
\(132\) 0 0
\(133\) −3.75472 −0.325575
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.53663i 0.558462i 0.960224 + 0.279231i \(0.0900795\pi\)
−0.960224 + 0.279231i \(0.909921\pi\)
\(138\) 0 0
\(139\) − 16.3892i − 1.39012i −0.718953 0.695058i \(-0.755379\pi\)
0.718953 0.695058i \(-0.244621\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.30678 0.109278
\(144\) 0 0
\(145\) 1.93369 0.160584
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 20.1301i 1.64912i 0.565776 + 0.824559i \(0.308577\pi\)
−0.565776 + 0.824559i \(0.691423\pi\)
\(150\) 0 0
\(151\) − 10.1599i − 0.826801i −0.910549 0.413401i \(-0.864341\pi\)
0.910549 0.413401i \(-0.135659\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.38644 0.111362
\(156\) 0 0
\(157\) 3.25382 0.259683 0.129841 0.991535i \(-0.458553\pi\)
0.129841 + 0.991535i \(0.458553\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2.78835i 0.219753i
\(162\) 0 0
\(163\) − 17.6463i − 1.38217i −0.722775 0.691083i \(-0.757134\pi\)
0.722775 0.691083i \(-0.242866\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 21.0085 1.62569 0.812845 0.582481i \(-0.197918\pi\)
0.812845 + 0.582481i \(0.197918\pi\)
\(168\) 0 0
\(169\) −11.2923 −0.868641
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 8.43158i − 0.641041i −0.947242 0.320521i \(-0.896142\pi\)
0.947242 0.320521i \(-0.103858\pi\)
\(174\) 0 0
\(175\) − 2.61710i − 0.197834i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 18.6702 1.39548 0.697739 0.716352i \(-0.254189\pi\)
0.697739 + 0.716352i \(0.254189\pi\)
\(180\) 0 0
\(181\) 19.6125 1.45778 0.728891 0.684629i \(-0.240036\pi\)
0.728891 + 0.684629i \(0.240036\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 5.37113i − 0.394893i
\(186\) 0 0
\(187\) 5.94784i 0.434949i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −21.6258 −1.56479 −0.782394 0.622783i \(-0.786002\pi\)
−0.782394 + 0.622783i \(0.786002\pi\)
\(192\) 0 0
\(193\) 10.0567 0.723896 0.361948 0.932198i \(-0.382112\pi\)
0.361948 + 0.932198i \(0.382112\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 12.0854i − 0.861052i −0.902578 0.430526i \(-0.858328\pi\)
0.902578 0.430526i \(-0.141672\pi\)
\(198\) 0 0
\(199\) − 26.5186i − 1.87985i −0.341380 0.939925i \(-0.610894\pi\)
0.341380 0.939925i \(-0.389106\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.93369 −0.135718
\(204\) 0 0
\(205\) 1.38644 0.0968333
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 6.72638i − 0.465273i
\(210\) 0 0
\(211\) − 6.45427i − 0.444331i −0.975009 0.222165i \(-0.928688\pi\)
0.975009 0.222165i \(-0.0713125\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.60502 0.109462
\(216\) 0 0
\(217\) −1.38644 −0.0941178
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 7.77251i 0.522836i
\(222\) 0 0
\(223\) − 6.19875i − 0.415099i −0.978225 0.207549i \(-0.933451\pi\)
0.978225 0.207549i \(-0.0665488\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.29343 0.0858478 0.0429239 0.999078i \(-0.486333\pi\)
0.0429239 + 0.999078i \(0.486333\pi\)
\(228\) 0 0
\(229\) 3.38644 0.223782 0.111891 0.993720i \(-0.464309\pi\)
0.111891 + 0.993720i \(0.464309\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4.44446i 0.291167i 0.989346 + 0.145583i \(0.0465059\pi\)
−0.989346 + 0.145583i \(0.953494\pi\)
\(234\) 0 0
\(235\) 3.86775i 0.252304i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 14.3683 0.929406 0.464703 0.885467i \(-0.346161\pi\)
0.464703 + 0.885467i \(0.346161\pi\)
\(240\) 0 0
\(241\) −18.6306 −1.20010 −0.600052 0.799961i \(-0.704853\pi\)
−0.600052 + 0.799961i \(0.704853\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 3.73352i 0.238526i
\(246\) 0 0
\(247\) − 8.78989i − 0.559287i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −23.3009 −1.47074 −0.735369 0.677667i \(-0.762991\pi\)
−0.735369 + 0.677667i \(0.762991\pi\)
\(252\) 0 0
\(253\) −4.99518 −0.314044
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 26.5843i − 1.65828i −0.559037 0.829142i \(-0.688829\pi\)
0.559037 0.829142i \(-0.311171\pi\)
\(258\) 0 0
\(259\) 5.37113i 0.333745i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 18.9989 1.17152 0.585761 0.810484i \(-0.300796\pi\)
0.585761 + 0.810484i \(0.300796\pi\)
\(264\) 0 0
\(265\) 4.17897 0.256712
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 0.998871i − 0.0609022i −0.999536 0.0304511i \(-0.990306\pi\)
0.999536 0.0304511i \(-0.00969439\pi\)
\(270\) 0 0
\(271\) 3.96861i 0.241076i 0.992709 + 0.120538i \(0.0384619\pi\)
−0.992709 + 0.120538i \(0.961538\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.68840 0.282721
\(276\) 0 0
\(277\) 14.6932 0.882830 0.441415 0.897303i \(-0.354477\pi\)
0.441415 + 0.897303i \(0.354477\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 12.2003i − 0.727808i −0.931436 0.363904i \(-0.881444\pi\)
0.931436 0.363904i \(-0.118556\pi\)
\(282\) 0 0
\(283\) 7.84279i 0.466206i 0.972452 + 0.233103i \(0.0748879\pi\)
−0.972452 + 0.233103i \(0.925112\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1.38644 −0.0818391
\(288\) 0 0
\(289\) −18.3768 −1.08099
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 14.2434i 0.832106i 0.909340 + 0.416053i \(0.136587\pi\)
−0.909340 + 0.416053i \(0.863413\pi\)
\(294\) 0 0
\(295\) 1.85332i 0.107905i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −6.52760 −0.377501
\(300\) 0 0
\(301\) −1.60502 −0.0925120
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 1.50338i − 0.0860831i
\(306\) 0 0
\(307\) − 19.4664i − 1.11100i −0.831515 0.555502i \(-0.812526\pi\)
0.831515 0.555502i \(-0.187474\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 19.0048 1.07766 0.538832 0.842413i \(-0.318866\pi\)
0.538832 + 0.842413i \(0.318866\pi\)
\(312\) 0 0
\(313\) 16.6039 0.938509 0.469255 0.883063i \(-0.344523\pi\)
0.469255 + 0.883063i \(0.344523\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.96861i 0.222899i 0.993770 + 0.111450i \(0.0355494\pi\)
−0.993770 + 0.111450i \(0.964451\pi\)
\(318\) 0 0
\(319\) − 3.46410i − 0.193952i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 40.0074 2.22607
\(324\) 0 0
\(325\) 6.12671 0.339849
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 3.86775i − 0.213236i
\(330\) 0 0
\(331\) 1.28497i 0.0706285i 0.999376 + 0.0353142i \(0.0112432\pi\)
−0.999376 + 0.0353142i \(0.988757\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2.80286 0.153137
\(336\) 0 0
\(337\) −33.9807 −1.85105 −0.925524 0.378688i \(-0.876375\pi\)
−0.925524 + 0.378688i \(0.876375\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 2.48374i − 0.134502i
\(342\) 0 0
\(343\) − 7.64097i − 0.412574i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 26.3094 1.41236 0.706181 0.708031i \(-0.250416\pi\)
0.706181 + 0.708031i \(0.250416\pi\)
\(348\) 0 0
\(349\) 8.68359 0.464822 0.232411 0.972618i \(-0.425339\pi\)
0.232411 + 0.972618i \(0.425339\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 5.35906i − 0.285234i −0.989778 0.142617i \(-0.954448\pi\)
0.989778 0.142617i \(-0.0455517\pi\)
\(354\) 0 0
\(355\) − 2.78835i − 0.147990i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 33.3672 1.76105 0.880526 0.473998i \(-0.157190\pi\)
0.880526 + 0.473998i \(0.157190\pi\)
\(360\) 0 0
\(361\) −26.2442 −1.38127
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0.736907i 0.0385715i
\(366\) 0 0
\(367\) − 27.3629i − 1.42833i −0.699977 0.714165i \(-0.746807\pi\)
0.699977 0.714165i \(-0.253193\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −4.17897 −0.216961
\(372\) 0 0
\(373\) 19.2971 0.999168 0.499584 0.866265i \(-0.333486\pi\)
0.499584 + 0.866265i \(0.333486\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 4.52682i − 0.233143i
\(378\) 0 0
\(379\) 8.48528i 0.435860i 0.975964 + 0.217930i \(0.0699304\pi\)
−0.975964 + 0.217930i \(0.930070\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 13.0219 0.665387 0.332694 0.943035i \(-0.392043\pi\)
0.332694 + 0.943035i \(0.392043\pi\)
\(384\) 0 0
\(385\) 0.311596 0.0158804
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 2.45778i 0.124614i 0.998057 + 0.0623072i \(0.0198458\pi\)
−0.998057 + 0.0623072i \(0.980154\pi\)
\(390\) 0 0
\(391\) − 29.7106i − 1.50253i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −6.32866 −0.318430
\(396\) 0 0
\(397\) 10.8759 0.545846 0.272923 0.962036i \(-0.412010\pi\)
0.272923 + 0.962036i \(0.412010\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 34.0143i − 1.69860i −0.527914 0.849298i \(-0.677026\pi\)
0.527914 0.849298i \(-0.322974\pi\)
\(402\) 0 0
\(403\) − 3.24570i − 0.161680i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −9.62209 −0.476949
\(408\) 0 0
\(409\) −20.5643 −1.01684 −0.508420 0.861109i \(-0.669770\pi\)
−0.508420 + 0.861109i \(0.669770\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 1.85332i − 0.0911960i
\(414\) 0 0
\(415\) 6.52456i 0.320278i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 6.64026 0.324398 0.162199 0.986758i \(-0.448141\pi\)
0.162199 + 0.986758i \(0.448141\pi\)
\(420\) 0 0
\(421\) −14.8492 −0.723706 −0.361853 0.932235i \(-0.617856\pi\)
−0.361853 + 0.932235i \(0.617856\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 27.8859i 1.35266i
\(426\) 0 0
\(427\) 1.50338i 0.0727535i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 25.6392 1.23499 0.617497 0.786573i \(-0.288147\pi\)
0.617497 + 0.786573i \(0.288147\pi\)
\(432\) 0 0
\(433\) 39.9807 1.92135 0.960676 0.277673i \(-0.0895631\pi\)
0.960676 + 0.277673i \(0.0895631\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 33.5995i 1.60728i
\(438\) 0 0
\(439\) − 12.3927i − 0.591473i −0.955270 0.295736i \(-0.904435\pi\)
0.955270 0.295736i \(-0.0955650\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −30.5943 −1.45358 −0.726789 0.686860i \(-0.758988\pi\)
−0.726789 + 0.686860i \(0.758988\pi\)
\(444\) 0 0
\(445\) −0.875910 −0.0415221
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 36.0786i 1.70266i 0.524634 + 0.851328i \(0.324202\pi\)
−0.524634 + 0.851328i \(0.675798\pi\)
\(450\) 0 0
\(451\) − 2.48374i − 0.116955i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.407187 0.0190892
\(456\) 0 0
\(457\) 7.22712 0.338070 0.169035 0.985610i \(-0.445935\pi\)
0.169035 + 0.985610i \(0.445935\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2.11797i 0.0986439i 0.998783 + 0.0493220i \(0.0157060\pi\)
−0.998783 + 0.0493220i \(0.984294\pi\)
\(462\) 0 0
\(463\) 11.6818i 0.542899i 0.962453 + 0.271449i \(0.0875030\pi\)
−0.962453 + 0.271449i \(0.912497\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 20.0567 0.928112 0.464056 0.885806i \(-0.346394\pi\)
0.464056 + 0.885806i \(0.346394\pi\)
\(468\) 0 0
\(469\) −2.80286 −0.129424
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 2.87532i − 0.132207i
\(474\) 0 0
\(475\) − 31.5360i − 1.44697i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −42.3757 −1.93620 −0.968098 0.250573i \(-0.919381\pi\)
−0.968098 + 0.250573i \(0.919381\pi\)
\(480\) 0 0
\(481\) −12.5739 −0.573323
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.05890i 0.0934896i
\(486\) 0 0
\(487\) 4.20101i 0.190366i 0.995460 + 0.0951829i \(0.0303436\pi\)
−0.995460 + 0.0951829i \(0.969656\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −25.9508 −1.17114 −0.585571 0.810621i \(-0.699130\pi\)
−0.585571 + 0.810621i \(0.699130\pi\)
\(492\) 0 0
\(493\) 20.6039 0.927954
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2.78835i 0.125075i
\(498\) 0 0
\(499\) 30.7196i 1.37520i 0.726091 + 0.687598i \(0.241335\pi\)
−0.726091 + 0.687598i \(0.758665\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −22.9722 −1.02428 −0.512140 0.858902i \(-0.671147\pi\)
−0.512140 + 0.858902i \(0.671147\pi\)
\(504\) 0 0
\(505\) 5.49980 0.244738
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 22.4592i 0.995488i 0.867324 + 0.497744i \(0.165838\pi\)
−0.867324 + 0.497744i \(0.834162\pi\)
\(510\) 0 0
\(511\) − 0.736907i − 0.0325988i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3.10413 0.136784
\(516\) 0 0
\(517\) 6.92887 0.304731
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 18.4786i − 0.809560i −0.914414 0.404780i \(-0.867348\pi\)
0.914414 0.404780i \(-0.132652\pi\)
\(522\) 0 0
\(523\) 20.5828i 0.900022i 0.893023 + 0.450011i \(0.148580\pi\)
−0.893023 + 0.450011i \(0.851420\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 14.7729 0.643517
\(528\) 0 0
\(529\) 1.95186 0.0848633
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 3.24570i − 0.140587i
\(534\) 0 0
\(535\) 4.42864i 0.191467i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 6.68840 0.288090
\(540\) 0 0
\(541\) 22.7499 0.978095 0.489047 0.872257i \(-0.337345\pi\)
0.489047 + 0.872257i \(0.337345\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 5.92664i − 0.253870i
\(546\) 0 0
\(547\) − 25.4891i − 1.08984i −0.838489 0.544918i \(-0.816561\pi\)
0.838489 0.544918i \(-0.183439\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −23.3009 −0.992650
\(552\) 0 0
\(553\) 6.32866 0.269122
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 32.5654i − 1.37984i −0.723885 0.689921i \(-0.757645\pi\)
0.723885 0.689921i \(-0.242355\pi\)
\(558\) 0 0
\(559\) − 3.75740i − 0.158921i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −41.8652 −1.76441 −0.882203 0.470868i \(-0.843941\pi\)
−0.882203 + 0.470868i \(0.843941\pi\)
\(564\) 0 0
\(565\) −5.14116 −0.216290
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 27.3841i 1.14800i 0.818855 + 0.574000i \(0.194609\pi\)
−0.818855 + 0.574000i \(0.805391\pi\)
\(570\) 0 0
\(571\) − 6.78753i − 0.284049i −0.989863 0.142025i \(-0.954639\pi\)
0.989863 0.142025i \(-0.0453613\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −23.4194 −0.976658
\(576\) 0 0
\(577\) −6.93259 −0.288607 −0.144304 0.989533i \(-0.546094\pi\)
−0.144304 + 0.989533i \(0.546094\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 6.52456i − 0.270684i
\(582\) 0 0
\(583\) − 7.48641i − 0.310055i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8.78995 0.362800 0.181400 0.983409i \(-0.441937\pi\)
0.181400 + 0.983409i \(0.441937\pi\)
\(588\) 0 0
\(589\) −16.7066 −0.688382
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 23.8239i 0.978329i 0.872192 + 0.489164i \(0.162698\pi\)
−0.872192 + 0.489164i \(0.837302\pi\)
\(594\) 0 0
\(595\) 1.85332i 0.0759788i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 28.1560 1.15042 0.575211 0.818005i \(-0.304920\pi\)
0.575211 + 0.818005i \(0.304920\pi\)
\(600\) 0 0
\(601\) 0.537612 0.0219297 0.0109648 0.999940i \(-0.496510\pi\)
0.0109648 + 0.999940i \(0.496510\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0.558208i 0.0226944i
\(606\) 0 0
\(607\) 27.5953i 1.12006i 0.828473 + 0.560029i \(0.189210\pi\)
−0.828473 + 0.560029i \(0.810790\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 9.05450 0.366306
\(612\) 0 0
\(613\) −27.4565 −1.10896 −0.554478 0.832198i \(-0.687082\pi\)
−0.554478 + 0.832198i \(0.687082\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 44.8360i − 1.80503i −0.430659 0.902515i \(-0.641719\pi\)
0.430659 0.902515i \(-0.358281\pi\)
\(618\) 0 0
\(619\) − 9.20550i − 0.370000i −0.982738 0.185000i \(-0.940771\pi\)
0.982738 0.185000i \(-0.0592286\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0.875910 0.0350926
\(624\) 0 0
\(625\) 20.4232 0.816926
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 57.2307i − 2.28194i
\(630\) 0 0
\(631\) − 44.3251i − 1.76455i −0.470732 0.882276i \(-0.656010\pi\)
0.470732 0.882276i \(-0.343990\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 4.17897 0.165837
\(636\) 0 0
\(637\) 8.74027 0.346302
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 19.6561i 0.776370i 0.921581 + 0.388185i \(0.126898\pi\)
−0.921581 + 0.388185i \(0.873102\pi\)
\(642\) 0 0
\(643\) − 27.6350i − 1.08982i −0.838496 0.544908i \(-0.816564\pi\)
0.838496 0.544908i \(-0.183436\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 32.3153 1.27045 0.635223 0.772329i \(-0.280908\pi\)
0.635223 + 0.772329i \(0.280908\pi\)
\(648\) 0 0
\(649\) 3.32013 0.130326
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 18.0306i 0.705591i 0.935700 + 0.352796i \(0.114769\pi\)
−0.935700 + 0.352796i \(0.885231\pi\)
\(654\) 0 0
\(655\) − 4.25471i − 0.166245i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −2.77288 −0.108016 −0.0540081 0.998540i \(-0.517200\pi\)
−0.0540081 + 0.998540i \(0.517200\pi\)
\(660\) 0 0
\(661\) −25.0849 −0.975688 −0.487844 0.872931i \(-0.662216\pi\)
−0.487844 + 0.872931i \(0.662216\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 2.09591i − 0.0812760i
\(666\) 0 0
\(667\) 17.3038i 0.670007i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −2.69322 −0.103971
\(672\) 0 0
\(673\) 21.3276 0.822117 0.411059 0.911609i \(-0.365159\pi\)
0.411059 + 0.911609i \(0.365159\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 27.0953i 1.04136i 0.853753 + 0.520678i \(0.174321\pi\)
−0.853753 + 0.520678i \(0.825679\pi\)
\(678\) 0 0
\(679\) − 2.05890i − 0.0790132i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 50.5450 1.93405 0.967026 0.254677i \(-0.0819691\pi\)
0.967026 + 0.254677i \(0.0819691\pi\)
\(684\) 0 0
\(685\) −3.64879 −0.139413
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 9.78308i − 0.372706i
\(690\) 0 0
\(691\) − 29.4883i − 1.12179i −0.827888 0.560894i \(-0.810458\pi\)
0.827888 0.560894i \(-0.189542\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 9.14859 0.347026
\(696\) 0 0
\(697\) 14.7729 0.559563
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 14.8950i 0.562576i 0.959623 + 0.281288i \(0.0907616\pi\)
−0.959623 + 0.281288i \(0.909238\pi\)
\(702\) 0 0
\(703\) 64.7218i 2.44103i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5.49980 −0.206841
\(708\) 0 0
\(709\) −11.8577 −0.445327 −0.222663 0.974895i \(-0.571475\pi\)
−0.222663 + 0.974895i \(0.571475\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 12.4067i 0.464636i
\(714\) 0 0
\(715\) 0.729454i 0.0272800i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −53.1352 −1.98161 −0.990805 0.135297i \(-0.956801\pi\)
−0.990805 + 0.135297i \(0.956801\pi\)
\(720\) 0 0
\(721\) −3.10413 −0.115604
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 16.2411i − 0.603180i
\(726\) 0 0
\(727\) − 13.7416i − 0.509646i −0.966988 0.254823i \(-0.917983\pi\)
0.966988 0.254823i \(-0.0820172\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 17.1019 0.632538
\(732\) 0 0
\(733\) −33.3709 −1.23258 −0.616291 0.787518i \(-0.711365\pi\)
−0.616291 + 0.787518i \(0.711365\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 5.02118i − 0.184958i
\(738\) 0 0
\(739\) − 49.2193i − 1.81056i −0.424813 0.905281i \(-0.639660\pi\)
0.424813 0.905281i \(-0.360340\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −11.8941 −0.436351 −0.218176 0.975910i \(-0.570011\pi\)
−0.218176 + 0.975910i \(0.570011\pi\)
\(744\) 0 0
\(745\) −11.2367 −0.411683
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 4.42864i − 0.161819i
\(750\) 0 0
\(751\) 2.98556i 0.108944i 0.998515 + 0.0544722i \(0.0173476\pi\)
−0.998515 + 0.0544722i \(0.982652\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 5.67134 0.206401
\(756\) 0 0
\(757\) −25.6028 −0.930551 −0.465275 0.885166i \(-0.654045\pi\)
−0.465275 + 0.885166i \(0.654045\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.52457i 0.0552657i 0.999618 + 0.0276329i \(0.00879693\pi\)
−0.999618 + 0.0276329i \(0.991203\pi\)
\(762\) 0 0
\(763\) 5.92664i 0.214559i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 4.33868 0.156661
\(768\) 0 0
\(769\) 21.1116 0.761302 0.380651 0.924719i \(-0.375700\pi\)
0.380651 + 0.924719i \(0.375700\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 24.7532i − 0.890311i −0.895453 0.445156i \(-0.853148\pi\)
0.895453 0.445156i \(-0.146852\pi\)
\(774\) 0 0
\(775\) − 11.6448i − 0.418293i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −16.7066 −0.598575
\(780\) 0 0
\(781\) −4.99518 −0.178742
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.81631i 0.0648267i
\(786\) 0 0
\(787\) 6.68936i 0.238450i 0.992867 + 0.119225i \(0.0380410\pi\)
−0.992867 + 0.119225i \(0.961959\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 5.14116 0.182799
\(792\) 0 0
\(793\) −3.51944 −0.124979
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 50.0775i − 1.77384i −0.461926 0.886918i \(-0.652842\pi\)
0.461926 0.886918i \(-0.347158\pi\)
\(798\) 0 0
\(799\) 41.2118i 1.45797i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1.32013 0.0465864
\(804\) 0 0
\(805\) −1.55648 −0.0548586
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 11.2411i − 0.395217i −0.980281 0.197608i \(-0.936683\pi\)
0.980281 0.197608i \(-0.0633175\pi\)
\(810\) 0 0
\(811\) 50.8987i 1.78730i 0.448769 + 0.893648i \(0.351862\pi\)
−0.448769 + 0.893648i \(0.648138\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 9.85031 0.345041
\(816\) 0 0
\(817\) −19.3405 −0.676638
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.27279i 0.0793208i 0.999213 + 0.0396604i \(0.0126276\pi\)
−0.999213 + 0.0396604i \(0.987372\pi\)
\(822\) 0 0
\(823\) 49.5730i 1.72801i 0.503486 + 0.864003i \(0.332051\pi\)
−0.503486 + 0.864003i \(0.667949\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −42.1768 −1.46663 −0.733315 0.679889i \(-0.762028\pi\)
−0.733315 + 0.679889i \(0.762028\pi\)
\(828\) 0 0
\(829\) 9.11156 0.316458 0.158229 0.987402i \(-0.449422\pi\)
0.158229 + 0.987402i \(0.449422\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 39.7816i 1.37835i
\(834\) 0 0
\(835\) 11.7271i 0.405834i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −22.3549 −0.771778 −0.385889 0.922545i \(-0.626105\pi\)
−0.385889 + 0.922545i \(0.626105\pi\)
\(840\) 0 0
\(841\) 17.0000 0.586207
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 6.30346i − 0.216846i
\(846\) 0 0
\(847\) − 0.558208i − 0.0191802i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 48.0641 1.64762
\(852\) 0 0
\(853\) −49.8882 −1.70814 −0.854069 0.520160i \(-0.825872\pi\)
−0.854069 + 0.520160i \(0.825872\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 30.0650i 1.02700i 0.858089 + 0.513501i \(0.171652\pi\)
−0.858089 + 0.513501i \(0.828348\pi\)
\(858\) 0 0
\(859\) 54.2147i 1.84978i 0.380233 + 0.924891i \(0.375844\pi\)
−0.380233 + 0.924891i \(0.624156\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −17.0711 −0.581108 −0.290554 0.956859i \(-0.593840\pi\)
−0.290554 + 0.956859i \(0.593840\pi\)
\(864\) 0 0
\(865\) 4.70657 0.160028
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 11.3375i 0.384597i
\(870\) 0 0
\(871\) − 6.56157i − 0.222330i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 3.01887 0.102056
\(876\) 0 0
\(877\) −11.9203 −0.402521 −0.201261 0.979538i \(-0.564504\pi\)
−0.201261 + 0.979538i \(0.564504\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 30.0929i 1.01386i 0.861989 + 0.506928i \(0.169219\pi\)
−0.861989 + 0.506928i \(0.830781\pi\)
\(882\) 0 0
\(883\) − 35.4686i − 1.19361i −0.802385 0.596807i \(-0.796436\pi\)
0.802385 0.596807i \(-0.203564\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 24.7633 0.831469 0.415734 0.909486i \(-0.363525\pi\)
0.415734 + 0.909486i \(0.363525\pi\)
\(888\) 0 0
\(889\) −4.17897 −0.140158
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 46.6062i − 1.55962i
\(894\) 0 0
\(895\) 10.4219i 0.348365i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −8.60392 −0.286957
\(900\) 0 0
\(901\) 44.5280 1.48344
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 10.9478i 0.363918i
\(906\) 0 0
\(907\) 30.3696i 1.00841i 0.863585 + 0.504203i \(0.168214\pi\)
−0.863585 + 0.504203i \(0.831786\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −0.987748 −0.0327256 −0.0163628 0.999866i \(-0.505209\pi\)
−0.0163628 + 0.999866i \(0.505209\pi\)
\(912\) 0 0
\(913\) 11.6884 0.386830
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4.25471i 0.140503i
\(918\) 0 0
\(919\) 2.38739i 0.0787528i 0.999224 + 0.0393764i \(0.0125371\pi\)
−0.999224 + 0.0393764i \(0.987463\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −6.52760 −0.214859
\(924\) 0 0
\(925\) −45.1123 −1.48328
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 28.7560i − 0.943454i −0.881745 0.471727i \(-0.843631\pi\)
0.881745 0.471727i \(-0.156369\pi\)
\(930\) 0 0
\(931\) − 44.9887i − 1.47445i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −3.32013 −0.108580
\(936\) 0 0
\(937\) 25.9241 0.846902 0.423451 0.905919i \(-0.360819\pi\)
0.423451 + 0.905919i \(0.360819\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 54.0342i 1.76146i 0.473616 + 0.880732i \(0.342949\pi\)
−0.473616 + 0.880732i \(0.657051\pi\)
\(942\) 0 0
\(943\) 12.4067i 0.404019i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −8.60392 −0.279590 −0.139795 0.990180i \(-0.544644\pi\)
−0.139795 + 0.990180i \(0.544644\pi\)
\(948\) 0 0
\(949\) 1.72512 0.0559997
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 30.9797i 1.00353i 0.865004 + 0.501766i \(0.167316\pi\)
−0.865004 + 0.501766i \(0.832684\pi\)
\(954\) 0 0
\(955\) − 12.0717i − 0.390631i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 3.64879 0.117826
\(960\) 0 0
\(961\) 24.8310 0.801001
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 5.61371i 0.180712i
\(966\) 0 0
\(967\) 5.52569i 0.177694i 0.996045 + 0.0888470i \(0.0283182\pi\)
−0.996045 + 0.0888470i \(0.971682\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −10.1423 −0.325481 −0.162740 0.986669i \(-0.552033\pi\)
−0.162740 + 0.986669i \(0.552033\pi\)
\(972\) 0 0
\(973\) −9.14859 −0.293290
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 42.6032i − 1.36300i −0.731820 0.681498i \(-0.761329\pi\)
0.731820 0.681498i \(-0.238671\pi\)
\(978\) 0 0
\(979\) 1.56915i 0.0501502i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −50.8796 −1.62281 −0.811404 0.584486i \(-0.801296\pi\)
−0.811404 + 0.584486i \(0.801296\pi\)
\(984\) 0 0
\(985\) 6.74618 0.214951
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 14.3627i 0.456708i
\(990\) 0 0
\(991\) 29.1172i 0.924937i 0.886636 + 0.462468i \(0.153036\pi\)
−0.886636 + 0.462468i \(0.846964\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 14.8029 0.469282
\(996\) 0 0
\(997\) 43.1153 1.36547 0.682737 0.730664i \(-0.260789\pi\)
0.682737 + 0.730664i \(0.260789\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6336.2.d.e.3455.5 8
3.2 odd 2 6336.2.d.c.3455.4 8
4.3 odd 2 6336.2.d.c.3455.5 8
8.3 odd 2 1584.2.d.d.287.4 yes 8
8.5 even 2 1584.2.d.c.287.4 8
12.11 even 2 inner 6336.2.d.e.3455.4 8
24.5 odd 2 1584.2.d.d.287.5 yes 8
24.11 even 2 1584.2.d.c.287.5 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1584.2.d.c.287.4 8 8.5 even 2
1584.2.d.c.287.5 yes 8 24.11 even 2
1584.2.d.d.287.4 yes 8 8.3 odd 2
1584.2.d.d.287.5 yes 8 24.5 odd 2
6336.2.d.c.3455.4 8 3.2 odd 2
6336.2.d.c.3455.5 8 4.3 odd 2
6336.2.d.e.3455.4 8 12.11 even 2 inner
6336.2.d.e.3455.5 8 1.1 even 1 trivial