Properties

Label 2-6336-33.32-c1-0-18
Degree $2$
Conductor $6336$
Sign $0.870 - 0.492i$
Analytic cond. $50.5932$
Root an. cond. $7.11289$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.82i·5-s + (−3 − 1.41i)11-s + 4.24i·13-s − 6·17-s + 4.24i·19-s − 1.41i·23-s − 3.00·25-s + 2·31-s + 10·37-s − 6·41-s − 12.7i·43-s − 9.89i·47-s + 7·49-s + 5.65i·53-s + (−4.00 + 8.48i)55-s + ⋯
L(s)  = 1  − 1.26i·5-s + (−0.904 − 0.426i)11-s + 1.17i·13-s − 1.45·17-s + 0.973i·19-s − 0.294i·23-s − 0.600·25-s + 0.359·31-s + 1.64·37-s − 0.937·41-s − 1.94i·43-s − 1.44i·47-s + 49-s + 0.777i·53-s + (−0.539 + 1.14i)55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.870 - 0.492i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.870 - 0.492i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6336\)    =    \(2^{6} \cdot 3^{2} \cdot 11\)
Sign: $0.870 - 0.492i$
Analytic conductor: \(50.5932\)
Root analytic conductor: \(7.11289\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{6336} (2177, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 6336,\ (\ :1/2),\ 0.870 - 0.492i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.242698422\)
\(L(\frac12)\) \(\approx\) \(1.242698422\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + (3 + 1.41i)T \)
good5 \( 1 + 2.82iT - 5T^{2} \)
7 \( 1 - 7T^{2} \)
13 \( 1 - 4.24iT - 13T^{2} \)
17 \( 1 + 6T + 17T^{2} \)
19 \( 1 - 4.24iT - 19T^{2} \)
23 \( 1 + 1.41iT - 23T^{2} \)
29 \( 1 + 29T^{2} \)
31 \( 1 - 2T + 31T^{2} \)
37 \( 1 - 10T + 37T^{2} \)
41 \( 1 + 6T + 41T^{2} \)
43 \( 1 + 12.7iT - 43T^{2} \)
47 \( 1 + 9.89iT - 47T^{2} \)
53 \( 1 - 5.65iT - 53T^{2} \)
59 \( 1 - 5.65iT - 59T^{2} \)
61 \( 1 - 12.7iT - 61T^{2} \)
67 \( 1 + 8T + 67T^{2} \)
71 \( 1 - 15.5iT - 71T^{2} \)
73 \( 1 - 8.48iT - 73T^{2} \)
79 \( 1 - 8.48iT - 79T^{2} \)
83 \( 1 + 6T + 83T^{2} \)
89 \( 1 - 7.07iT - 89T^{2} \)
97 \( 1 + 4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.398851285630526314090886224641, −7.38356510513658713427488831196, −6.72934577407889125906309352202, −5.79069102123679957078895673105, −5.28869751120526432200747245580, −4.31313465075571511389104274236, −4.07993841732859832515307435884, −2.66010179647600734173536061927, −1.89950673128867001433390172872, −0.806551829878677410317873596074, 0.39409512457413729087875034424, 2.01632810851628553342352113740, 2.83646576687708102922253280684, 3.19844324177025084449694764817, 4.51729202347086437545146482302, 4.96238023448040029533516229693, 6.16235194739329730265868363000, 6.42213749975465502838848729785, 7.44622708153787062098797499187, 7.70431465069360961288301291759

Graph of the $Z$-function along the critical line