Properties

Label 6300.2.ch.d.4301.8
Level $6300$
Weight $2$
Character 6300.4301
Analytic conductor $50.306$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6300,2,Mod(1601,6300)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6300, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6300.1601"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6300 = 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6300.ch (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,0,0,-4,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.3057532734\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 32 x^{18} - 124 x^{16} + 5094 x^{14} + 61094 x^{12} + 245850 x^{10} + 420152 x^{8} + \cdots + 15876 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{31}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 4301.8
Root \(1.08776 + 0.808980i\) of defining polynomial
Character \(\chi\) \(=\) 6300.4301
Dual form 6300.2.ch.d.1601.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.54876 + 2.14507i) q^{7} +(1.40119 + 0.808980i) q^{11} +6.11640i q^{13} +(2.69255 - 4.66363i) q^{17} +(-0.667037 + 0.385114i) q^{19} +(3.23568 - 1.86812i) q^{23} +5.62291i q^{29} +(0.201585 + 0.116385i) q^{31} +(0.237653 + 0.411626i) q^{37} +0.682087 q^{41} +3.64192 q^{43} +(-1.94583 - 3.37027i) q^{47} +(-2.20268 + 6.64441i) q^{49} +(11.1404 + 6.43189i) q^{53} +(5.41271 - 9.37509i) q^{59} +(-3.26629 + 1.88579i) q^{61} +(1.57131 - 2.72158i) q^{67} +13.9116i q^{71} +(-6.42944 - 3.71204i) q^{73} +(0.434792 + 4.25858i) q^{77} +(0.416272 + 0.721004i) q^{79} +0.682087 q^{83} +(5.18151 + 8.97464i) q^{89} +(-13.1201 + 9.47283i) q^{91} -16.8308i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 4 q^{7} + 6 q^{31} - 2 q^{37} + 20 q^{43} + 4 q^{49} + 6 q^{61} - 28 q^{67} + 6 q^{73} + 2 q^{79} - 40 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6300\mathbb{Z}\right)^\times\).

\(n\) \(2801\) \(3151\) \(3277\) \(3601\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.54876 + 2.14507i 0.585376 + 0.810762i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.40119 + 0.808980i 0.422476 + 0.243917i 0.696136 0.717910i \(-0.254901\pi\)
−0.273660 + 0.961826i \(0.588234\pi\)
\(12\) 0 0
\(13\) 6.11640i 1.69638i 0.529689 + 0.848192i \(0.322309\pi\)
−0.529689 + 0.848192i \(0.677691\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.69255 4.66363i 0.653039 1.13110i −0.329342 0.944211i \(-0.606827\pi\)
0.982382 0.186886i \(-0.0598396\pi\)
\(18\) 0 0
\(19\) −0.667037 + 0.385114i −0.153029 + 0.0883512i −0.574559 0.818463i \(-0.694826\pi\)
0.421530 + 0.906814i \(0.361493\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.23568 1.86812i 0.674686 0.389530i −0.123164 0.992386i \(-0.539304\pi\)
0.797850 + 0.602856i \(0.205971\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 5.62291i 1.04415i 0.852900 + 0.522074i \(0.174841\pi\)
−0.852900 + 0.522074i \(0.825159\pi\)
\(30\) 0 0
\(31\) 0.201585 + 0.116385i 0.0362057 + 0.0209034i 0.517994 0.855384i \(-0.326679\pi\)
−0.481788 + 0.876288i \(0.660012\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0.237653 + 0.411626i 0.0390698 + 0.0676709i 0.884899 0.465783i \(-0.154227\pi\)
−0.845829 + 0.533454i \(0.820894\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.682087 0.106524 0.0532621 0.998581i \(-0.483038\pi\)
0.0532621 + 0.998581i \(0.483038\pi\)
\(42\) 0 0
\(43\) 3.64192 0.555388 0.277694 0.960670i \(-0.410430\pi\)
0.277694 + 0.960670i \(0.410430\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.94583 3.37027i −0.283828 0.491605i 0.688496 0.725240i \(-0.258271\pi\)
−0.972324 + 0.233635i \(0.924938\pi\)
\(48\) 0 0
\(49\) −2.20268 + 6.64441i −0.314669 + 0.949201i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 11.1404 + 6.43189i 1.53025 + 0.883488i 0.999350 + 0.0360503i \(0.0114776\pi\)
0.530895 + 0.847437i \(0.321856\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.41271 9.37509i 0.704675 1.22053i −0.262134 0.965032i \(-0.584426\pi\)
0.966809 0.255501i \(-0.0822405\pi\)
\(60\) 0 0
\(61\) −3.26629 + 1.88579i −0.418205 + 0.241451i −0.694309 0.719677i \(-0.744290\pi\)
0.276104 + 0.961128i \(0.410957\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 1.57131 2.72158i 0.191966 0.332494i −0.753936 0.656948i \(-0.771847\pi\)
0.945902 + 0.324454i \(0.105180\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 13.9116i 1.65100i 0.564403 + 0.825500i \(0.309106\pi\)
−0.564403 + 0.825500i \(0.690894\pi\)
\(72\) 0 0
\(73\) −6.42944 3.71204i −0.752510 0.434462i 0.0740904 0.997252i \(-0.476395\pi\)
−0.826600 + 0.562790i \(0.809728\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.434792 + 4.25858i 0.0495492 + 0.485311i
\(78\) 0 0
\(79\) 0.416272 + 0.721004i 0.0468342 + 0.0811193i 0.888492 0.458892i \(-0.151753\pi\)
−0.841658 + 0.540011i \(0.818420\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0.682087 0.0748688 0.0374344 0.999299i \(-0.488081\pi\)
0.0374344 + 0.999299i \(0.488081\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.18151 + 8.97464i 0.549239 + 0.951310i 0.998327 + 0.0578220i \(0.0184156\pi\)
−0.449088 + 0.893487i \(0.648251\pi\)
\(90\) 0 0
\(91\) −13.1201 + 9.47283i −1.37536 + 0.993023i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 16.8308i 1.70891i −0.519524 0.854456i \(-0.673891\pi\)
0.519524 0.854456i \(-0.326109\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.15721 5.46846i 0.314155 0.544132i −0.665103 0.746752i \(-0.731612\pi\)
0.979257 + 0.202620i \(0.0649456\pi\)
\(102\) 0 0
\(103\) −6.56213 + 3.78865i −0.646586 + 0.373307i −0.787147 0.616765i \(-0.788443\pi\)
0.140561 + 0.990072i \(0.455109\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −11.8071 + 6.81684i −1.14144 + 0.659009i −0.946786 0.321864i \(-0.895691\pi\)
−0.194650 + 0.980873i \(0.562357\pi\)
\(108\) 0 0
\(109\) 7.03461 12.1843i 0.673793 1.16704i −0.303027 0.952982i \(-0.597997\pi\)
0.976820 0.214062i \(-0.0686695\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.55242i 0.428255i 0.976806 + 0.214128i \(0.0686909\pi\)
−0.976806 + 0.214128i \(0.931309\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 14.1739 1.44713i 1.29932 0.132658i
\(120\) 0 0
\(121\) −4.19110 7.25920i −0.381009 0.659927i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −3.39541 −0.301294 −0.150647 0.988588i \(-0.548136\pi\)
−0.150647 + 0.988588i \(0.548136\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 10.4721 + 18.1382i 0.914952 + 1.58474i 0.806972 + 0.590590i \(0.201105\pi\)
0.107979 + 0.994153i \(0.465562\pi\)
\(132\) 0 0
\(133\) −1.85918 0.834394i −0.161211 0.0723511i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −16.1007 9.29576i −1.37558 0.794190i −0.383955 0.923352i \(-0.625438\pi\)
−0.991624 + 0.129161i \(0.958771\pi\)
\(138\) 0 0
\(139\) 13.0251i 1.10478i 0.833587 + 0.552388i \(0.186283\pi\)
−0.833587 + 0.552388i \(0.813717\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −4.94805 + 8.57027i −0.413776 + 0.716682i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −9.27299 + 5.35376i −0.759673 + 0.438597i −0.829178 0.558984i \(-0.811191\pi\)
0.0695052 + 0.997582i \(0.477858\pi\)
\(150\) 0 0
\(151\) −5.18256 + 8.97645i −0.421751 + 0.730493i −0.996111 0.0881092i \(-0.971918\pi\)
0.574360 + 0.818603i \(0.305251\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 12.9765 + 7.49197i 1.03564 + 0.597924i 0.918594 0.395203i \(-0.129326\pi\)
0.117042 + 0.993127i \(0.462659\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 9.01855 + 4.04750i 0.710761 + 0.318988i
\(162\) 0 0
\(163\) −2.20310 3.81589i −0.172560 0.298883i 0.766754 0.641941i \(-0.221871\pi\)
−0.939314 + 0.343058i \(0.888537\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −8.49296 −0.657205 −0.328603 0.944468i \(-0.606578\pi\)
−0.328603 + 0.944468i \(0.606578\pi\)
\(168\) 0 0
\(169\) −24.4103 −1.87772
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0.732940 + 1.26949i 0.0557244 + 0.0965175i 0.892542 0.450964i \(-0.148920\pi\)
−0.836818 + 0.547482i \(0.815587\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −13.0846 7.55441i −0.977991 0.564643i −0.0763281 0.997083i \(-0.524320\pi\)
−0.901663 + 0.432439i \(0.857653\pi\)
\(180\) 0 0
\(181\) 20.1371i 1.49678i 0.663261 + 0.748388i \(0.269172\pi\)
−0.663261 + 0.748388i \(0.730828\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 7.54557 4.35644i 0.551787 0.318574i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 14.2314 8.21652i 1.02975 0.594527i 0.112837 0.993613i \(-0.464006\pi\)
0.916913 + 0.399087i \(0.130673\pi\)
\(192\) 0 0
\(193\) −12.4675 + 21.5944i −0.897431 + 1.55440i −0.0666645 + 0.997775i \(0.521236\pi\)
−0.830767 + 0.556621i \(0.812098\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.28956i 0.376865i −0.982086 0.188433i \(-0.939659\pi\)
0.982086 0.188433i \(-0.0603407\pi\)
\(198\) 0 0
\(199\) 4.91550 + 2.83797i 0.348451 + 0.201178i 0.664003 0.747730i \(-0.268856\pi\)
−0.315552 + 0.948908i \(0.602190\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −12.0616 + 8.70853i −0.846555 + 0.611219i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.24620 −0.0862013
\(210\) 0 0
\(211\) 0.400950 0.0276025 0.0138013 0.999905i \(-0.495607\pi\)
0.0138013 + 0.999905i \(0.495607\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0.0625521 + 0.612668i 0.00424631 + 0.0415906i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 28.5246 + 16.4687i 1.91877 + 1.10780i
\(222\) 0 0
\(223\) 3.55830i 0.238281i −0.992877 0.119141i \(-0.961986\pi\)
0.992877 0.119141i \(-0.0380140\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 13.4956 23.3751i 0.895736 1.55146i 0.0628447 0.998023i \(-0.479983\pi\)
0.832891 0.553437i \(-0.186684\pi\)
\(228\) 0 0
\(229\) −0.914543 + 0.528011i −0.0604347 + 0.0348920i −0.529913 0.848052i \(-0.677775\pi\)
0.469478 + 0.882944i \(0.344442\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.12617 3.53695i 0.401339 0.231713i −0.285723 0.958312i \(-0.592234\pi\)
0.687062 + 0.726599i \(0.258900\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 18.3849i 1.18922i 0.804013 + 0.594612i \(0.202694\pi\)
−0.804013 + 0.594612i \(0.797306\pi\)
\(240\) 0 0
\(241\) 1.41894 + 0.819225i 0.0914019 + 0.0527709i 0.545004 0.838433i \(-0.316528\pi\)
−0.453602 + 0.891204i \(0.649861\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −2.35551 4.07986i −0.149877 0.259595i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 11.4769 0.724418 0.362209 0.932097i \(-0.382023\pi\)
0.362209 + 0.932097i \(0.382023\pi\)
\(252\) 0 0
\(253\) 6.04509 0.380052
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −11.7381 20.3310i −0.732203 1.26821i −0.955940 0.293563i \(-0.905159\pi\)
0.223737 0.974649i \(-0.428174\pi\)
\(258\) 0 0
\(259\) −0.514902 + 1.14729i −0.0319945 + 0.0712893i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 17.3843 + 10.0368i 1.07196 + 0.618897i 0.928716 0.370791i \(-0.120913\pi\)
0.143244 + 0.989687i \(0.454247\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −9.16917 + 15.8815i −0.559054 + 0.968311i 0.438521 + 0.898721i \(0.355502\pi\)
−0.997576 + 0.0695898i \(0.977831\pi\)
\(270\) 0 0
\(271\) −18.6007 + 10.7391i −1.12991 + 0.652356i −0.943913 0.330193i \(-0.892886\pi\)
−0.186001 + 0.982550i \(0.559553\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 4.13213 7.15706i 0.248276 0.430026i −0.714772 0.699358i \(-0.753469\pi\)
0.963047 + 0.269332i \(0.0868028\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 19.9460i 1.18988i 0.803771 + 0.594939i \(0.202824\pi\)
−0.803771 + 0.594939i \(0.797176\pi\)
\(282\) 0 0
\(283\) −0.744420 0.429791i −0.0442512 0.0255484i 0.477711 0.878517i \(-0.341467\pi\)
−0.521962 + 0.852969i \(0.674800\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.05639 + 1.46313i 0.0623567 + 0.0863657i
\(288\) 0 0
\(289\) −5.99964 10.3917i −0.352920 0.611275i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 14.0627 0.821549 0.410775 0.911737i \(-0.365258\pi\)
0.410775 + 0.911737i \(0.365258\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 11.4262 + 19.7907i 0.660793 + 1.14453i
\(300\) 0 0
\(301\) 5.64046 + 7.81219i 0.325111 + 0.450287i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 13.1301i 0.749377i −0.927151 0.374689i \(-0.877750\pi\)
0.927151 0.374689i \(-0.122250\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 6.85906 11.8802i 0.388942 0.673667i −0.603366 0.797465i \(-0.706174\pi\)
0.992307 + 0.123798i \(0.0395074\pi\)
\(312\) 0 0
\(313\) 7.14811 4.12696i 0.404035 0.233270i −0.284189 0.958768i \(-0.591724\pi\)
0.688224 + 0.725499i \(0.258391\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.00670 1.15857i 0.112707 0.0650717i −0.442587 0.896726i \(-0.645939\pi\)
0.555294 + 0.831654i \(0.312606\pi\)
\(318\) 0 0
\(319\) −4.54882 + 7.87879i −0.254685 + 0.441127i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4.14775i 0.230787i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4.21586 9.39369i 0.232428 0.517891i
\(330\) 0 0
\(331\) 9.65316 + 16.7198i 0.530585 + 0.919001i 0.999363 + 0.0356847i \(0.0113612\pi\)
−0.468778 + 0.883316i \(0.655305\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 21.8405 1.18973 0.594865 0.803826i \(-0.297205\pi\)
0.594865 + 0.803826i \(0.297205\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.188307 + 0.326157i 0.0101974 + 0.0176624i
\(342\) 0 0
\(343\) −17.6642 + 5.56568i −0.953776 + 0.300518i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 11.8669 + 6.85138i 0.637050 + 0.367801i 0.783477 0.621420i \(-0.213444\pi\)
−0.146427 + 0.989221i \(0.546777\pi\)
\(348\) 0 0
\(349\) 5.28656i 0.282983i −0.989939 0.141491i \(-0.954810\pi\)
0.989939 0.141491i \(-0.0451898\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2.06795 3.58179i 0.110066 0.190640i −0.805731 0.592282i \(-0.798227\pi\)
0.915797 + 0.401642i \(0.131561\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 26.7125 15.4225i 1.40983 0.813967i 0.414460 0.910068i \(-0.363971\pi\)
0.995372 + 0.0961010i \(0.0306372\pi\)
\(360\) 0 0
\(361\) −9.20337 + 15.9407i −0.484388 + 0.838985i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 4.81917 + 2.78235i 0.251559 + 0.145237i 0.620478 0.784224i \(-0.286939\pi\)
−0.368919 + 0.929462i \(0.620272\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.45686 + 33.8583i 0.179471 + 1.75784i
\(372\) 0 0
\(373\) 5.22523 + 9.05036i 0.270552 + 0.468610i 0.969003 0.247048i \(-0.0794604\pi\)
−0.698451 + 0.715658i \(0.746127\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −34.3919 −1.77127
\(378\) 0 0
\(379\) 22.4235 1.15182 0.575910 0.817513i \(-0.304648\pi\)
0.575910 + 0.817513i \(0.304648\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 14.0641 + 24.3597i 0.718642 + 1.24472i 0.961538 + 0.274672i \(0.0885694\pi\)
−0.242896 + 0.970052i \(0.578097\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −3.65189 2.10842i −0.185158 0.106901i 0.404556 0.914513i \(-0.367426\pi\)
−0.589714 + 0.807612i \(0.700759\pi\)
\(390\) 0 0
\(391\) 20.1200i 1.01751i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −1.31127 + 0.757060i −0.0658106 + 0.0379957i −0.532544 0.846402i \(-0.678764\pi\)
0.466734 + 0.884398i \(0.345431\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −28.8743 + 16.6706i −1.44191 + 0.832490i −0.997978 0.0635679i \(-0.979752\pi\)
−0.443937 + 0.896058i \(0.646419\pi\)
\(402\) 0 0
\(403\) −0.711858 + 1.23297i −0.0354602 + 0.0614188i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.769025i 0.0381191i
\(408\) 0 0
\(409\) 2.82101 + 1.62871i 0.139490 + 0.0805346i 0.568121 0.822945i \(-0.307671\pi\)
−0.428631 + 0.903480i \(0.641004\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 28.4933 2.90910i 1.40206 0.143147i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 38.9059 1.90068 0.950340 0.311215i \(-0.100736\pi\)
0.950340 + 0.311215i \(0.100736\pi\)
\(420\) 0 0
\(421\) −37.7183 −1.83828 −0.919139 0.393934i \(-0.871114\pi\)
−0.919139 + 0.393934i \(0.871114\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −9.10385 4.08579i −0.440566 0.197725i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 11.1785 + 6.45391i 0.538449 + 0.310874i 0.744450 0.667678i \(-0.232712\pi\)
−0.206001 + 0.978552i \(0.566045\pi\)
\(432\) 0 0
\(433\) 5.59318i 0.268791i 0.990928 + 0.134396i \(0.0429093\pi\)
−0.990928 + 0.134396i \(0.957091\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.43888 + 2.49221i −0.0688309 + 0.119219i
\(438\) 0 0
\(439\) −31.5177 + 18.1968i −1.50426 + 0.868484i −0.504270 + 0.863546i \(0.668238\pi\)
−0.999988 + 0.00493767i \(0.998428\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −9.01870 + 5.20695i −0.428491 + 0.247390i −0.698704 0.715411i \(-0.746239\pi\)
0.270212 + 0.962801i \(0.412906\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.28525i 0.107848i −0.998545 0.0539239i \(-0.982827\pi\)
0.998545 0.0539239i \(-0.0171728\pi\)
\(450\) 0 0
\(451\) 0.955737 + 0.551795i 0.0450039 + 0.0259830i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −16.4078 28.4192i −0.767527 1.32940i −0.938900 0.344189i \(-0.888154\pi\)
0.171373 0.985206i \(-0.445180\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 4.56922 0.212810 0.106405 0.994323i \(-0.466066\pi\)
0.106405 + 0.994323i \(0.466066\pi\)
\(462\) 0 0
\(463\) −29.2197 −1.35795 −0.678977 0.734159i \(-0.737577\pi\)
−0.678977 + 0.734159i \(0.737577\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −8.33872 14.4431i −0.385870 0.668347i 0.606019 0.795450i \(-0.292765\pi\)
−0.991889 + 0.127103i \(0.959432\pi\)
\(468\) 0 0
\(469\) 8.27157 0.844510i 0.381946 0.0389958i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 5.10304 + 2.94624i 0.234638 + 0.135468i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −2.36679 + 4.09940i −0.108141 + 0.187306i −0.915017 0.403415i \(-0.867823\pi\)
0.806876 + 0.590721i \(0.201157\pi\)
\(480\) 0 0
\(481\) −2.51767 + 1.45358i −0.114796 + 0.0662774i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −20.0576 + 34.7408i −0.908898 + 1.57426i −0.0933009 + 0.995638i \(0.529742\pi\)
−0.815597 + 0.578620i \(0.803591\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 17.9082i 0.808186i −0.914718 0.404093i \(-0.867587\pi\)
0.914718 0.404093i \(-0.132413\pi\)
\(492\) 0 0
\(493\) 26.2232 + 15.1400i 1.18103 + 0.681869i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −29.8413 + 21.5457i −1.33857 + 0.966456i
\(498\) 0 0
\(499\) 15.1488 + 26.2384i 0.678152 + 1.17459i 0.975537 + 0.219836i \(0.0705521\pi\)
−0.297385 + 0.954758i \(0.596115\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0.181490 0.00809225 0.00404613 0.999992i \(-0.498712\pi\)
0.00404613 + 0.999992i \(0.498712\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −16.0302 27.7651i −0.710525 1.23067i −0.964660 0.263496i \(-0.915124\pi\)
0.254136 0.967169i \(-0.418209\pi\)
\(510\) 0 0
\(511\) −1.99506 19.5407i −0.0882564 0.864429i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 6.29655i 0.276922i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −10.8863 + 18.8557i −0.476939 + 0.826083i −0.999651 0.0264264i \(-0.991587\pi\)
0.522711 + 0.852510i \(0.324921\pi\)
\(522\) 0 0
\(523\) −18.9650 + 10.9494i −0.829280 + 0.478785i −0.853606 0.520919i \(-0.825589\pi\)
0.0243264 + 0.999704i \(0.492256\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.08556 0.626746i 0.0472875 0.0273015i
\(528\) 0 0
\(529\) −4.52025 + 7.82930i −0.196533 + 0.340404i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 4.17192i 0.180706i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −8.46159 + 7.52819i −0.364466 + 0.324262i
\(540\) 0 0
\(541\) −9.53205 16.5100i −0.409815 0.709820i 0.585054 0.810994i \(-0.301073\pi\)
−0.994869 + 0.101174i \(0.967740\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 26.7493 1.14372 0.571859 0.820352i \(-0.306222\pi\)
0.571859 + 0.820352i \(0.306222\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.16546 3.75068i −0.0922517 0.159785i
\(552\) 0 0
\(553\) −0.901902 + 2.00960i −0.0383528 + 0.0854567i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 27.8099 + 16.0561i 1.17834 + 0.680318i 0.955631 0.294566i \(-0.0951751\pi\)
0.222714 + 0.974884i \(0.428508\pi\)
\(558\) 0 0
\(559\) 22.2754i 0.942151i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 14.5972 25.2830i 0.615197 1.06555i −0.375153 0.926963i \(-0.622410\pi\)
0.990350 0.138590i \(-0.0442570\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.84837 + 1.06716i −0.0774876 + 0.0447375i −0.538243 0.842790i \(-0.680912\pi\)
0.460756 + 0.887527i \(0.347578\pi\)
\(570\) 0 0
\(571\) −15.7635 + 27.3032i −0.659682 + 1.14260i 0.321016 + 0.947074i \(0.395976\pi\)
−0.980698 + 0.195529i \(0.937358\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 17.3288 + 10.0048i 0.721406 + 0.416504i 0.815270 0.579081i \(-0.196589\pi\)
−0.0938639 + 0.995585i \(0.529922\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1.05639 + 1.46313i 0.0438264 + 0.0607008i
\(582\) 0 0
\(583\) 10.4065 + 18.0247i 0.430995 + 0.746505i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −5.77666 −0.238428 −0.119214 0.992869i \(-0.538037\pi\)
−0.119214 + 0.992869i \(0.538037\pi\)
\(588\) 0 0
\(589\) −0.179286 −0.00738736
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −6.49041 11.2417i −0.266529 0.461642i 0.701434 0.712734i \(-0.252543\pi\)
−0.967963 + 0.251093i \(0.919210\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 26.0753 + 15.0546i 1.06541 + 0.615113i 0.926923 0.375251i \(-0.122444\pi\)
0.138484 + 0.990365i \(0.455777\pi\)
\(600\) 0 0
\(601\) 31.0797i 1.26777i −0.773428 0.633884i \(-0.781460\pi\)
0.773428 0.633884i \(-0.218540\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 34.8689 20.1315i 1.41528 0.817114i 0.419404 0.907800i \(-0.362239\pi\)
0.995880 + 0.0906858i \(0.0289059\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 20.6139 11.9015i 0.833950 0.481482i
\(612\) 0 0
\(613\) −7.76670 + 13.4523i −0.313694 + 0.543334i −0.979159 0.203095i \(-0.934900\pi\)
0.665465 + 0.746429i \(0.268233\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 24.1475i 0.972144i −0.873919 0.486072i \(-0.838429\pi\)
0.873919 0.486072i \(-0.161571\pi\)
\(618\) 0 0
\(619\) −42.7110 24.6592i −1.71670 0.991138i −0.924770 0.380526i \(-0.875743\pi\)
−0.791930 0.610611i \(-0.790924\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −11.2263 + 25.0143i −0.449774 + 1.00218i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.55956 0.102057
\(630\) 0 0
\(631\) 25.7293 1.02427 0.512134 0.858906i \(-0.328855\pi\)
0.512134 + 0.858906i \(0.328855\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −40.6399 13.4725i −1.61021 0.533800i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 28.1334 + 16.2428i 1.11120 + 0.641554i 0.939141 0.343532i \(-0.111623\pi\)
0.172063 + 0.985086i \(0.444957\pi\)
\(642\) 0 0
\(643\) 29.7863i 1.17466i −0.809349 0.587328i \(-0.800180\pi\)
0.809349 0.587328i \(-0.199820\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 16.3002 28.2328i 0.640828 1.10995i −0.344420 0.938815i \(-0.611925\pi\)
0.985248 0.171131i \(-0.0547421\pi\)
\(648\) 0 0
\(649\) 15.1685 8.75755i 0.595417 0.343764i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.15451 + 0.666558i −0.0451795 + 0.0260844i −0.522420 0.852689i \(-0.674971\pi\)
0.477240 + 0.878773i \(0.341637\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 42.8917i 1.67082i −0.549626 0.835411i \(-0.685230\pi\)
0.549626 0.835411i \(-0.314770\pi\)
\(660\) 0 0
\(661\) 23.7428 + 13.7079i 0.923486 + 0.533175i 0.884746 0.466074i \(-0.154332\pi\)
0.0387407 + 0.999249i \(0.487665\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 10.5043 + 18.1939i 0.406727 + 0.704472i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −6.10227 −0.235576
\(672\) 0 0
\(673\) −18.1821 −0.700870 −0.350435 0.936587i \(-0.613966\pi\)
−0.350435 + 0.936587i \(0.613966\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.49199 + 2.58420i 0.0573419 + 0.0993190i 0.893271 0.449518i \(-0.148404\pi\)
−0.835930 + 0.548837i \(0.815071\pi\)
\(678\) 0 0
\(679\) 36.1034 26.0669i 1.38552 1.00036i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −19.3304 11.1604i −0.739657 0.427041i 0.0822877 0.996609i \(-0.473777\pi\)
−0.821945 + 0.569568i \(0.807111\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −39.3400 + 68.1388i −1.49873 + 2.59588i
\(690\) 0 0
\(691\) 8.89912 5.13791i 0.338539 0.195455i −0.321087 0.947050i \(-0.604048\pi\)
0.659626 + 0.751594i \(0.270715\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 1.83655 3.18100i 0.0695644 0.120489i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 33.7536i 1.27486i −0.770510 0.637428i \(-0.779999\pi\)
0.770510 0.637428i \(-0.220001\pi\)
\(702\) 0 0
\(703\) −0.317046 0.183047i −0.0119576 0.00690373i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 16.6200 1.69687i 0.625060 0.0638173i
\(708\) 0 0
\(709\) −4.03582 6.99025i −0.151568 0.262524i 0.780236 0.625485i \(-0.215099\pi\)
−0.931804 + 0.362961i \(0.881766\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.869686 0.0325700
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 11.6144 + 20.1168i 0.433145 + 0.750229i 0.997142 0.0755475i \(-0.0240704\pi\)
−0.563997 + 0.825777i \(0.690737\pi\)
\(720\) 0 0
\(721\) −18.2901 8.20855i −0.681159 0.305702i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 30.7743i 1.14136i 0.821174 + 0.570678i \(0.193320\pi\)
−0.821174 + 0.570678i \(0.806680\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 9.80605 16.9846i 0.362690 0.628197i
\(732\) 0 0
\(733\) 12.0028 6.92980i 0.443332 0.255958i −0.261678 0.965155i \(-0.584276\pi\)
0.705010 + 0.709197i \(0.250942\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.40341 2.54231i 0.162202 0.0936472i
\(738\) 0 0
\(739\) −0.182348 + 0.315835i −0.00670777 + 0.0116182i −0.869360 0.494180i \(-0.835468\pi\)
0.862652 + 0.505798i \(0.168802\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 18.3910i 0.674701i −0.941379 0.337351i \(-0.890469\pi\)
0.941379 0.337351i \(-0.109531\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −32.9090 14.7695i −1.20247 0.539665i
\(750\) 0 0
\(751\) 22.2501 + 38.5383i 0.811918 + 1.40628i 0.911520 + 0.411256i \(0.134910\pi\)
−0.0996021 + 0.995027i \(0.531757\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −24.4357 −0.888130 −0.444065 0.895994i \(-0.646464\pi\)
−0.444065 + 0.895994i \(0.646464\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −13.2293 22.9138i −0.479561 0.830624i 0.520164 0.854066i \(-0.325871\pi\)
−0.999725 + 0.0234421i \(0.992537\pi\)
\(762\) 0 0
\(763\) 37.0311 3.78080i 1.34062 0.136874i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 57.3418 + 33.1063i 2.07049 + 1.19540i
\(768\) 0 0
\(769\) 10.9377i 0.394424i −0.980361 0.197212i \(-0.936811\pi\)
0.980361 0.197212i \(-0.0631887\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 8.13738 14.0944i 0.292681 0.506939i −0.681762 0.731574i \(-0.738786\pi\)
0.974443 + 0.224636i \(0.0721192\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.454977 + 0.262681i −0.0163012 + 0.00941153i
\(780\) 0 0
\(781\) −11.2542 + 19.4928i −0.402706 + 0.697508i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 11.2119 + 6.47320i 0.399661 + 0.230745i 0.686338 0.727283i \(-0.259217\pi\)
−0.286676 + 0.958027i \(0.592550\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −9.76527 + 7.05060i −0.347213 + 0.250691i
\(792\) 0 0
\(793\) −11.5342 19.9779i −0.409593 0.709436i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −48.9463 −1.73377 −0.866884 0.498510i \(-0.833881\pi\)
−0.866884 + 0.498510i \(0.833881\pi\)
\(798\) 0 0
\(799\) −20.9570 −0.741404
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −6.00594 10.4026i −0.211945 0.367099i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −23.4901 13.5620i −0.825869 0.476816i 0.0265672 0.999647i \(-0.491542\pi\)
−0.852436 + 0.522831i \(0.824876\pi\)
\(810\) 0 0
\(811\) 23.7669i 0.834568i 0.908776 + 0.417284i \(0.137018\pi\)
−0.908776 + 0.417284i \(0.862982\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −2.42930 + 1.40255i −0.0849903 + 0.0490692i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −21.7449 + 12.5544i −0.758903 + 0.438153i −0.828902 0.559394i \(-0.811034\pi\)
0.0699988 + 0.997547i \(0.477700\pi\)
\(822\) 0 0
\(823\) 27.1139 46.9627i 0.945132 1.63702i 0.189644 0.981853i \(-0.439267\pi\)
0.755488 0.655163i \(-0.227400\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 33.6990i 1.17183i −0.810373 0.585914i \(-0.800735\pi\)
0.810373 0.585914i \(-0.199265\pi\)
\(828\) 0 0
\(829\) −35.0353 20.2276i −1.21683 0.702535i −0.252588 0.967574i \(-0.581282\pi\)
−0.964238 + 0.265039i \(0.914615\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 25.0562 + 28.1629i 0.868147 + 0.975787i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 12.6553 0.436909 0.218455 0.975847i \(-0.429898\pi\)
0.218455 + 0.975847i \(0.429898\pi\)
\(840\) 0 0
\(841\) −2.61708 −0.0902441
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 9.08051 20.2330i 0.312010 0.695214i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1.53794 + 0.887927i 0.0527197 + 0.0304378i
\(852\) 0 0
\(853\) 21.0912i 0.722150i −0.932537 0.361075i \(-0.882410\pi\)
0.932537 0.361075i \(-0.117590\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.59581 + 2.76402i −0.0545118 + 0.0944173i −0.891994 0.452048i \(-0.850694\pi\)
0.837482 + 0.546465i \(0.184027\pi\)
\(858\) 0 0
\(859\) 20.7568 11.9839i 0.708212 0.408886i −0.102187 0.994765i \(-0.532584\pi\)
0.810399 + 0.585879i \(0.199251\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −38.8121 + 22.4082i −1.32118 + 0.762784i −0.983917 0.178626i \(-0.942835\pi\)
−0.337263 + 0.941410i \(0.609501\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.34702i 0.0456946i
\(870\) 0 0
\(871\) 16.6463 + 9.61073i 0.564038 + 0.325647i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 6.21606 + 10.7665i 0.209901 + 0.363560i 0.951683 0.307081i \(-0.0993524\pi\)
−0.741782 + 0.670641i \(0.766019\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −30.2360 −1.01868 −0.509338 0.860566i \(-0.670110\pi\)
−0.509338 + 0.860566i \(0.670110\pi\)
\(882\) 0 0
\(883\) 25.6124 0.861925 0.430963 0.902370i \(-0.358174\pi\)
0.430963 + 0.902370i \(0.358174\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −6.30210 10.9156i −0.211604 0.366508i 0.740613 0.671932i \(-0.234535\pi\)
−0.952217 + 0.305424i \(0.901202\pi\)
\(888\) 0 0
\(889\) −5.25868 7.28341i −0.176371 0.244278i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.59588 + 1.49873i 0.0868677 + 0.0501531i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −0.654423 + 1.13349i −0.0218262 + 0.0378041i
\(900\) 0 0
\(901\) 59.9919 34.6363i 1.99862 1.15390i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −21.8001 + 37.7588i −0.723859 + 1.25376i 0.235582 + 0.971854i \(0.424300\pi\)
−0.959442 + 0.281907i \(0.909033\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 23.8501i 0.790188i −0.918641 0.395094i \(-0.870712\pi\)
0.918641 0.395094i \(-0.129288\pi\)
\(912\) 0 0
\(913\) 0.955737 + 0.551795i 0.0316303 + 0.0182618i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −22.6890 + 50.5552i −0.749258 + 1.66948i
\(918\) 0 0
\(919\) 19.5865 + 33.9249i 0.646100 + 1.11908i 0.984046 + 0.177913i \(0.0569344\pi\)
−0.337946 + 0.941165i \(0.609732\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −85.0887 −2.80073
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.21214 + 2.09950i 0.0397692 + 0.0688822i 0.885225 0.465163i \(-0.154004\pi\)
−0.845456 + 0.534046i \(0.820671\pi\)
\(930\) 0 0
\(931\) −1.08958 5.28035i −0.0357096 0.173056i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 38.5715i 1.26007i −0.776565 0.630037i \(-0.783040\pi\)
0.776565 0.630037i \(-0.216960\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 12.6354 21.8852i 0.411904 0.713438i −0.583194 0.812333i \(-0.698197\pi\)
0.995098 + 0.0988946i \(0.0315307\pi\)
\(942\) 0 0
\(943\) 2.20702 1.27422i 0.0718703 0.0414944i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −13.7699 + 7.95004i −0.447461 + 0.258341i −0.706757 0.707456i \(-0.749843\pi\)
0.259297 + 0.965798i \(0.416509\pi\)
\(948\) 0 0
\(949\) 22.7043 39.3250i 0.737014 1.27654i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 21.1062i 0.683696i 0.939755 + 0.341848i \(0.111053\pi\)
−0.939755 + 0.341848i \(0.888947\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −4.99607 48.9342i −0.161332 1.58017i
\(960\) 0 0
\(961\) −15.4729 26.7999i −0.499126 0.864512i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −5.22722 −0.168096 −0.0840480 0.996462i \(-0.526785\pi\)
−0.0840480 + 0.996462i \(0.526785\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 5.03879 + 8.72744i 0.161702 + 0.280077i 0.935479 0.353381i \(-0.114968\pi\)
−0.773777 + 0.633458i \(0.781635\pi\)
\(972\) 0 0
\(973\) −27.9398 + 20.1728i −0.895710 + 0.646709i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 49.3463 + 28.4901i 1.57873 + 0.911479i 0.995037 + 0.0995039i \(0.0317256\pi\)
0.583691 + 0.811976i \(0.301608\pi\)
\(978\) 0 0
\(979\) 16.7670i 0.535874i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 21.2069 36.7314i 0.676394 1.17155i −0.299665 0.954044i \(-0.596875\pi\)
0.976059 0.217505i \(-0.0697917\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 11.7841 6.80355i 0.374712 0.216340i
\(990\) 0 0
\(991\) 15.0586 26.0822i 0.478352 0.828529i −0.521340 0.853349i \(-0.674568\pi\)
0.999692 + 0.0248194i \(0.00790108\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −37.2519 21.5074i −1.17978 0.681146i −0.223816 0.974631i \(-0.571851\pi\)
−0.955963 + 0.293486i \(0.905185\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6300.2.ch.d.4301.8 yes 20
3.2 odd 2 inner 6300.2.ch.d.4301.7 yes 20
5.2 odd 4 6300.2.dd.d.4049.4 40
5.3 odd 4 6300.2.dd.d.4049.18 40
5.4 even 2 6300.2.ch.e.4301.4 yes 20
7.5 odd 6 inner 6300.2.ch.d.1601.7 20
15.2 even 4 6300.2.dd.d.4049.3 40
15.8 even 4 6300.2.dd.d.4049.17 40
15.14 odd 2 6300.2.ch.e.4301.3 yes 20
21.5 even 6 inner 6300.2.ch.d.1601.8 yes 20
35.12 even 12 6300.2.dd.d.1349.17 40
35.19 odd 6 6300.2.ch.e.1601.3 yes 20
35.33 even 12 6300.2.dd.d.1349.3 40
105.47 odd 12 6300.2.dd.d.1349.18 40
105.68 odd 12 6300.2.dd.d.1349.4 40
105.89 even 6 6300.2.ch.e.1601.4 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6300.2.ch.d.1601.7 20 7.5 odd 6 inner
6300.2.ch.d.1601.8 yes 20 21.5 even 6 inner
6300.2.ch.d.4301.7 yes 20 3.2 odd 2 inner
6300.2.ch.d.4301.8 yes 20 1.1 even 1 trivial
6300.2.ch.e.1601.3 yes 20 35.19 odd 6
6300.2.ch.e.1601.4 yes 20 105.89 even 6
6300.2.ch.e.4301.3 yes 20 15.14 odd 2
6300.2.ch.e.4301.4 yes 20 5.4 even 2
6300.2.dd.d.1349.3 40 35.33 even 12
6300.2.dd.d.1349.4 40 105.68 odd 12
6300.2.dd.d.1349.17 40 35.12 even 12
6300.2.dd.d.1349.18 40 105.47 odd 12
6300.2.dd.d.4049.3 40 15.2 even 4
6300.2.dd.d.4049.4 40 5.2 odd 4
6300.2.dd.d.4049.17 40 15.8 even 4
6300.2.dd.d.4049.18 40 5.3 odd 4