L(s) = 1 | + 0.558i·5-s − 0.558i·7-s + 11-s + 1.30·13-s + 5.94i·17-s − 6.72i·19-s − 4.99·23-s + 4.68·25-s − 3.46i·29-s − 2.48i·31-s + 0.311·35-s − 9.62·37-s − 2.48i·41-s − 2.87i·43-s + 6.92·47-s + ⋯ |
L(s) = 1 | + 0.249i·5-s − 0.210i·7-s + 0.301·11-s + 0.362·13-s + 1.44i·17-s − 1.54i·19-s − 1.04·23-s + 0.937·25-s − 0.643i·29-s − 0.446i·31-s + 0.0526·35-s − 1.58·37-s − 0.387i·41-s − 0.438i·43-s + 1.01·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.577 + 0.816i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.577 + 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.729760100\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.729760100\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 11 | \( 1 - T \) |
good | 5 | \( 1 - 0.558iT - 5T^{2} \) |
| 7 | \( 1 + 0.558iT - 7T^{2} \) |
| 13 | \( 1 - 1.30T + 13T^{2} \) |
| 17 | \( 1 - 5.94iT - 17T^{2} \) |
| 19 | \( 1 + 6.72iT - 19T^{2} \) |
| 23 | \( 1 + 4.99T + 23T^{2} \) |
| 29 | \( 1 + 3.46iT - 29T^{2} \) |
| 31 | \( 1 + 2.48iT - 31T^{2} \) |
| 37 | \( 1 + 9.62T + 37T^{2} \) |
| 41 | \( 1 + 2.48iT - 41T^{2} \) |
| 43 | \( 1 + 2.87iT - 43T^{2} \) |
| 47 | \( 1 - 6.92T + 47T^{2} \) |
| 53 | \( 1 + 7.48iT - 53T^{2} \) |
| 59 | \( 1 - 3.32T + 59T^{2} \) |
| 61 | \( 1 + 2.69T + 61T^{2} \) |
| 67 | \( 1 + 5.02iT - 67T^{2} \) |
| 71 | \( 1 + 4.99T + 71T^{2} \) |
| 73 | \( 1 - 1.32T + 73T^{2} \) |
| 79 | \( 1 - 11.3iT - 79T^{2} \) |
| 83 | \( 1 - 11.6T + 83T^{2} \) |
| 89 | \( 1 - 1.56iT - 89T^{2} \) |
| 97 | \( 1 - 3.68T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.958847838755561543483727335039, −7.11150618351212732127400846298, −6.58428997210193228465676949841, −5.87832634992396059096678434021, −5.08280844222629248792203126392, −4.13207349117410665507166023703, −3.64834033222593647559342458558, −2.57781006846515289783907127659, −1.73534572111326174726991382080, −0.50385806728382670605820336777,
0.971227525078215168247536401046, 1.90989514499797520576873265290, 2.96460913214935629444419482476, 3.71639854487091061226789397613, 4.55892921341280826160585368442, 5.33928892870080472147144004591, 5.94892361934915189611532288618, 6.76791027850936517587642241377, 7.44145229883941607192988298012, 8.151978755332211635024671941754