Properties

Label 6336.2.b.a.2177.1
Level $6336$
Weight $2$
Character 6336.2177
Analytic conductor $50.593$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6336,2,Mod(2177,6336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6336, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6336.2177"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6336 = 2^{6} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6336.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,0,0,0,0,-6,0,0,0,0,0,-12,0,0,0,0,0,0,0,-6,0,0,0, 0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(31)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.5932147207\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 198)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2177.1
Root \(-1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 6336.2177
Dual form 6336.2.b.a.2177.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.82843i q^{5} +(-3.00000 - 1.41421i) q^{11} +4.24264i q^{13} -6.00000 q^{17} +4.24264i q^{19} -1.41421i q^{23} -3.00000 q^{25} +2.00000 q^{31} +10.0000 q^{37} -6.00000 q^{41} -12.7279i q^{43} -9.89949i q^{47} +7.00000 q^{49} +5.65685i q^{53} +(-4.00000 + 8.48528i) q^{55} +5.65685i q^{59} +12.7279i q^{61} +12.0000 q^{65} -8.00000 q^{67} +15.5563i q^{71} +8.48528i q^{73} +8.48528i q^{79} -6.00000 q^{83} +16.9706i q^{85} +7.07107i q^{89} +12.0000 q^{95} -4.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{11} - 12 q^{17} - 6 q^{25} + 4 q^{31} + 20 q^{37} - 12 q^{41} + 14 q^{49} - 8 q^{55} + 24 q^{65} - 16 q^{67} - 12 q^{83} + 24 q^{95} - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6336\mathbb{Z}\right)^\times\).

\(n\) \(1729\) \(3521\) \(4159\) \(4357\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.82843i 1.26491i −0.774597 0.632456i \(-0.782047\pi\)
0.774597 0.632456i \(-0.217953\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.00000 1.41421i −0.904534 0.426401i
\(12\) 0 0
\(13\) 4.24264i 1.17670i 0.808608 + 0.588348i \(0.200222\pi\)
−0.808608 + 0.588348i \(0.799778\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −6.00000 −1.45521 −0.727607 0.685994i \(-0.759367\pi\)
−0.727607 + 0.685994i \(0.759367\pi\)
\(18\) 0 0
\(19\) 4.24264i 0.973329i 0.873589 + 0.486664i \(0.161786\pi\)
−0.873589 + 0.486664i \(0.838214\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.41421i 0.294884i −0.989071 0.147442i \(-0.952896\pi\)
0.989071 0.147442i \(-0.0471040\pi\)
\(24\) 0 0
\(25\) −3.00000 −0.600000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 10.0000 1.64399 0.821995 0.569495i \(-0.192861\pi\)
0.821995 + 0.569495i \(0.192861\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 12.7279i 1.94099i −0.241121 0.970495i \(-0.577515\pi\)
0.241121 0.970495i \(-0.422485\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 9.89949i 1.44399i −0.691898 0.721995i \(-0.743225\pi\)
0.691898 0.721995i \(-0.256775\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 5.65685i 0.777029i 0.921443 + 0.388514i \(0.127012\pi\)
−0.921443 + 0.388514i \(0.872988\pi\)
\(54\) 0 0
\(55\) −4.00000 + 8.48528i −0.539360 + 1.14416i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.65685i 0.736460i 0.929735 + 0.368230i \(0.120036\pi\)
−0.929735 + 0.368230i \(0.879964\pi\)
\(60\) 0 0
\(61\) 12.7279i 1.62964i 0.579712 + 0.814822i \(0.303165\pi\)
−0.579712 + 0.814822i \(0.696835\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 12.0000 1.48842
\(66\) 0 0
\(67\) −8.00000 −0.977356 −0.488678 0.872464i \(-0.662521\pi\)
−0.488678 + 0.872464i \(0.662521\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 15.5563i 1.84620i 0.384561 + 0.923099i \(0.374353\pi\)
−0.384561 + 0.923099i \(0.625647\pi\)
\(72\) 0 0
\(73\) 8.48528i 0.993127i 0.868000 + 0.496564i \(0.165405\pi\)
−0.868000 + 0.496564i \(0.834595\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 8.48528i 0.954669i 0.878722 + 0.477334i \(0.158397\pi\)
−0.878722 + 0.477334i \(0.841603\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) 0 0
\(85\) 16.9706i 1.84072i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 7.07107i 0.749532i 0.927119 + 0.374766i \(0.122277\pi\)
−0.927119 + 0.374766i \(0.877723\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 12.0000 1.23117
\(96\) 0 0
\(97\) −4.00000 −0.406138 −0.203069 0.979164i \(-0.565092\pi\)
−0.203069 + 0.979164i \(0.565092\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) 14.0000 1.37946 0.689730 0.724066i \(-0.257729\pi\)
0.689730 + 0.724066i \(0.257729\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 12.0000 1.16008 0.580042 0.814587i \(-0.303036\pi\)
0.580042 + 0.814587i \(0.303036\pi\)
\(108\) 0 0
\(109\) 4.24264i 0.406371i −0.979140 0.203186i \(-0.934871\pi\)
0.979140 0.203186i \(-0.0651295\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 7.07107i 0.665190i 0.943070 + 0.332595i \(0.107924\pi\)
−0.943070 + 0.332595i \(0.892076\pi\)
\(114\) 0 0
\(115\) −4.00000 −0.373002
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 7.00000 + 8.48528i 0.636364 + 0.771389i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 5.65685i 0.505964i
\(126\) 0 0
\(127\) 8.48528i 0.752947i −0.926427 0.376473i \(-0.877137\pi\)
0.926427 0.376473i \(-0.122863\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.41421i 0.120824i −0.998174 0.0604122i \(-0.980758\pi\)
0.998174 0.0604122i \(-0.0192415\pi\)
\(138\) 0 0
\(139\) 12.7279i 1.07957i −0.841803 0.539784i \(-0.818506\pi\)
0.841803 0.539784i \(-0.181494\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 6.00000 12.7279i 0.501745 1.06436i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) 8.48528i 0.690522i −0.938507 0.345261i \(-0.887790\pi\)
0.938507 0.345261i \(-0.112210\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5.65685i 0.454369i
\(156\) 0 0
\(157\) 10.0000 0.798087 0.399043 0.916932i \(-0.369342\pi\)
0.399043 + 0.916932i \(0.369342\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 16.0000 1.25322 0.626608 0.779334i \(-0.284443\pi\)
0.626608 + 0.779334i \(0.284443\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −5.00000 −0.384615
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 12.0000 0.912343 0.456172 0.889892i \(-0.349220\pi\)
0.456172 + 0.889892i \(0.349220\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 14.1421i 1.05703i 0.848923 + 0.528516i \(0.177252\pi\)
−0.848923 + 0.528516i \(0.822748\pi\)
\(180\) 0 0
\(181\) −14.0000 −1.04061 −0.520306 0.853980i \(-0.674182\pi\)
−0.520306 + 0.853980i \(0.674182\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 28.2843i 2.07950i
\(186\) 0 0
\(187\) 18.0000 + 8.48528i 1.31629 + 0.620505i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 7.07107i 0.511645i 0.966724 + 0.255822i \(0.0823462\pi\)
−0.966724 + 0.255822i \(0.917654\pi\)
\(192\) 0 0
\(193\) 8.48528i 0.610784i 0.952227 + 0.305392i \(0.0987875\pi\)
−0.952227 + 0.305392i \(0.901213\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 0 0
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 16.9706i 1.18528i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 6.00000 12.7279i 0.415029 0.880409i
\(210\) 0 0
\(211\) 21.2132i 1.46038i 0.683246 + 0.730189i \(0.260568\pi\)
−0.683246 + 0.730189i \(0.739432\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −36.0000 −2.45518
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 25.4558i 1.71235i
\(222\) 0 0
\(223\) 8.00000 0.535720 0.267860 0.963458i \(-0.413684\pi\)
0.267860 + 0.963458i \(0.413684\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) 0 0
\(229\) 22.0000 1.45380 0.726900 0.686743i \(-0.240960\pi\)
0.726900 + 0.686743i \(0.240960\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 18.0000 1.17922 0.589610 0.807688i \(-0.299282\pi\)
0.589610 + 0.807688i \(0.299282\pi\)
\(234\) 0 0
\(235\) −28.0000 −1.82652
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) 16.9706i 1.09317i 0.837404 + 0.546585i \(0.184072\pi\)
−0.837404 + 0.546585i \(0.815928\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 19.7990i 1.26491i
\(246\) 0 0
\(247\) −18.0000 −1.14531
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 19.7990i 1.24970i −0.780744 0.624851i \(-0.785160\pi\)
0.780744 0.624851i \(-0.214840\pi\)
\(252\) 0 0
\(253\) −2.00000 + 4.24264i −0.125739 + 0.266733i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.41421i 0.0882162i −0.999027 0.0441081i \(-0.985955\pi\)
0.999027 0.0441081i \(-0.0140446\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 16.0000 0.982872
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 5.65685i 0.344904i 0.985018 + 0.172452i \(0.0551690\pi\)
−0.985018 + 0.172452i \(0.944831\pi\)
\(270\) 0 0
\(271\) 8.48528i 0.515444i −0.966219 0.257722i \(-0.917028\pi\)
0.966219 0.257722i \(-0.0829719\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 9.00000 + 4.24264i 0.542720 + 0.255841i
\(276\) 0 0
\(277\) 4.24264i 0.254916i −0.991844 0.127458i \(-0.959318\pi\)
0.991844 0.127458i \(-0.0406817\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 30.0000 1.78965 0.894825 0.446417i \(-0.147300\pi\)
0.894825 + 0.446417i \(0.147300\pi\)
\(282\) 0 0
\(283\) 12.7279i 0.756596i −0.925684 0.378298i \(-0.876509\pi\)
0.925684 0.378298i \(-0.123491\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 19.0000 1.11765
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 16.0000 0.931556
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 6.00000 0.346989
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 36.0000 2.06135
\(306\) 0 0
\(307\) 21.2132i 1.21070i 0.795959 + 0.605351i \(0.206967\pi\)
−0.795959 + 0.605351i \(0.793033\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.41421i 0.0801927i −0.999196 0.0400963i \(-0.987234\pi\)
0.999196 0.0400963i \(-0.0127665\pi\)
\(312\) 0 0
\(313\) 8.00000 0.452187 0.226093 0.974106i \(-0.427405\pi\)
0.226093 + 0.974106i \(0.427405\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 22.6274i 1.27088i 0.772149 + 0.635441i \(0.219182\pi\)
−0.772149 + 0.635441i \(0.780818\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 25.4558i 1.41640i
\(324\) 0 0
\(325\) 12.7279i 0.706018i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −20.0000 −1.09930 −0.549650 0.835395i \(-0.685239\pi\)
−0.549650 + 0.835395i \(0.685239\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 22.6274i 1.23627i
\(336\) 0 0
\(337\) 8.48528i 0.462223i 0.972927 + 0.231111i \(0.0742362\pi\)
−0.972927 + 0.231111i \(0.925764\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −6.00000 2.82843i −0.324918 0.153168i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −30.0000 −1.61048 −0.805242 0.592946i \(-0.797965\pi\)
−0.805242 + 0.592946i \(0.797965\pi\)
\(348\) 0 0
\(349\) 29.6985i 1.58972i −0.606791 0.794862i \(-0.707543\pi\)
0.606791 0.794862i \(-0.292457\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 9.89949i 0.526897i −0.964673 0.263448i \(-0.915140\pi\)
0.964673 0.263448i \(-0.0848599\pi\)
\(354\) 0 0
\(355\) 44.0000 2.33528
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −12.0000 −0.633336 −0.316668 0.948536i \(-0.602564\pi\)
−0.316668 + 0.948536i \(0.602564\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 24.0000 1.25622
\(366\) 0 0
\(367\) −16.0000 −0.835193 −0.417597 0.908633i \(-0.637127\pi\)
−0.417597 + 0.908633i \(0.637127\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 21.2132i 1.09838i 0.835698 + 0.549189i \(0.185063\pi\)
−0.835698 + 0.549189i \(0.814937\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −20.0000 −1.02733 −0.513665 0.857991i \(-0.671713\pi\)
−0.513665 + 0.857991i \(0.671713\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 9.89949i 0.505841i −0.967487 0.252920i \(-0.918609\pi\)
0.967487 0.252920i \(-0.0813910\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 14.1421i 0.717035i 0.933523 + 0.358517i \(0.116718\pi\)
−0.933523 + 0.358517i \(0.883282\pi\)
\(390\) 0 0
\(391\) 8.48528i 0.429119i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 24.0000 1.20757
\(396\) 0 0
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.41421i 0.0706225i −0.999376 0.0353112i \(-0.988758\pi\)
0.999376 0.0353112i \(-0.0112422\pi\)
\(402\) 0 0
\(403\) 8.48528i 0.422682i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −30.0000 14.1421i −1.48704 0.701000i
\(408\) 0 0
\(409\) 33.9411i 1.67828i 0.543915 + 0.839140i \(0.316941\pi\)
−0.543915 + 0.839140i \(0.683059\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 16.9706i 0.833052i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 14.1421i 0.690889i 0.938439 + 0.345444i \(0.112272\pi\)
−0.938439 + 0.345444i \(0.887728\pi\)
\(420\) 0 0
\(421\) −26.0000 −1.26716 −0.633581 0.773676i \(-0.718416\pi\)
−0.633581 + 0.773676i \(0.718416\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 18.0000 0.873128
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 12.0000 0.578020 0.289010 0.957326i \(-0.406674\pi\)
0.289010 + 0.957326i \(0.406674\pi\)
\(432\) 0 0
\(433\) −16.0000 −0.768911 −0.384455 0.923144i \(-0.625611\pi\)
−0.384455 + 0.923144i \(0.625611\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.00000 0.287019
\(438\) 0 0
\(439\) 33.9411i 1.61992i −0.586484 0.809961i \(-0.699488\pi\)
0.586484 0.809961i \(-0.300512\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 39.5980i 1.88136i 0.339300 + 0.940678i \(0.389810\pi\)
−0.339300 + 0.940678i \(0.610190\pi\)
\(444\) 0 0
\(445\) 20.0000 0.948091
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 9.89949i 0.467186i −0.972334 0.233593i \(-0.924952\pi\)
0.972334 0.233593i \(-0.0750483\pi\)
\(450\) 0 0
\(451\) 18.0000 + 8.48528i 0.847587 + 0.399556i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 16.9706i 0.793849i 0.917851 + 0.396925i \(0.129923\pi\)
−0.917851 + 0.396925i \(0.870077\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −12.0000 −0.558896 −0.279448 0.960161i \(-0.590151\pi\)
−0.279448 + 0.960161i \(0.590151\pi\)
\(462\) 0 0
\(463\) −22.0000 −1.02243 −0.511213 0.859454i \(-0.670804\pi\)
−0.511213 + 0.859454i \(0.670804\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 14.1421i 0.654420i 0.944952 + 0.327210i \(0.106108\pi\)
−0.944952 + 0.327210i \(0.893892\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −18.0000 + 38.1838i −0.827641 + 1.75569i
\(474\) 0 0
\(475\) 12.7279i 0.583997i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 36.0000 1.64488 0.822441 0.568850i \(-0.192612\pi\)
0.822441 + 0.568850i \(0.192612\pi\)
\(480\) 0 0
\(481\) 42.4264i 1.93448i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 11.3137i 0.513729i
\(486\) 0 0
\(487\) 8.00000 0.362515 0.181257 0.983436i \(-0.441983\pi\)
0.181257 + 0.983436i \(0.441983\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 4.00000 0.179065 0.0895323 0.995984i \(-0.471463\pi\)
0.0895323 + 0.995984i \(0.471463\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 12.0000 0.535054 0.267527 0.963550i \(-0.413794\pi\)
0.267527 + 0.963550i \(0.413794\pi\)
\(504\) 0 0
\(505\) 16.9706i 0.755180i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 11.3137i 0.501471i −0.968056 0.250736i \(-0.919328\pi\)
0.968056 0.250736i \(-0.0806725\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 39.5980i 1.74490i
\(516\) 0 0
\(517\) −14.0000 + 29.6985i −0.615719 + 1.30614i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 35.3553i 1.54895i −0.632607 0.774473i \(-0.718015\pi\)
0.632607 0.774473i \(-0.281985\pi\)
\(522\) 0 0
\(523\) 12.7279i 0.556553i −0.960501 0.278277i \(-0.910237\pi\)
0.960501 0.278277i \(-0.0897632\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −12.0000 −0.522728
\(528\) 0 0
\(529\) 21.0000 0.913043
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 25.4558i 1.10262i
\(534\) 0 0
\(535\) 33.9411i 1.46740i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −21.0000 9.89949i −0.904534 0.426401i
\(540\) 0 0
\(541\) 21.2132i 0.912027i 0.889973 + 0.456013i \(0.150723\pi\)
−0.889973 + 0.456013i \(0.849277\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −12.0000 −0.514024
\(546\) 0 0
\(547\) 12.7279i 0.544207i 0.962268 + 0.272103i \(0.0877193\pi\)
−0.962268 + 0.272103i \(0.912281\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 12.0000 0.508456 0.254228 0.967144i \(-0.418179\pi\)
0.254228 + 0.967144i \(0.418179\pi\)
\(558\) 0 0
\(559\) 54.0000 2.28396
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −6.00000 −0.252870 −0.126435 0.991975i \(-0.540353\pi\)
−0.126435 + 0.991975i \(0.540353\pi\)
\(564\) 0 0
\(565\) 20.0000 0.841406
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) 4.24264i 0.177549i −0.996052 0.0887745i \(-0.971705\pi\)
0.996052 0.0887745i \(-0.0282950\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4.24264i 0.176930i
\(576\) 0 0
\(577\) −4.00000 −0.166522 −0.0832611 0.996528i \(-0.526534\pi\)
−0.0832611 + 0.996528i \(0.526534\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 8.00000 16.9706i 0.331326 0.702849i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 28.2843i 1.16742i −0.811963 0.583708i \(-0.801601\pi\)
0.811963 0.583708i \(-0.198399\pi\)
\(588\) 0 0
\(589\) 8.48528i 0.349630i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −30.0000 −1.23195 −0.615976 0.787765i \(-0.711238\pi\)
−0.615976 + 0.787765i \(0.711238\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 24.0416i 0.982314i 0.871071 + 0.491157i \(0.163426\pi\)
−0.871071 + 0.491157i \(0.836574\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 24.0000 19.7990i 0.975739 0.804943i
\(606\) 0 0
\(607\) 8.48528i 0.344407i 0.985061 + 0.172203i \(0.0550887\pi\)
−0.985061 + 0.172203i \(0.944911\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 42.0000 1.69914
\(612\) 0 0
\(613\) 12.7279i 0.514076i 0.966401 + 0.257038i \(0.0827465\pi\)
−0.966401 + 0.257038i \(0.917253\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 24.0416i 0.967880i 0.875101 + 0.483940i \(0.160795\pi\)
−0.875101 + 0.483940i \(0.839205\pi\)
\(618\) 0 0
\(619\) 40.0000 1.60774 0.803868 0.594808i \(-0.202772\pi\)
0.803868 + 0.594808i \(0.202772\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −31.0000 −1.24000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −60.0000 −2.39236
\(630\) 0 0
\(631\) −22.0000 −0.875806 −0.437903 0.899022i \(-0.644279\pi\)
−0.437903 + 0.899022i \(0.644279\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −24.0000 −0.952411
\(636\) 0 0
\(637\) 29.6985i 1.17670i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 15.5563i 0.614439i 0.951639 + 0.307219i \(0.0993986\pi\)
−0.951639 + 0.307219i \(0.900601\pi\)
\(642\) 0 0
\(643\) −32.0000 −1.26196 −0.630978 0.775800i \(-0.717346\pi\)
−0.630978 + 0.775800i \(0.717346\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 32.5269i 1.27876i 0.768889 + 0.639382i \(0.220810\pi\)
−0.768889 + 0.639382i \(0.779190\pi\)
\(648\) 0 0
\(649\) 8.00000 16.9706i 0.314027 0.666153i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 31.1127i 1.21753i 0.793349 + 0.608767i \(0.208336\pi\)
−0.793349 + 0.608767i \(0.791664\pi\)
\(654\) 0 0
\(655\) 33.9411i 1.32619i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 18.0000 0.701180 0.350590 0.936529i \(-0.385981\pi\)
0.350590 + 0.936529i \(0.385981\pi\)
\(660\) 0 0
\(661\) −2.00000 −0.0777910 −0.0388955 0.999243i \(-0.512384\pi\)
−0.0388955 + 0.999243i \(0.512384\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 18.0000 38.1838i 0.694882 1.47407i
\(672\) 0 0
\(673\) 42.4264i 1.63542i −0.575632 0.817709i \(-0.695244\pi\)
0.575632 0.817709i \(-0.304756\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6.00000 0.230599 0.115299 0.993331i \(-0.463217\pi\)
0.115299 + 0.993331i \(0.463217\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 31.1127i 1.19049i 0.803543 + 0.595247i \(0.202946\pi\)
−0.803543 + 0.595247i \(0.797054\pi\)
\(684\) 0 0
\(685\) −4.00000 −0.152832
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −24.0000 −0.914327
\(690\) 0 0
\(691\) −20.0000 −0.760836 −0.380418 0.924815i \(-0.624220\pi\)
−0.380418 + 0.924815i \(0.624220\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −36.0000 −1.36556
\(696\) 0 0
\(697\) 36.0000 1.36360
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −48.0000 −1.81293 −0.906467 0.422276i \(-0.861231\pi\)
−0.906467 + 0.422276i \(0.861231\pi\)
\(702\) 0 0
\(703\) 42.4264i 1.60014i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 34.0000 1.27690 0.638448 0.769665i \(-0.279577\pi\)
0.638448 + 0.769665i \(0.279577\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 2.82843i 0.105925i
\(714\) 0 0
\(715\) −36.0000 16.9706i −1.34632 0.634663i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1.41421i 0.0527413i −0.999652 0.0263706i \(-0.991605\pi\)
0.999652 0.0263706i \(-0.00839501\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −40.0000 −1.48352 −0.741759 0.670667i \(-0.766008\pi\)
−0.741759 + 0.670667i \(0.766008\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 76.3675i 2.82456i
\(732\) 0 0
\(733\) 4.24264i 0.156706i −0.996926 0.0783528i \(-0.975034\pi\)
0.996926 0.0783528i \(-0.0249660\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 24.0000 + 11.3137i 0.884051 + 0.416746i
\(738\) 0 0
\(739\) 21.2132i 0.780340i −0.920743 0.390170i \(-0.872416\pi\)
0.920743 0.390170i \(-0.127584\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 36.0000 1.32071 0.660356 0.750953i \(-0.270405\pi\)
0.660356 + 0.750953i \(0.270405\pi\)
\(744\) 0 0
\(745\) 16.9706i 0.621753i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 2.00000 0.0729810 0.0364905 0.999334i \(-0.488382\pi\)
0.0364905 + 0.999334i \(0.488382\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −24.0000 −0.873449
\(756\) 0 0
\(757\) 34.0000 1.23575 0.617876 0.786276i \(-0.287994\pi\)
0.617876 + 0.786276i \(0.287994\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −42.0000 −1.52250 −0.761249 0.648459i \(-0.775414\pi\)
−0.761249 + 0.648459i \(0.775414\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −24.0000 −0.866590
\(768\) 0 0
\(769\) 8.48528i 0.305987i 0.988227 + 0.152994i \(0.0488914\pi\)
−0.988227 + 0.152994i \(0.951109\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 5.65685i 0.203463i 0.994812 + 0.101731i \(0.0324382\pi\)
−0.994812 + 0.101731i \(0.967562\pi\)
\(774\) 0 0
\(775\) −6.00000 −0.215526
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 25.4558i 0.912050i
\(780\) 0 0
\(781\) 22.0000 46.6690i 0.787222 1.66995i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 28.2843i 1.00951i
\(786\) 0 0
\(787\) 21.2132i 0.756169i 0.925771 + 0.378085i \(0.123417\pi\)
−0.925771 + 0.378085i \(0.876583\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −54.0000 −1.91760
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 31.1127i 1.10207i 0.834483 + 0.551034i \(0.185767\pi\)
−0.834483 + 0.551034i \(0.814233\pi\)
\(798\) 0 0
\(799\) 59.3970i 2.10131i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 12.0000 25.4558i 0.423471 0.898317i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −18.0000 −0.632846 −0.316423 0.948618i \(-0.602482\pi\)
−0.316423 + 0.948618i \(0.602482\pi\)
\(810\) 0 0
\(811\) 46.6690i 1.63877i −0.573242 0.819386i \(-0.694315\pi\)
0.573242 0.819386i \(-0.305685\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 45.2548i 1.58521i
\(816\) 0 0
\(817\) 54.0000 1.88922
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 18.0000 0.628204 0.314102 0.949389i \(-0.398297\pi\)
0.314102 + 0.949389i \(0.398297\pi\)
\(822\) 0 0
\(823\) 32.0000 1.11545 0.557725 0.830026i \(-0.311674\pi\)
0.557725 + 0.830026i \(0.311674\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −42.0000 −1.46048 −0.730242 0.683189i \(-0.760592\pi\)
−0.730242 + 0.683189i \(0.760592\pi\)
\(828\) 0 0
\(829\) −14.0000 −0.486240 −0.243120 0.969996i \(-0.578171\pi\)
−0.243120 + 0.969996i \(0.578171\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −42.0000 −1.45521
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 9.89949i 0.341769i −0.985291 0.170884i \(-0.945338\pi\)
0.985291 0.170884i \(-0.0546624\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 14.1421i 0.486504i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 14.1421i 0.484786i
\(852\) 0 0
\(853\) 4.24264i 0.145265i 0.997359 + 0.0726326i \(0.0231401\pi\)
−0.997359 + 0.0726326i \(0.976860\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 30.0000 1.02478 0.512390 0.858753i \(-0.328760\pi\)
0.512390 + 0.858753i \(0.328760\pi\)
\(858\) 0 0
\(859\) −8.00000 −0.272956 −0.136478 0.990643i \(-0.543578\pi\)
−0.136478 + 0.990643i \(0.543578\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 7.07107i 0.240702i 0.992731 + 0.120351i \(0.0384020\pi\)
−0.992731 + 0.120351i \(0.961598\pi\)
\(864\) 0 0
\(865\) 33.9411i 1.15403i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 12.0000 25.4558i 0.407072 0.863530i
\(870\) 0 0
\(871\) 33.9411i 1.15005i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 38.1838i 1.28937i 0.764447 + 0.644687i \(0.223012\pi\)
−0.764447 + 0.644687i \(0.776988\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 24.0416i 0.809983i 0.914320 + 0.404992i \(0.132726\pi\)
−0.914320 + 0.404992i \(0.867274\pi\)
\(882\) 0 0
\(883\) 16.0000 0.538443 0.269221 0.963078i \(-0.413234\pi\)
0.269221 + 0.963078i \(0.413234\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 36.0000 1.20876 0.604381 0.796696i \(-0.293421\pi\)
0.604381 + 0.796696i \(0.293421\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 42.0000 1.40548
\(894\) 0 0
\(895\) 40.0000 1.33705
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 33.9411i 1.13074i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 39.5980i 1.31628i
\(906\) 0 0
\(907\) −8.00000 −0.265636 −0.132818 0.991140i \(-0.542403\pi\)
−0.132818 + 0.991140i \(0.542403\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 15.5563i 0.515405i 0.966224 + 0.257702i \(0.0829654\pi\)
−0.966224 + 0.257702i \(0.917035\pi\)
\(912\) 0 0
\(913\) 18.0000 + 8.48528i 0.595713 + 0.280822i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 25.4558i 0.839711i −0.907591 0.419855i \(-0.862081\pi\)
0.907591 0.419855i \(-0.137919\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −66.0000 −2.17242
\(924\) 0 0
\(925\) −30.0000 −0.986394
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 9.89949i 0.324792i −0.986726 0.162396i \(-0.948078\pi\)
0.986726 0.162396i \(-0.0519222\pi\)
\(930\) 0 0
\(931\) 29.6985i 0.973329i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 24.0000 50.9117i 0.784884 1.66499i
\(936\) 0 0
\(937\) 33.9411i 1.10881i 0.832248 + 0.554404i \(0.187054\pi\)
−0.832248 + 0.554404i \(0.812946\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −30.0000 −0.977972 −0.488986 0.872292i \(-0.662633\pi\)
−0.488986 + 0.872292i \(0.662633\pi\)
\(942\) 0 0
\(943\) 8.48528i 0.276319i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 45.2548i 1.47058i −0.677750 0.735292i \(-0.737045\pi\)
0.677750 0.735292i \(-0.262955\pi\)
\(948\) 0 0
\(949\) −36.0000 −1.16861
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 6.00000 0.194359 0.0971795 0.995267i \(-0.469018\pi\)
0.0971795 + 0.995267i \(0.469018\pi\)
\(954\) 0 0
\(955\) 20.0000 0.647185
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 24.0000 0.772587
\(966\) 0 0
\(967\) 25.4558i 0.818605i 0.912399 + 0.409302i \(0.134228\pi\)
−0.912399 + 0.409302i \(0.865772\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 5.65685i 0.181537i 0.995872 + 0.0907685i \(0.0289323\pi\)
−0.995872 + 0.0907685i \(0.971068\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 24.0416i 0.769160i 0.923092 + 0.384580i \(0.125654\pi\)
−0.923092 + 0.384580i \(0.874346\pi\)
\(978\) 0 0
\(979\) 10.0000 21.2132i 0.319601 0.677977i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 49.4975i 1.57872i 0.613928 + 0.789362i \(0.289589\pi\)
−0.613928 + 0.789362i \(0.710411\pi\)
\(984\) 0 0
\(985\) 50.9117i 1.62218i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −18.0000 −0.572367
\(990\) 0 0
\(991\) −34.0000 −1.08005 −0.540023 0.841650i \(-0.681584\pi\)
−0.540023 + 0.841650i \(0.681584\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 45.2548i 1.43467i
\(996\) 0 0
\(997\) 29.6985i 0.940560i −0.882517 0.470280i \(-0.844153\pi\)
0.882517 0.470280i \(-0.155847\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6336.2.b.a.2177.1 2
3.2 odd 2 6336.2.b.n.2177.2 2
4.3 odd 2 6336.2.b.i.2177.1 2
8.3 odd 2 1584.2.b.a.593.2 2
8.5 even 2 198.2.b.b.197.2 yes 2
11.10 odd 2 6336.2.b.n.2177.1 2
12.11 even 2 6336.2.b.f.2177.2 2
24.5 odd 2 198.2.b.a.197.1 2
24.11 even 2 1584.2.b.d.593.1 2
33.32 even 2 inner 6336.2.b.a.2177.2 2
40.13 odd 4 4950.2.f.b.4949.2 4
40.29 even 2 4950.2.d.b.4751.2 2
40.37 odd 4 4950.2.f.b.4949.4 4
44.43 even 2 6336.2.b.f.2177.1 2
72.5 odd 6 1782.2.i.g.593.1 4
72.13 even 6 1782.2.i.b.593.2 4
72.29 odd 6 1782.2.i.g.1187.2 4
72.61 even 6 1782.2.i.b.1187.1 4
88.21 odd 2 198.2.b.a.197.2 yes 2
88.43 even 2 1584.2.b.d.593.2 2
120.29 odd 2 4950.2.d.e.4751.1 2
120.53 even 4 4950.2.f.a.4949.3 4
120.77 even 4 4950.2.f.a.4949.1 4
132.131 odd 2 6336.2.b.i.2177.2 2
264.131 odd 2 1584.2.b.a.593.1 2
264.197 even 2 198.2.b.b.197.1 yes 2
440.109 odd 2 4950.2.d.e.4751.2 2
440.197 even 4 4950.2.f.a.4949.2 4
440.373 even 4 4950.2.f.a.4949.4 4
792.373 odd 6 1782.2.i.g.593.2 4
792.461 even 6 1782.2.i.b.1187.2 4
792.637 odd 6 1782.2.i.g.1187.1 4
792.725 even 6 1782.2.i.b.593.1 4
1320.197 odd 4 4950.2.f.b.4949.3 4
1320.989 even 2 4950.2.d.b.4751.1 2
1320.1253 odd 4 4950.2.f.b.4949.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
198.2.b.a.197.1 2 24.5 odd 2
198.2.b.a.197.2 yes 2 88.21 odd 2
198.2.b.b.197.1 yes 2 264.197 even 2
198.2.b.b.197.2 yes 2 8.5 even 2
1584.2.b.a.593.1 2 264.131 odd 2
1584.2.b.a.593.2 2 8.3 odd 2
1584.2.b.d.593.1 2 24.11 even 2
1584.2.b.d.593.2 2 88.43 even 2
1782.2.i.b.593.1 4 792.725 even 6
1782.2.i.b.593.2 4 72.13 even 6
1782.2.i.b.1187.1 4 72.61 even 6
1782.2.i.b.1187.2 4 792.461 even 6
1782.2.i.g.593.1 4 72.5 odd 6
1782.2.i.g.593.2 4 792.373 odd 6
1782.2.i.g.1187.1 4 792.637 odd 6
1782.2.i.g.1187.2 4 72.29 odd 6
4950.2.d.b.4751.1 2 1320.989 even 2
4950.2.d.b.4751.2 2 40.29 even 2
4950.2.d.e.4751.1 2 120.29 odd 2
4950.2.d.e.4751.2 2 440.109 odd 2
4950.2.f.a.4949.1 4 120.77 even 4
4950.2.f.a.4949.2 4 440.197 even 4
4950.2.f.a.4949.3 4 120.53 even 4
4950.2.f.a.4949.4 4 440.373 even 4
4950.2.f.b.4949.1 4 1320.1253 odd 4
4950.2.f.b.4949.2 4 40.13 odd 4
4950.2.f.b.4949.3 4 1320.197 odd 4
4950.2.f.b.4949.4 4 40.37 odd 4
6336.2.b.a.2177.1 2 1.1 even 1 trivial
6336.2.b.a.2177.2 2 33.32 even 2 inner
6336.2.b.f.2177.1 2 44.43 even 2
6336.2.b.f.2177.2 2 12.11 even 2
6336.2.b.i.2177.1 2 4.3 odd 2
6336.2.b.i.2177.2 2 132.131 odd 2
6336.2.b.n.2177.1 2 11.10 odd 2
6336.2.b.n.2177.2 2 3.2 odd 2