Properties

Label 6300.2.dd.d.1349.3
Level $6300$
Weight $2$
Character 6300.1349
Analytic conductor $50.306$
Analytic rank $0$
Dimension $40$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6300,2,Mod(1349,6300)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6300, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6300.1349"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6300 = 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6300.dd (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.3057532734\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1349.3
Character \(\chi\) \(=\) 6300.1349
Dual form 6300.2.dd.d.4049.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.14507 - 1.54876i) q^{7} +(-1.40119 + 0.808980i) q^{11} +6.11640 q^{13} +(-4.66363 + 2.69255i) q^{17} +(0.667037 + 0.385114i) q^{19} +(1.86812 - 3.23568i) q^{23} -5.62291i q^{29} +(0.201585 - 0.116385i) q^{31} +(-0.411626 - 0.237653i) q^{37} -0.682087 q^{41} +3.64192i q^{43} +(-3.37027 - 1.94583i) q^{47} +(2.20268 + 6.64441i) q^{49} +(-6.43189 - 11.1404i) q^{53} +(5.41271 + 9.37509i) q^{59} +(-3.26629 - 1.88579i) q^{61} +(2.72158 - 1.57131i) q^{67} +13.9116i q^{71} +(-3.71204 - 6.42944i) q^{73} +(4.25858 + 0.434792i) q^{77} +(-0.416272 + 0.721004i) q^{79} -0.682087i q^{83} +(5.18151 - 8.97464i) q^{89} +(-13.1201 - 9.47283i) q^{91} +16.8308 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 12 q^{31} - 8 q^{49} + 12 q^{61} - 4 q^{79} - 80 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6300\mathbb{Z}\right)^\times\).

\(n\) \(2801\) \(3151\) \(3277\) \(3601\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −2.14507 1.54876i −0.810762 0.585376i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.40119 + 0.808980i −0.422476 + 0.243917i −0.696136 0.717910i \(-0.745099\pi\)
0.273660 + 0.961826i \(0.411766\pi\)
\(12\) 0 0
\(13\) 6.11640 1.69638 0.848192 0.529689i \(-0.177691\pi\)
0.848192 + 0.529689i \(0.177691\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.66363 + 2.69255i −1.13110 + 0.653039i −0.944211 0.329342i \(-0.893173\pi\)
−0.186886 + 0.982382i \(0.559840\pi\)
\(18\) 0 0
\(19\) 0.667037 + 0.385114i 0.153029 + 0.0883512i 0.574559 0.818463i \(-0.305174\pi\)
−0.421530 + 0.906814i \(0.638507\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.86812 3.23568i 0.389530 0.674686i −0.602856 0.797850i \(-0.705971\pi\)
0.992386 + 0.123164i \(0.0393041\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 5.62291i 1.04415i −0.852900 0.522074i \(-0.825159\pi\)
0.852900 0.522074i \(-0.174841\pi\)
\(30\) 0 0
\(31\) 0.201585 0.116385i 0.0362057 0.0209034i −0.481788 0.876288i \(-0.660012\pi\)
0.517994 + 0.855384i \(0.326679\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −0.411626 0.237653i −0.0676709 0.0390698i 0.465783 0.884899i \(-0.345773\pi\)
−0.533454 + 0.845829i \(0.679106\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.682087 −0.106524 −0.0532621 0.998581i \(-0.516962\pi\)
−0.0532621 + 0.998581i \(0.516962\pi\)
\(42\) 0 0
\(43\) 3.64192i 0.555388i 0.960670 + 0.277694i \(0.0895701\pi\)
−0.960670 + 0.277694i \(0.910430\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.37027 1.94583i −0.491605 0.283828i 0.233635 0.972324i \(-0.424938\pi\)
−0.725240 + 0.688496i \(0.758271\pi\)
\(48\) 0 0
\(49\) 2.20268 + 6.64441i 0.314669 + 0.949201i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −6.43189 11.1404i −0.883488 1.53025i −0.847437 0.530895i \(-0.821856\pi\)
−0.0360503 0.999350i \(-0.511478\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.41271 + 9.37509i 0.704675 + 1.22053i 0.966809 + 0.255501i \(0.0822405\pi\)
−0.262134 + 0.965032i \(0.584426\pi\)
\(60\) 0 0
\(61\) −3.26629 1.88579i −0.418205 0.241451i 0.276104 0.961128i \(-0.410957\pi\)
−0.694309 + 0.719677i \(0.744290\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 2.72158 1.57131i 0.332494 0.191966i −0.324454 0.945902i \(-0.605180\pi\)
0.656948 + 0.753936i \(0.271847\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 13.9116i 1.65100i 0.564403 + 0.825500i \(0.309106\pi\)
−0.564403 + 0.825500i \(0.690894\pi\)
\(72\) 0 0
\(73\) −3.71204 6.42944i −0.434462 0.752510i 0.562790 0.826600i \(-0.309728\pi\)
−0.997252 + 0.0740904i \(0.976395\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.25858 + 0.434792i 0.485311 + 0.0495492i
\(78\) 0 0
\(79\) −0.416272 + 0.721004i −0.0468342 + 0.0811193i −0.888492 0.458892i \(-0.848247\pi\)
0.841658 + 0.540011i \(0.181580\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0.682087i 0.0748688i −0.999299 0.0374344i \(-0.988081\pi\)
0.999299 0.0374344i \(-0.0119185\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.18151 8.97464i 0.549239 0.951310i −0.449088 0.893487i \(-0.648251\pi\)
0.998327 0.0578220i \(-0.0184156\pi\)
\(90\) 0 0
\(91\) −13.1201 9.47283i −1.37536 0.993023i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 16.8308 1.70891 0.854456 0.519524i \(-0.173891\pi\)
0.854456 + 0.519524i \(0.173891\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −3.15721 5.46846i −0.314155 0.544132i 0.665103 0.746752i \(-0.268388\pi\)
−0.979257 + 0.202620i \(0.935054\pi\)
\(102\) 0 0
\(103\) 3.78865 6.56213i 0.373307 0.646586i −0.616765 0.787147i \(-0.711557\pi\)
0.990072 + 0.140561i \(0.0448906\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.81684 11.8071i 0.659009 1.14144i −0.321864 0.946786i \(-0.604309\pi\)
0.980873 0.194650i \(-0.0623572\pi\)
\(108\) 0 0
\(109\) −7.03461 12.1843i −0.673793 1.16704i −0.976820 0.214062i \(-0.931330\pi\)
0.303027 0.952982i \(-0.402003\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −4.55242 −0.428255 −0.214128 0.976806i \(-0.568691\pi\)
−0.214128 + 0.976806i \(0.568691\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 14.1739 + 1.44713i 1.29932 + 0.132658i
\(120\) 0 0
\(121\) −4.19110 + 7.25920i −0.381009 + 0.659927i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 3.39541i 0.301294i 0.988588 + 0.150647i \(0.0481357\pi\)
−0.988588 + 0.150647i \(0.951864\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −10.4721 + 18.1382i −0.914952 + 1.58474i −0.107979 + 0.994153i \(0.534438\pi\)
−0.806972 + 0.590590i \(0.798895\pi\)
\(132\) 0 0
\(133\) −0.834394 1.85918i −0.0723511 0.161211i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −9.29576 16.1007i −0.794190 1.37558i −0.923352 0.383955i \(-0.874562\pi\)
0.129161 0.991624i \(-0.458771\pi\)
\(138\) 0 0
\(139\) 13.0251i 1.10478i 0.833587 + 0.552388i \(0.186283\pi\)
−0.833587 + 0.552388i \(0.813717\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −8.57027 + 4.94805i −0.716682 + 0.413776i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −9.27299 5.35376i −0.759673 0.438597i 0.0695052 0.997582i \(-0.477858\pi\)
−0.829178 + 0.558984i \(0.811191\pi\)
\(150\) 0 0
\(151\) −5.18256 8.97645i −0.421751 0.730493i 0.574360 0.818603i \(-0.305251\pi\)
−0.996111 + 0.0881092i \(0.971918\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −7.49197 12.9765i −0.597924 1.03564i −0.993127 0.117042i \(-0.962659\pi\)
0.395203 0.918594i \(-0.370674\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −9.01855 + 4.04750i −0.710761 + 0.318988i
\(162\) 0 0
\(163\) −3.81589 2.20310i −0.298883 0.172560i 0.343058 0.939314i \(-0.388537\pi\)
−0.641941 + 0.766754i \(0.721871\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.49296i 0.657205i −0.944468 0.328603i \(-0.893422\pi\)
0.944468 0.328603i \(-0.106578\pi\)
\(168\) 0 0
\(169\) 24.4103 1.87772
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1.26949 0.732940i −0.0965175 0.0557244i 0.450964 0.892542i \(-0.351080\pi\)
−0.547482 + 0.836818i \(0.684413\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −13.0846 + 7.55441i −0.977991 + 0.564643i −0.901663 0.432439i \(-0.857653\pi\)
−0.0763281 + 0.997083i \(0.524320\pi\)
\(180\) 0 0
\(181\) 20.1371i 1.49678i −0.663261 0.748388i \(-0.730828\pi\)
0.663261 0.748388i \(-0.269172\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 4.35644 7.54557i 0.318574 0.551787i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −14.2314 8.21652i −1.02975 0.594527i −0.112837 0.993613i \(-0.535994\pi\)
−0.916913 + 0.399087i \(0.869327\pi\)
\(192\) 0 0
\(193\) 21.5944 12.4675i 1.55440 0.897431i 0.556621 0.830767i \(-0.312098\pi\)
0.997775 0.0666645i \(-0.0212357\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −5.28956 −0.376865 −0.188433 0.982086i \(-0.560341\pi\)
−0.188433 + 0.982086i \(0.560341\pi\)
\(198\) 0 0
\(199\) −4.91550 + 2.83797i −0.348451 + 0.201178i −0.664003 0.747730i \(-0.731144\pi\)
0.315552 + 0.948908i \(0.397810\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −8.70853 + 12.0616i −0.611219 + 0.846555i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.24620 −0.0862013
\(210\) 0 0
\(211\) 0.400950 0.0276025 0.0138013 0.999905i \(-0.495607\pi\)
0.0138013 + 0.999905i \(0.495607\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −0.612668 0.0625521i −0.0415906 0.00424631i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −28.5246 + 16.4687i −1.91877 + 1.10780i
\(222\) 0 0
\(223\) −3.55830 −0.238281 −0.119141 0.992877i \(-0.538014\pi\)
−0.119141 + 0.992877i \(0.538014\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −23.3751 + 13.4956i −1.55146 + 0.895736i −0.553437 + 0.832891i \(0.686684\pi\)
−0.998023 + 0.0628447i \(0.979983\pi\)
\(228\) 0 0
\(229\) 0.914543 + 0.528011i 0.0604347 + 0.0348920i 0.529913 0.848052i \(-0.322225\pi\)
−0.469478 + 0.882944i \(0.655558\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3.53695 6.12617i 0.231713 0.401339i −0.726599 0.687062i \(-0.758900\pi\)
0.958312 + 0.285723i \(0.0922336\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 18.3849i 1.18922i −0.804013 0.594612i \(-0.797306\pi\)
0.804013 0.594612i \(-0.202694\pi\)
\(240\) 0 0
\(241\) 1.41894 0.819225i 0.0914019 0.0527709i −0.453602 0.891204i \(-0.649861\pi\)
0.545004 + 0.838433i \(0.316528\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 4.07986 + 2.35551i 0.259595 + 0.149877i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −11.4769 −0.724418 −0.362209 0.932097i \(-0.617977\pi\)
−0.362209 + 0.932097i \(0.617977\pi\)
\(252\) 0 0
\(253\) 6.04509i 0.380052i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −20.3310 11.7381i −1.26821 0.732203i −0.293563 0.955940i \(-0.594841\pi\)
−0.974649 + 0.223737i \(0.928174\pi\)
\(258\) 0 0
\(259\) 0.514902 + 1.14729i 0.0319945 + 0.0712893i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −10.0368 17.3843i −0.618897 1.07196i −0.989687 0.143244i \(-0.954247\pi\)
0.370791 0.928716i \(-0.379087\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −9.16917 15.8815i −0.559054 0.968311i −0.997576 0.0695898i \(-0.977831\pi\)
0.438521 0.898721i \(-0.355502\pi\)
\(270\) 0 0
\(271\) −18.6007 10.7391i −1.12991 0.652356i −0.186001 0.982550i \(-0.559553\pi\)
−0.943913 + 0.330193i \(0.892886\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 7.15706 4.13213i 0.430026 0.248276i −0.269332 0.963047i \(-0.586803\pi\)
0.699358 + 0.714772i \(0.253469\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 19.9460i 1.18988i 0.803771 + 0.594939i \(0.202824\pi\)
−0.803771 + 0.594939i \(0.797176\pi\)
\(282\) 0 0
\(283\) −0.429791 0.744420i −0.0255484 0.0442512i 0.852969 0.521962i \(-0.174800\pi\)
−0.878517 + 0.477711i \(0.841467\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.46313 + 1.05639i 0.0863657 + 0.0623567i
\(288\) 0 0
\(289\) 5.99964 10.3917i 0.352920 0.611275i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 14.0627i 0.821549i −0.911737 0.410775i \(-0.865258\pi\)
0.911737 0.410775i \(-0.134742\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 11.4262 19.7907i 0.660793 1.14453i
\(300\) 0 0
\(301\) 5.64046 7.81219i 0.325111 0.450287i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 13.1301 0.749377 0.374689 0.927151i \(-0.377750\pi\)
0.374689 + 0.927151i \(0.377750\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −6.85906 11.8802i −0.388942 0.673667i 0.603366 0.797465i \(-0.293826\pi\)
−0.992307 + 0.123798i \(0.960493\pi\)
\(312\) 0 0
\(313\) −4.12696 + 7.14811i −0.233270 + 0.404035i −0.958768 0.284189i \(-0.908276\pi\)
0.725499 + 0.688224i \(0.241609\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.15857 + 2.00670i −0.0650717 + 0.112707i −0.896726 0.442587i \(-0.854061\pi\)
0.831654 + 0.555294i \(0.187394\pi\)
\(318\) 0 0
\(319\) 4.54882 + 7.87879i 0.254685 + 0.441127i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −4.14775 −0.230787
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4.21586 + 9.39369i 0.232428 + 0.517891i
\(330\) 0 0
\(331\) 9.65316 16.7198i 0.530585 0.919001i −0.468778 0.883316i \(-0.655305\pi\)
0.999363 0.0356847i \(-0.0113612\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 21.8405i 1.18973i −0.803826 0.594865i \(-0.797205\pi\)
0.803826 0.594865i \(-0.202795\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −0.188307 + 0.326157i −0.0101974 + 0.0176624i
\(342\) 0 0
\(343\) 5.56568 17.6642i 0.300518 0.953776i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6.85138 + 11.8669i 0.367801 + 0.637050i 0.989221 0.146427i \(-0.0467773\pi\)
−0.621420 + 0.783477i \(0.713444\pi\)
\(348\) 0 0
\(349\) 5.28656i 0.282983i −0.989939 0.141491i \(-0.954810\pi\)
0.989939 0.141491i \(-0.0451898\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3.58179 2.06795i 0.190640 0.110066i −0.401642 0.915797i \(-0.631561\pi\)
0.592282 + 0.805731i \(0.298227\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 26.7125 + 15.4225i 1.40983 + 0.813967i 0.995372 0.0961010i \(-0.0306372\pi\)
0.414460 + 0.910068i \(0.363971\pi\)
\(360\) 0 0
\(361\) −9.20337 15.9407i −0.484388 0.838985i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −2.78235 4.81917i −0.145237 0.251559i 0.784224 0.620478i \(-0.213061\pi\)
−0.929462 + 0.368919i \(0.879728\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −3.45686 + 33.8583i −0.179471 + 1.75784i
\(372\) 0 0
\(373\) 9.05036 + 5.22523i 0.468610 + 0.270552i 0.715658 0.698451i \(-0.246127\pi\)
−0.247048 + 0.969003i \(0.579460\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 34.3919i 1.77127i
\(378\) 0 0
\(379\) −22.4235 −1.15182 −0.575910 0.817513i \(-0.695352\pi\)
−0.575910 + 0.817513i \(0.695352\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −24.3597 14.0641i −1.24472 0.718642i −0.274672 0.961538i \(-0.588569\pi\)
−0.970052 + 0.242896i \(0.921903\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −3.65189 + 2.10842i −0.185158 + 0.106901i −0.589714 0.807612i \(-0.700759\pi\)
0.404556 + 0.914513i \(0.367426\pi\)
\(390\) 0 0
\(391\) 20.1200i 1.01751i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −0.757060 + 1.31127i −0.0379957 + 0.0658106i −0.884398 0.466734i \(-0.845431\pi\)
0.846402 + 0.532544i \(0.178764\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 28.8743 + 16.6706i 1.44191 + 0.832490i 0.997978 0.0635679i \(-0.0202479\pi\)
0.443937 + 0.896058i \(0.353581\pi\)
\(402\) 0 0
\(403\) 1.23297 0.711858i 0.0614188 0.0354602i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.769025 0.0381191
\(408\) 0 0
\(409\) −2.82101 + 1.62871i −0.139490 + 0.0805346i −0.568121 0.822945i \(-0.692329\pi\)
0.428631 + 0.903480i \(0.358996\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2.90910 28.4933i 0.143147 1.40206i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 38.9059 1.90068 0.950340 0.311215i \(-0.100736\pi\)
0.950340 + 0.311215i \(0.100736\pi\)
\(420\) 0 0
\(421\) −37.7183 −1.83828 −0.919139 0.393934i \(-0.871114\pi\)
−0.919139 + 0.393934i \(0.871114\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 4.08579 + 9.10385i 0.197725 + 0.440566i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −11.1785 + 6.45391i −0.538449 + 0.310874i −0.744450 0.667678i \(-0.767288\pi\)
0.206001 + 0.978552i \(0.433955\pi\)
\(432\) 0 0
\(433\) 5.59318 0.268791 0.134396 0.990928i \(-0.457091\pi\)
0.134396 + 0.990928i \(0.457091\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.49221 1.43888i 0.119219 0.0688309i
\(438\) 0 0
\(439\) 31.5177 + 18.1968i 1.50426 + 0.868484i 0.999988 + 0.00493767i \(0.00157172\pi\)
0.504270 + 0.863546i \(0.331762\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5.20695 + 9.01870i −0.247390 + 0.428491i −0.962801 0.270212i \(-0.912906\pi\)
0.715411 + 0.698704i \(0.246239\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.28525i 0.107848i 0.998545 + 0.0539239i \(0.0171728\pi\)
−0.998545 + 0.0539239i \(0.982827\pi\)
\(450\) 0 0
\(451\) 0.955737 0.551795i 0.0450039 0.0259830i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 28.4192 + 16.4078i 1.32940 + 0.767527i 0.985206 0.171373i \(-0.0548205\pi\)
0.344189 + 0.938900i \(0.388154\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −4.56922 −0.212810 −0.106405 0.994323i \(-0.533934\pi\)
−0.106405 + 0.994323i \(0.533934\pi\)
\(462\) 0 0
\(463\) 29.2197i 1.35795i −0.734159 0.678977i \(-0.762423\pi\)
0.734159 0.678977i \(-0.237577\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −14.4431 8.33872i −0.668347 0.385870i 0.127103 0.991889i \(-0.459432\pi\)
−0.795450 + 0.606019i \(0.792765\pi\)
\(468\) 0 0
\(469\) −8.27157 0.844510i −0.381946 0.0389958i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −2.94624 5.10304i −0.135468 0.234638i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −2.36679 4.09940i −0.108141 0.187306i 0.806876 0.590721i \(-0.201157\pi\)
−0.915017 + 0.403415i \(0.867823\pi\)
\(480\) 0 0
\(481\) −2.51767 1.45358i −0.114796 0.0662774i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −34.7408 + 20.0576i −1.57426 + 0.908898i −0.578620 + 0.815597i \(0.696409\pi\)
−0.995638 + 0.0933009i \(0.970258\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 17.9082i 0.808186i −0.914718 0.404093i \(-0.867587\pi\)
0.914718 0.404093i \(-0.132413\pi\)
\(492\) 0 0
\(493\) 15.1400 + 26.2232i 0.681869 + 1.18103i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 21.5457 29.8413i 0.966456 1.33857i
\(498\) 0 0
\(499\) −15.1488 + 26.2384i −0.678152 + 1.17459i 0.297385 + 0.954758i \(0.403885\pi\)
−0.975537 + 0.219836i \(0.929448\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0.181490i 0.00809225i −0.999992 0.00404613i \(-0.998712\pi\)
0.999992 0.00404613i \(-0.00128793\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −16.0302 + 27.7651i −0.710525 + 1.23067i 0.254136 + 0.967169i \(0.418209\pi\)
−0.964660 + 0.263496i \(0.915124\pi\)
\(510\) 0 0
\(511\) −1.99506 + 19.5407i −0.0882564 + 0.864429i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 6.29655 0.276922
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 10.8863 + 18.8557i 0.476939 + 0.826083i 0.999651 0.0264264i \(-0.00841276\pi\)
−0.522711 + 0.852510i \(0.675079\pi\)
\(522\) 0 0
\(523\) 10.9494 18.9650i 0.478785 0.829280i −0.520919 0.853606i \(-0.674411\pi\)
0.999704 + 0.0243264i \(0.00774409\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −0.626746 + 1.08556i −0.0273015 + 0.0472875i
\(528\) 0 0
\(529\) 4.52025 + 7.82930i 0.196533 + 0.340404i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −4.17192 −0.180706
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −8.46159 7.52819i −0.364466 0.324262i
\(540\) 0 0
\(541\) −9.53205 + 16.5100i −0.409815 + 0.709820i −0.994869 0.101174i \(-0.967740\pi\)
0.585054 + 0.810994i \(0.301073\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 26.7493i 1.14372i −0.820352 0.571859i \(-0.806222\pi\)
0.820352 0.571859i \(-0.193778\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 2.16546 3.75068i 0.0922517 0.159785i
\(552\) 0 0
\(553\) 2.00960 0.901902i 0.0854567 0.0383528i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 16.0561 + 27.8099i 0.680318 + 1.17834i 0.974884 + 0.222714i \(0.0714916\pi\)
−0.294566 + 0.955631i \(0.595175\pi\)
\(558\) 0 0
\(559\) 22.2754i 0.942151i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 25.2830 14.5972i 1.06555 0.615197i 0.138590 0.990350i \(-0.455743\pi\)
0.926963 + 0.375153i \(0.122410\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.84837 1.06716i −0.0774876 0.0447375i 0.460756 0.887527i \(-0.347578\pi\)
−0.538243 + 0.842790i \(0.680912\pi\)
\(570\) 0 0
\(571\) −15.7635 27.3032i −0.659682 1.14260i −0.980698 0.195529i \(-0.937358\pi\)
0.321016 0.947074i \(-0.395976\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −10.0048 17.3288i −0.416504 0.721406i 0.579081 0.815270i \(-0.303411\pi\)
−0.995585 + 0.0938639i \(0.970078\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1.05639 + 1.46313i −0.0438264 + 0.0607008i
\(582\) 0 0
\(583\) 18.0247 + 10.4065i 0.746505 + 0.430995i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 5.77666i 0.238428i −0.992869 0.119214i \(-0.961963\pi\)
0.992869 0.119214i \(-0.0380375\pi\)
\(588\) 0 0
\(589\) 0.179286 0.00738736
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 11.2417 + 6.49041i 0.461642 + 0.266529i 0.712734 0.701434i \(-0.247457\pi\)
−0.251093 + 0.967963i \(0.580790\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 26.0753 15.0546i 1.06541 0.615113i 0.138484 0.990365i \(-0.455777\pi\)
0.926923 + 0.375251i \(0.122444\pi\)
\(600\) 0 0
\(601\) 31.0797i 1.26777i 0.773428 + 0.633884i \(0.218540\pi\)
−0.773428 + 0.633884i \(0.781460\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 20.1315 34.8689i 0.817114 1.41528i −0.0906858 0.995880i \(-0.528906\pi\)
0.907800 0.419404i \(-0.137761\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −20.6139 11.9015i −0.833950 0.481482i
\(612\) 0 0
\(613\) 13.4523 7.76670i 0.543334 0.313694i −0.203095 0.979159i \(-0.565100\pi\)
0.746429 + 0.665465i \(0.231767\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −24.1475 −0.972144 −0.486072 0.873919i \(-0.661571\pi\)
−0.486072 + 0.873919i \(0.661571\pi\)
\(618\) 0 0
\(619\) 42.7110 24.6592i 1.71670 0.991138i 0.791930 0.610611i \(-0.209076\pi\)
0.924770 0.380526i \(-0.124257\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −25.0143 + 11.2263i −1.00218 + 0.449774i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.55956 0.102057
\(630\) 0 0
\(631\) 25.7293 1.02427 0.512134 0.858906i \(-0.328855\pi\)
0.512134 + 0.858906i \(0.328855\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 13.4725 + 40.6399i 0.533800 + 1.61021i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −28.1334 + 16.2428i −1.11120 + 0.641554i −0.939141 0.343532i \(-0.888377\pi\)
−0.172063 + 0.985086i \(0.555043\pi\)
\(642\) 0 0
\(643\) −29.7863 −1.17466 −0.587328 0.809349i \(-0.699820\pi\)
−0.587328 + 0.809349i \(0.699820\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −28.2328 + 16.3002i −1.10995 + 0.640828i −0.938815 0.344420i \(-0.888075\pi\)
−0.171131 + 0.985248i \(0.554742\pi\)
\(648\) 0 0
\(649\) −15.1685 8.75755i −0.595417 0.343764i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −0.666558 + 1.15451i −0.0260844 + 0.0451795i −0.878773 0.477240i \(-0.841637\pi\)
0.852689 + 0.522420i \(0.174971\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 42.8917i 1.67082i 0.549626 + 0.835411i \(0.314770\pi\)
−0.549626 + 0.835411i \(0.685230\pi\)
\(660\) 0 0
\(661\) 23.7428 13.7079i 0.923486 0.533175i 0.0387407 0.999249i \(-0.487665\pi\)
0.884746 + 0.466074i \(0.154332\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −18.1939 10.5043i −0.704472 0.406727i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 6.10227 0.235576
\(672\) 0 0
\(673\) 18.1821i 0.700870i −0.936587 0.350435i \(-0.886034\pi\)
0.936587 0.350435i \(-0.113966\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 2.58420 + 1.49199i 0.0993190 + 0.0573419i 0.548837 0.835930i \(-0.315071\pi\)
−0.449518 + 0.893271i \(0.648404\pi\)
\(678\) 0 0
\(679\) −36.1034 26.0669i −1.38552 1.00036i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 11.1604 + 19.3304i 0.427041 + 0.739657i 0.996609 0.0822877i \(-0.0262226\pi\)
−0.569568 + 0.821945i \(0.692889\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −39.3400 68.1388i −1.49873 2.59588i
\(690\) 0 0
\(691\) 8.89912 + 5.13791i 0.338539 + 0.195455i 0.659626 0.751594i \(-0.270715\pi\)
−0.321087 + 0.947050i \(0.604048\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 3.18100 1.83655i 0.120489 0.0695644i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 33.7536i 1.27486i −0.770510 0.637428i \(-0.779999\pi\)
0.770510 0.637428i \(-0.220001\pi\)
\(702\) 0 0
\(703\) −0.183047 0.317046i −0.00690373 0.0119576i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.69687 + 16.6200i −0.0638173 + 0.625060i
\(708\) 0 0
\(709\) 4.03582 6.99025i 0.151568 0.262524i −0.780236 0.625485i \(-0.784901\pi\)
0.931804 + 0.362961i \(0.118234\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.869686i 0.0325700i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 11.6144 20.1168i 0.433145 0.750229i −0.563997 0.825777i \(-0.690737\pi\)
0.997142 + 0.0755475i \(0.0240704\pi\)
\(720\) 0 0
\(721\) −18.2901 + 8.20855i −0.681159 + 0.305702i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −30.7743 −1.14136 −0.570678 0.821174i \(-0.693320\pi\)
−0.570678 + 0.821174i \(0.693320\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −9.80605 16.9846i −0.362690 0.628197i
\(732\) 0 0
\(733\) −6.92980 + 12.0028i −0.255958 + 0.443332i −0.965155 0.261678i \(-0.915724\pi\)
0.709197 + 0.705010i \(0.249058\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2.54231 + 4.40341i −0.0936472 + 0.162202i
\(738\) 0 0
\(739\) 0.182348 + 0.315835i 0.00670777 + 0.0116182i 0.869360 0.494180i \(-0.164532\pi\)
−0.862652 + 0.505798i \(0.831198\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 18.3910 0.674701 0.337351 0.941379i \(-0.390469\pi\)
0.337351 + 0.941379i \(0.390469\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −32.9090 + 14.7695i −1.20247 + 0.539665i
\(750\) 0 0
\(751\) 22.2501 38.5383i 0.811918 1.40628i −0.0996021 0.995027i \(-0.531757\pi\)
0.911520 0.411256i \(-0.134910\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 24.4357i 0.888130i 0.895994 + 0.444065i \(0.146464\pi\)
−0.895994 + 0.444065i \(0.853536\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 13.2293 22.9138i 0.479561 0.830624i −0.520164 0.854066i \(-0.674129\pi\)
0.999725 + 0.0234421i \(0.00746255\pi\)
\(762\) 0 0
\(763\) −3.78080 + 37.0311i −0.136874 + 1.34062i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 33.1063 + 57.3418i 1.19540 + 2.07049i
\(768\) 0 0
\(769\) 10.9377i 0.394424i −0.980361 0.197212i \(-0.936811\pi\)
0.980361 0.197212i \(-0.0631887\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 14.0944 8.13738i 0.506939 0.292681i −0.224636 0.974443i \(-0.572119\pi\)
0.731574 + 0.681762i \(0.238786\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.454977 0.262681i −0.0163012 0.00941153i
\(780\) 0 0
\(781\) −11.2542 19.4928i −0.402706 0.697508i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −6.47320 11.2119i −0.230745 0.399661i 0.727283 0.686338i \(-0.240783\pi\)
−0.958027 + 0.286676i \(0.907450\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 9.76527 + 7.05060i 0.347213 + 0.250691i
\(792\) 0 0
\(793\) −19.9779 11.5342i −0.709436 0.409593i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 48.9463i 1.73377i −0.498510 0.866884i \(-0.666119\pi\)
0.498510 0.866884i \(-0.333881\pi\)
\(798\) 0 0
\(799\) 20.9570 0.741404
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 10.4026 + 6.00594i 0.367099 + 0.211945i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −23.4901 + 13.5620i −0.825869 + 0.476816i −0.852436 0.522831i \(-0.824876\pi\)
0.0265672 + 0.999647i \(0.491542\pi\)
\(810\) 0 0
\(811\) 23.7669i 0.834568i −0.908776 0.417284i \(-0.862982\pi\)
0.908776 0.417284i \(-0.137018\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −1.40255 + 2.42930i −0.0490692 + 0.0849903i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 21.7449 + 12.5544i 0.758903 + 0.438153i 0.828902 0.559394i \(-0.188966\pi\)
−0.0699988 + 0.997547i \(0.522300\pi\)
\(822\) 0 0
\(823\) −46.9627 + 27.1139i −1.63702 + 0.945132i −0.655163 + 0.755488i \(0.727400\pi\)
−0.981853 + 0.189644i \(0.939267\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −33.6990 −1.17183 −0.585914 0.810373i \(-0.699265\pi\)
−0.585914 + 0.810373i \(0.699265\pi\)
\(828\) 0 0
\(829\) 35.0353 20.2276i 1.21683 0.702535i 0.252588 0.967574i \(-0.418718\pi\)
0.964238 + 0.265039i \(0.0853848\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −28.1629 25.0562i −0.975787 0.868147i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 12.6553 0.436909 0.218455 0.975847i \(-0.429898\pi\)
0.218455 + 0.975847i \(0.429898\pi\)
\(840\) 0 0
\(841\) −2.61708 −0.0902441
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 20.2330 9.08051i 0.695214 0.312010i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −1.53794 + 0.887927i −0.0527197 + 0.0304378i
\(852\) 0 0
\(853\) −21.0912 −0.722150 −0.361075 0.932537i \(-0.617590\pi\)
−0.361075 + 0.932537i \(0.617590\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.76402 1.59581i 0.0944173 0.0545118i −0.452048 0.891994i \(-0.649306\pi\)
0.546465 + 0.837482i \(0.315973\pi\)
\(858\) 0 0
\(859\) −20.7568 11.9839i −0.708212 0.408886i 0.102187 0.994765i \(-0.467416\pi\)
−0.810399 + 0.585879i \(0.800749\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −22.4082 + 38.8121i −0.762784 + 1.32118i 0.178626 + 0.983917i \(0.442835\pi\)
−0.941410 + 0.337263i \(0.890499\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.34702i 0.0456946i
\(870\) 0 0
\(871\) 16.6463 9.61073i 0.564038 0.325647i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −10.7665 6.21606i −0.363560 0.209901i 0.307081 0.951683i \(-0.400648\pi\)
−0.670641 + 0.741782i \(0.733981\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 30.2360 1.01868 0.509338 0.860566i \(-0.329890\pi\)
0.509338 + 0.860566i \(0.329890\pi\)
\(882\) 0 0
\(883\) 25.6124i 0.861925i 0.902370 + 0.430963i \(0.141826\pi\)
−0.902370 + 0.430963i \(0.858174\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −10.9156 6.30210i −0.366508 0.211604i 0.305424 0.952217i \(-0.401202\pi\)
−0.671932 + 0.740613i \(0.734535\pi\)
\(888\) 0 0
\(889\) 5.25868 7.28341i 0.176371 0.244278i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.49873 2.59588i −0.0501531 0.0868677i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −0.654423 1.13349i −0.0218262 0.0378041i
\(900\) 0 0
\(901\) 59.9919 + 34.6363i 1.99862 + 1.15390i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −37.7588 + 21.8001i −1.25376 + 0.723859i −0.971854 0.235582i \(-0.924300\pi\)
−0.281907 + 0.959442i \(0.590967\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 23.8501i 0.790188i −0.918641 0.395094i \(-0.870712\pi\)
0.918641 0.395094i \(-0.129288\pi\)
\(912\) 0 0
\(913\) 0.551795 + 0.955737i 0.0182618 + 0.0316303i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 50.5552 22.6890i 1.66948 0.749258i
\(918\) 0 0
\(919\) −19.5865 + 33.9249i −0.646100 + 1.11908i 0.337946 + 0.941165i \(0.390268\pi\)
−0.984046 + 0.177913i \(0.943066\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 85.0887i 2.80073i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.21214 2.09950i 0.0397692 0.0688822i −0.845456 0.534046i \(-0.820671\pi\)
0.885225 + 0.465163i \(0.154004\pi\)
\(930\) 0 0
\(931\) −1.08958 + 5.28035i −0.0357096 + 0.173056i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 38.5715 1.26007 0.630037 0.776565i \(-0.283040\pi\)
0.630037 + 0.776565i \(0.283040\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −12.6354 21.8852i −0.411904 0.713438i 0.583194 0.812333i \(-0.301803\pi\)
−0.995098 + 0.0988946i \(0.968469\pi\)
\(942\) 0 0
\(943\) −1.27422 + 2.20702i −0.0414944 + 0.0718703i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 7.95004 13.7699i 0.258341 0.447461i −0.707456 0.706757i \(-0.750157\pi\)
0.965798 + 0.259297i \(0.0834907\pi\)
\(948\) 0 0
\(949\) −22.7043 39.3250i −0.737014 1.27654i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −21.1062 −0.683696 −0.341848 0.939755i \(-0.611053\pi\)
−0.341848 + 0.939755i \(0.611053\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −4.99607 + 48.9342i −0.161332 + 1.58017i
\(960\) 0 0
\(961\) −15.4729 + 26.7999i −0.499126 + 0.864512i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 5.22722i 0.168096i 0.996462 + 0.0840480i \(0.0267849\pi\)
−0.996462 + 0.0840480i \(0.973215\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −5.03879 + 8.72744i −0.161702 + 0.280077i −0.935479 0.353381i \(-0.885032\pi\)
0.773777 + 0.633458i \(0.218365\pi\)
\(972\) 0 0
\(973\) 20.1728 27.9398i 0.646709 0.895710i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 28.4901 + 49.3463i 0.911479 + 1.57873i 0.811976 + 0.583691i \(0.198392\pi\)
0.0995039 + 0.995037i \(0.468274\pi\)
\(978\) 0 0
\(979\) 16.7670i 0.535874i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 36.7314 21.2069i 1.17155 0.676394i 0.217505 0.976059i \(-0.430208\pi\)
0.954044 + 0.299665i \(0.0968749\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 11.7841 + 6.80355i 0.374712 + 0.216340i
\(990\) 0 0
\(991\) 15.0586 + 26.0822i 0.478352 + 0.828529i 0.999692 0.0248194i \(-0.00790108\pi\)
−0.521340 + 0.853349i \(0.674568\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 21.5074 + 37.2519i 0.681146 + 1.17978i 0.974631 + 0.223816i \(0.0718514\pi\)
−0.293486 + 0.955963i \(0.594815\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6300.2.dd.d.1349.3 40
3.2 odd 2 inner 6300.2.dd.d.1349.4 40
5.2 odd 4 6300.2.ch.d.1601.7 20
5.3 odd 4 6300.2.ch.e.1601.3 yes 20
5.4 even 2 inner 6300.2.dd.d.1349.17 40
7.3 odd 6 inner 6300.2.dd.d.4049.18 40
15.2 even 4 6300.2.ch.d.1601.8 yes 20
15.8 even 4 6300.2.ch.e.1601.4 yes 20
15.14 odd 2 inner 6300.2.dd.d.1349.18 40
21.17 even 6 inner 6300.2.dd.d.4049.17 40
35.3 even 12 6300.2.ch.e.4301.4 yes 20
35.17 even 12 6300.2.ch.d.4301.8 yes 20
35.24 odd 6 inner 6300.2.dd.d.4049.4 40
105.17 odd 12 6300.2.ch.d.4301.7 yes 20
105.38 odd 12 6300.2.ch.e.4301.3 yes 20
105.59 even 6 inner 6300.2.dd.d.4049.3 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6300.2.ch.d.1601.7 20 5.2 odd 4
6300.2.ch.d.1601.8 yes 20 15.2 even 4
6300.2.ch.d.4301.7 yes 20 105.17 odd 12
6300.2.ch.d.4301.8 yes 20 35.17 even 12
6300.2.ch.e.1601.3 yes 20 5.3 odd 4
6300.2.ch.e.1601.4 yes 20 15.8 even 4
6300.2.ch.e.4301.3 yes 20 105.38 odd 12
6300.2.ch.e.4301.4 yes 20 35.3 even 12
6300.2.dd.d.1349.3 40 1.1 even 1 trivial
6300.2.dd.d.1349.4 40 3.2 odd 2 inner
6300.2.dd.d.1349.17 40 5.4 even 2 inner
6300.2.dd.d.1349.18 40 15.14 odd 2 inner
6300.2.dd.d.4049.3 40 105.59 even 6 inner
6300.2.dd.d.4049.4 40 35.24 odd 6 inner
6300.2.dd.d.4049.17 40 21.17 even 6 inner
6300.2.dd.d.4049.18 40 7.3 odd 6 inner