Properties

Label 630.4.k.b.361.1
Level $630$
Weight $4$
Character 630.361
Analytic conductor $37.171$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [630,4,Mod(361,630)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(630, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("630.361"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 630.k (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,0,-4,-5,0,17] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(37.1712033036\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 630.361
Dual form 630.4.k.b.541.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.73205i) q^{2} +(-2.00000 + 3.46410i) q^{4} +(-2.50000 - 4.33013i) q^{5} +(8.50000 + 16.4545i) q^{7} +8.00000 q^{8} +(-5.00000 + 8.66025i) q^{10} +(-1.00000 + 1.73205i) q^{11} -8.00000 q^{13} +(20.0000 - 31.1769i) q^{14} +(-8.00000 - 13.8564i) q^{16} +(-26.0000 + 45.0333i) q^{17} +(-13.0000 - 22.5167i) q^{19} +20.0000 q^{20} +4.00000 q^{22} +(33.5000 + 58.0237i) q^{23} +(-12.5000 + 21.6506i) q^{25} +(8.00000 + 13.8564i) q^{26} +(-74.0000 - 3.46410i) q^{28} -69.0000 q^{29} +(166.000 - 287.520i) q^{31} +(-16.0000 + 27.7128i) q^{32} +104.000 q^{34} +(50.0000 - 77.9423i) q^{35} +(-98.0000 - 169.741i) q^{37} +(-26.0000 + 45.0333i) q^{38} +(-20.0000 - 34.6410i) q^{40} -353.000 q^{41} -369.000 q^{43} +(-4.00000 - 6.92820i) q^{44} +(67.0000 - 116.047i) q^{46} +(44.0000 + 76.2102i) q^{47} +(-198.500 + 279.726i) q^{49} +50.0000 q^{50} +(16.0000 - 27.7128i) q^{52} +(291.000 - 504.027i) q^{53} +10.0000 q^{55} +(68.0000 + 131.636i) q^{56} +(69.0000 + 119.512i) q^{58} +(-175.000 + 303.109i) q^{59} +(233.500 + 404.434i) q^{61} -664.000 q^{62} +64.0000 q^{64} +(20.0000 + 34.6410i) q^{65} +(-145.500 + 252.013i) q^{67} +(-104.000 - 180.133i) q^{68} +(-185.000 - 8.66025i) q^{70} -770.000 q^{71} +(-314.000 + 543.864i) q^{73} +(-196.000 + 339.482i) q^{74} +104.000 q^{76} +(-37.0000 - 1.73205i) q^{77} +(-585.000 - 1013.25i) q^{79} +(-40.0000 + 69.2820i) q^{80} +(353.000 + 611.414i) q^{82} -525.000 q^{83} +260.000 q^{85} +(369.000 + 639.127i) q^{86} +(-8.00000 + 13.8564i) q^{88} +(44.5000 + 77.0763i) q^{89} +(-68.0000 - 131.636i) q^{91} -268.000 q^{92} +(88.0000 - 152.420i) q^{94} +(-65.0000 + 112.583i) q^{95} -290.000 q^{97} +(683.000 + 64.0859i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 4 q^{4} - 5 q^{5} + 17 q^{7} + 16 q^{8} - 10 q^{10} - 2 q^{11} - 16 q^{13} + 40 q^{14} - 16 q^{16} - 52 q^{17} - 26 q^{19} + 40 q^{20} + 8 q^{22} + 67 q^{23} - 25 q^{25} + 16 q^{26} - 148 q^{28}+ \cdots + 1366 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.73205i −0.353553 0.612372i
\(3\) 0 0
\(4\) −2.00000 + 3.46410i −0.250000 + 0.433013i
\(5\) −2.50000 4.33013i −0.223607 0.387298i
\(6\) 0 0
\(7\) 8.50000 + 16.4545i 0.458957 + 0.888459i
\(8\) 8.00000 0.353553
\(9\) 0 0
\(10\) −5.00000 + 8.66025i −0.158114 + 0.273861i
\(11\) −1.00000 + 1.73205i −0.0274101 + 0.0474757i −0.879405 0.476074i \(-0.842059\pi\)
0.851995 + 0.523550i \(0.175393\pi\)
\(12\) 0 0
\(13\) −8.00000 −0.170677 −0.0853385 0.996352i \(-0.527197\pi\)
−0.0853385 + 0.996352i \(0.527197\pi\)
\(14\) 20.0000 31.1769i 0.381802 0.595170i
\(15\) 0 0
\(16\) −8.00000 13.8564i −0.125000 0.216506i
\(17\) −26.0000 + 45.0333i −0.370937 + 0.642481i −0.989710 0.143088i \(-0.954297\pi\)
0.618773 + 0.785570i \(0.287630\pi\)
\(18\) 0 0
\(19\) −13.0000 22.5167i −0.156969 0.271878i 0.776805 0.629741i \(-0.216839\pi\)
−0.933774 + 0.357863i \(0.883505\pi\)
\(20\) 20.0000 0.223607
\(21\) 0 0
\(22\) 4.00000 0.0387638
\(23\) 33.5000 + 58.0237i 0.303706 + 0.526034i 0.976972 0.213366i \(-0.0684427\pi\)
−0.673267 + 0.739400i \(0.735109\pi\)
\(24\) 0 0
\(25\) −12.5000 + 21.6506i −0.100000 + 0.173205i
\(26\) 8.00000 + 13.8564i 0.0603434 + 0.104518i
\(27\) 0 0
\(28\) −74.0000 3.46410i −0.499453 0.0233805i
\(29\) −69.0000 −0.441827 −0.220913 0.975293i \(-0.570904\pi\)
−0.220913 + 0.975293i \(0.570904\pi\)
\(30\) 0 0
\(31\) 166.000 287.520i 0.961757 1.66581i 0.243672 0.969858i \(-0.421648\pi\)
0.718085 0.695955i \(-0.245019\pi\)
\(32\) −16.0000 + 27.7128i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 104.000 0.524584
\(35\) 50.0000 77.9423i 0.241473 0.376419i
\(36\) 0 0
\(37\) −98.0000 169.741i −0.435435 0.754196i 0.561896 0.827208i \(-0.310072\pi\)
−0.997331 + 0.0730121i \(0.976739\pi\)
\(38\) −26.0000 + 45.0333i −0.110994 + 0.192247i
\(39\) 0 0
\(40\) −20.0000 34.6410i −0.0790569 0.136931i
\(41\) −353.000 −1.34462 −0.672309 0.740271i \(-0.734697\pi\)
−0.672309 + 0.740271i \(0.734697\pi\)
\(42\) 0 0
\(43\) −369.000 −1.30865 −0.654325 0.756213i \(-0.727047\pi\)
−0.654325 + 0.756213i \(0.727047\pi\)
\(44\) −4.00000 6.92820i −0.0137051 0.0237379i
\(45\) 0 0
\(46\) 67.0000 116.047i 0.214752 0.371962i
\(47\) 44.0000 + 76.2102i 0.136554 + 0.236519i 0.926190 0.377057i \(-0.123064\pi\)
−0.789636 + 0.613576i \(0.789730\pi\)
\(48\) 0 0
\(49\) −198.500 + 279.726i −0.578717 + 0.815528i
\(50\) 50.0000 0.141421
\(51\) 0 0
\(52\) 16.0000 27.7128i 0.0426692 0.0739053i
\(53\) 291.000 504.027i 0.754187 1.30629i −0.191590 0.981475i \(-0.561364\pi\)
0.945777 0.324816i \(-0.105302\pi\)
\(54\) 0 0
\(55\) 10.0000 0.0245164
\(56\) 68.0000 + 131.636i 0.162266 + 0.314118i
\(57\) 0 0
\(58\) 69.0000 + 119.512i 0.156209 + 0.270563i
\(59\) −175.000 + 303.109i −0.386154 + 0.668838i −0.991928 0.126798i \(-0.959530\pi\)
0.605775 + 0.795636i \(0.292863\pi\)
\(60\) 0 0
\(61\) 233.500 + 404.434i 0.490108 + 0.848893i 0.999935 0.0113844i \(-0.00362386\pi\)
−0.509827 + 0.860277i \(0.670291\pi\)
\(62\) −664.000 −1.36013
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 20.0000 + 34.6410i 0.0381645 + 0.0661029i
\(66\) 0 0
\(67\) −145.500 + 252.013i −0.265308 + 0.459527i −0.967644 0.252318i \(-0.918807\pi\)
0.702336 + 0.711846i \(0.252140\pi\)
\(68\) −104.000 180.133i −0.185468 0.321241i
\(69\) 0 0
\(70\) −185.000 8.66025i −0.315882 0.0147871i
\(71\) −770.000 −1.28707 −0.643537 0.765415i \(-0.722534\pi\)
−0.643537 + 0.765415i \(0.722534\pi\)
\(72\) 0 0
\(73\) −314.000 + 543.864i −0.503437 + 0.871979i 0.496555 + 0.868005i \(0.334598\pi\)
−0.999992 + 0.00397357i \(0.998735\pi\)
\(74\) −196.000 + 339.482i −0.307899 + 0.533297i
\(75\) 0 0
\(76\) 104.000 0.156969
\(77\) −37.0000 1.73205i −0.0547603 0.00256345i
\(78\) 0 0
\(79\) −585.000 1013.25i −0.833135 1.44303i −0.895540 0.444981i \(-0.853211\pi\)
0.0624054 0.998051i \(-0.480123\pi\)
\(80\) −40.0000 + 69.2820i −0.0559017 + 0.0968246i
\(81\) 0 0
\(82\) 353.000 + 611.414i 0.475394 + 0.823407i
\(83\) −525.000 −0.694292 −0.347146 0.937811i \(-0.612849\pi\)
−0.347146 + 0.937811i \(0.612849\pi\)
\(84\) 0 0
\(85\) 260.000 0.331776
\(86\) 369.000 + 639.127i 0.462678 + 0.801382i
\(87\) 0 0
\(88\) −8.00000 + 13.8564i −0.00969094 + 0.0167852i
\(89\) 44.5000 + 77.0763i 0.0529999 + 0.0917985i 0.891308 0.453398i \(-0.149788\pi\)
−0.838308 + 0.545197i \(0.816455\pi\)
\(90\) 0 0
\(91\) −68.0000 131.636i −0.0783334 0.151639i
\(92\) −268.000 −0.303706
\(93\) 0 0
\(94\) 88.0000 152.420i 0.0965586 0.167244i
\(95\) −65.0000 + 112.583i −0.0701985 + 0.121587i
\(96\) 0 0
\(97\) −290.000 −0.303557 −0.151779 0.988415i \(-0.548500\pi\)
−0.151779 + 0.988415i \(0.548500\pi\)
\(98\) 683.000 + 64.0859i 0.704014 + 0.0660577i
\(99\) 0 0
\(100\) −50.0000 86.6025i −0.0500000 0.0866025i
\(101\) −616.500 + 1067.81i −0.607367 + 1.05199i 0.384306 + 0.923206i \(0.374441\pi\)
−0.991673 + 0.128784i \(0.958893\pi\)
\(102\) 0 0
\(103\) −776.500 1344.94i −0.742823 1.28661i −0.951205 0.308560i \(-0.900153\pi\)
0.208381 0.978048i \(-0.433181\pi\)
\(104\) −64.0000 −0.0603434
\(105\) 0 0
\(106\) −1164.00 −1.06658
\(107\) 915.500 + 1585.69i 0.827147 + 1.43266i 0.900267 + 0.435337i \(0.143371\pi\)
−0.0731204 + 0.997323i \(0.523296\pi\)
\(108\) 0 0
\(109\) −405.500 + 702.347i −0.356329 + 0.617180i −0.987344 0.158590i \(-0.949305\pi\)
0.631016 + 0.775770i \(0.282638\pi\)
\(110\) −10.0000 17.3205i −0.00866784 0.0150131i
\(111\) 0 0
\(112\) 160.000 249.415i 0.134987 0.210424i
\(113\) −2170.00 −1.80652 −0.903259 0.429097i \(-0.858832\pi\)
−0.903259 + 0.429097i \(0.858832\pi\)
\(114\) 0 0
\(115\) 167.500 290.119i 0.135821 0.235249i
\(116\) 138.000 239.023i 0.110457 0.191317i
\(117\) 0 0
\(118\) 700.000 0.546104
\(119\) −962.000 45.0333i −0.741062 0.0346907i
\(120\) 0 0
\(121\) 663.500 + 1149.22i 0.498497 + 0.863423i
\(122\) 467.000 808.868i 0.346559 0.600258i
\(123\) 0 0
\(124\) 664.000 + 1150.08i 0.480879 + 0.832906i
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 48.0000 0.0335379 0.0167689 0.999859i \(-0.494662\pi\)
0.0167689 + 0.999859i \(0.494662\pi\)
\(128\) −64.0000 110.851i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) 40.0000 69.2820i 0.0269864 0.0467418i
\(131\) −396.000 685.892i −0.264112 0.457456i 0.703219 0.710974i \(-0.251746\pi\)
−0.967331 + 0.253518i \(0.918412\pi\)
\(132\) 0 0
\(133\) 260.000 405.300i 0.169510 0.264240i
\(134\) 582.000 0.375203
\(135\) 0 0
\(136\) −208.000 + 360.267i −0.131146 + 0.227151i
\(137\) 542.000 938.772i 0.338001 0.585436i −0.646055 0.763291i \(-0.723582\pi\)
0.984057 + 0.177855i \(0.0569158\pi\)
\(138\) 0 0
\(139\) −46.0000 −0.0280696 −0.0140348 0.999902i \(-0.504468\pi\)
−0.0140348 + 0.999902i \(0.504468\pi\)
\(140\) 170.000 + 329.090i 0.102626 + 0.198665i
\(141\) 0 0
\(142\) 770.000 + 1333.68i 0.455049 + 0.788168i
\(143\) 8.00000 13.8564i 0.00467828 0.00810301i
\(144\) 0 0
\(145\) 172.500 + 298.779i 0.0987955 + 0.171119i
\(146\) 1256.00 0.711968
\(147\) 0 0
\(148\) 784.000 0.435435
\(149\) −184.500 319.563i −0.101442 0.175702i 0.810837 0.585272i \(-0.199012\pi\)
−0.912279 + 0.409570i \(0.865679\pi\)
\(150\) 0 0
\(151\) −1240.00 + 2147.74i −0.668277 + 1.15749i 0.310109 + 0.950701i \(0.399634\pi\)
−0.978386 + 0.206788i \(0.933699\pi\)
\(152\) −104.000 180.133i −0.0554968 0.0961233i
\(153\) 0 0
\(154\) 34.0000 + 65.8179i 0.0177909 + 0.0344400i
\(155\) −1660.00 −0.860222
\(156\) 0 0
\(157\) −613.000 + 1061.75i −0.311610 + 0.539724i −0.978711 0.205243i \(-0.934201\pi\)
0.667101 + 0.744967i \(0.267535\pi\)
\(158\) −1170.00 + 2026.50i −0.589115 + 1.02038i
\(159\) 0 0
\(160\) 160.000 0.0790569
\(161\) −670.000 + 1044.43i −0.327971 + 0.511257i
\(162\) 0 0
\(163\) 330.000 + 571.577i 0.158574 + 0.274659i 0.934355 0.356344i \(-0.115977\pi\)
−0.775781 + 0.631003i \(0.782644\pi\)
\(164\) 706.000 1222.83i 0.336154 0.582237i
\(165\) 0 0
\(166\) 525.000 + 909.327i 0.245469 + 0.425165i
\(167\) 949.000 0.439735 0.219868 0.975530i \(-0.429437\pi\)
0.219868 + 0.975530i \(0.429437\pi\)
\(168\) 0 0
\(169\) −2133.00 −0.970869
\(170\) −260.000 450.333i −0.117301 0.203170i
\(171\) 0 0
\(172\) 738.000 1278.25i 0.327163 0.566662i
\(173\) 1696.00 + 2937.56i 0.745344 + 1.29097i 0.950034 + 0.312147i \(0.101048\pi\)
−0.204690 + 0.978827i \(0.565619\pi\)
\(174\) 0 0
\(175\) −462.500 21.6506i −0.199781 0.00935220i
\(176\) 32.0000 0.0137051
\(177\) 0 0
\(178\) 89.0000 154.153i 0.0374766 0.0649113i
\(179\) 134.000 232.095i 0.0559532 0.0969139i −0.836692 0.547674i \(-0.815514\pi\)
0.892645 + 0.450760i \(0.148847\pi\)
\(180\) 0 0
\(181\) −4093.00 −1.68083 −0.840415 0.541943i \(-0.817689\pi\)
−0.840415 + 0.541943i \(0.817689\pi\)
\(182\) −160.000 + 249.415i −0.0651648 + 0.101582i
\(183\) 0 0
\(184\) 268.000 + 464.190i 0.107376 + 0.185981i
\(185\) −490.000 + 848.705i −0.194733 + 0.337287i
\(186\) 0 0
\(187\) −52.0000 90.0666i −0.0203348 0.0352210i
\(188\) −352.000 −0.136554
\(189\) 0 0
\(190\) 260.000 0.0992757
\(191\) −989.000 1713.00i −0.374668 0.648943i 0.615610 0.788051i \(-0.288910\pi\)
−0.990277 + 0.139108i \(0.955577\pi\)
\(192\) 0 0
\(193\) 1999.00 3462.37i 0.745550 1.29133i −0.204387 0.978890i \(-0.565520\pi\)
0.949937 0.312441i \(-0.101146\pi\)
\(194\) 290.000 + 502.295i 0.107324 + 0.185890i
\(195\) 0 0
\(196\) −572.000 1247.08i −0.208455 0.454474i
\(197\) 3030.00 1.09583 0.547915 0.836534i \(-0.315422\pi\)
0.547915 + 0.836534i \(0.315422\pi\)
\(198\) 0 0
\(199\) −178.000 + 308.305i −0.0634075 + 0.109825i −0.895986 0.444081i \(-0.853530\pi\)
0.832579 + 0.553906i \(0.186863\pi\)
\(200\) −100.000 + 173.205i −0.0353553 + 0.0612372i
\(201\) 0 0
\(202\) 2466.00 0.858946
\(203\) −586.500 1135.36i −0.202779 0.392545i
\(204\) 0 0
\(205\) 882.500 + 1528.53i 0.300666 + 0.520768i
\(206\) −1553.00 + 2689.87i −0.525256 + 0.909769i
\(207\) 0 0
\(208\) 64.0000 + 110.851i 0.0213346 + 0.0369527i
\(209\) 52.0000 0.0172101
\(210\) 0 0
\(211\) −2602.00 −0.848953 −0.424476 0.905439i \(-0.639542\pi\)
−0.424476 + 0.905439i \(0.639542\pi\)
\(212\) 1164.00 + 2016.11i 0.377094 + 0.653145i
\(213\) 0 0
\(214\) 1831.00 3171.39i 0.584881 1.01304i
\(215\) 922.500 + 1597.82i 0.292623 + 0.506838i
\(216\) 0 0
\(217\) 6142.00 + 287.520i 1.92141 + 0.0899454i
\(218\) 1622.00 0.503925
\(219\) 0 0
\(220\) −20.0000 + 34.6410i −0.00612909 + 0.0106159i
\(221\) 208.000 360.267i 0.0633104 0.109657i
\(222\) 0 0
\(223\) −3156.00 −0.947719 −0.473860 0.880600i \(-0.657140\pi\)
−0.473860 + 0.880600i \(0.657140\pi\)
\(224\) −592.000 27.7128i −0.176583 0.00826625i
\(225\) 0 0
\(226\) 2170.00 + 3758.55i 0.638700 + 1.10626i
\(227\) 2118.00 3668.48i 0.619280 1.07262i −0.370337 0.928897i \(-0.620758\pi\)
0.989617 0.143727i \(-0.0459088\pi\)
\(228\) 0 0
\(229\) −3167.00 5485.40i −0.913892 1.58291i −0.808516 0.588475i \(-0.799729\pi\)
−0.105376 0.994432i \(-0.533605\pi\)
\(230\) −670.000 −0.192080
\(231\) 0 0
\(232\) −552.000 −0.156209
\(233\) −2344.00 4059.93i −0.659058 1.14152i −0.980860 0.194715i \(-0.937622\pi\)
0.321802 0.946807i \(-0.395712\pi\)
\(234\) 0 0
\(235\) 220.000 381.051i 0.0610690 0.105775i
\(236\) −700.000 1212.44i −0.193077 0.334419i
\(237\) 0 0
\(238\) 884.000 + 1711.27i 0.240761 + 0.466071i
\(239\) −1856.00 −0.502321 −0.251160 0.967945i \(-0.580812\pi\)
−0.251160 + 0.967945i \(0.580812\pi\)
\(240\) 0 0
\(241\) 2403.00 4162.12i 0.642286 1.11247i −0.342636 0.939468i \(-0.611320\pi\)
0.984921 0.173003i \(-0.0553470\pi\)
\(242\) 1327.00 2298.43i 0.352491 0.610532i
\(243\) 0 0
\(244\) −1868.00 −0.490108
\(245\) 1707.50 + 160.215i 0.445258 + 0.0417785i
\(246\) 0 0
\(247\) 104.000 + 180.133i 0.0267909 + 0.0464033i
\(248\) 1328.00 2300.16i 0.340033 0.588954i
\(249\) 0 0
\(250\) −125.000 216.506i −0.0316228 0.0547723i
\(251\) 3200.00 0.804710 0.402355 0.915484i \(-0.368192\pi\)
0.402355 + 0.915484i \(0.368192\pi\)
\(252\) 0 0
\(253\) −134.000 −0.0332984
\(254\) −48.0000 83.1384i −0.0118574 0.0205377i
\(255\) 0 0
\(256\) −128.000 + 221.703i −0.0312500 + 0.0541266i
\(257\) −560.000 969.948i −0.135922 0.235423i 0.790028 0.613071i \(-0.210066\pi\)
−0.925949 + 0.377648i \(0.876733\pi\)
\(258\) 0 0
\(259\) 1960.00 3055.34i 0.470226 0.733009i
\(260\) −160.000 −0.0381645
\(261\) 0 0
\(262\) −792.000 + 1371.78i −0.186755 + 0.323470i
\(263\) 3202.50 5546.89i 0.750854 1.30052i −0.196555 0.980493i \(-0.562975\pi\)
0.947409 0.320025i \(-0.103691\pi\)
\(264\) 0 0
\(265\) −2910.00 −0.674566
\(266\) −962.000 45.0333i −0.221744 0.0103803i
\(267\) 0 0
\(268\) −582.000 1008.05i −0.132654 0.229764i
\(269\) 2467.50 4273.84i 0.559279 0.968700i −0.438277 0.898840i \(-0.644411\pi\)
0.997557 0.0698604i \(-0.0222554\pi\)
\(270\) 0 0
\(271\) 723.000 + 1252.27i 0.162063 + 0.280702i 0.935608 0.353039i \(-0.114852\pi\)
−0.773545 + 0.633741i \(0.781518\pi\)
\(272\) 832.000 0.185468
\(273\) 0 0
\(274\) −2168.00 −0.478006
\(275\) −25.0000 43.3013i −0.00548202 0.00949514i
\(276\) 0 0
\(277\) 4010.00 6945.52i 0.869811 1.50656i 0.00762078 0.999971i \(-0.497574\pi\)
0.862190 0.506585i \(-0.169092\pi\)
\(278\) 46.0000 + 79.6743i 0.00992409 + 0.0171890i
\(279\) 0 0
\(280\) 400.000 623.538i 0.0853735 0.133084i
\(281\) −4978.00 −1.05681 −0.528403 0.848994i \(-0.677209\pi\)
−0.528403 + 0.848994i \(0.677209\pi\)
\(282\) 0 0
\(283\) −2926.00 + 5067.98i −0.614603 + 1.06452i 0.375851 + 0.926680i \(0.377350\pi\)
−0.990454 + 0.137844i \(0.955983\pi\)
\(284\) 1540.00 2667.36i 0.321768 0.557319i
\(285\) 0 0
\(286\) −32.0000 −0.00661608
\(287\) −3000.50 5808.43i −0.617122 1.19464i
\(288\) 0 0
\(289\) 1104.50 + 1913.05i 0.224812 + 0.389385i
\(290\) 345.000 597.558i 0.0698590 0.120999i
\(291\) 0 0
\(292\) −1256.00 2175.46i −0.251719 0.435989i
\(293\) 3012.00 0.600556 0.300278 0.953852i \(-0.402921\pi\)
0.300278 + 0.953852i \(0.402921\pi\)
\(294\) 0 0
\(295\) 1750.00 0.345386
\(296\) −784.000 1357.93i −0.153950 0.266648i
\(297\) 0 0
\(298\) −369.000 + 639.127i −0.0717302 + 0.124240i
\(299\) −268.000 464.190i −0.0518356 0.0897819i
\(300\) 0 0
\(301\) −3136.50 6071.70i −0.600614 1.16268i
\(302\) 4960.00 0.945086
\(303\) 0 0
\(304\) −208.000 + 360.267i −0.0392422 + 0.0679694i
\(305\) 1167.50 2022.17i 0.219183 0.379636i
\(306\) 0 0
\(307\) 9443.00 1.75551 0.877753 0.479113i \(-0.159042\pi\)
0.877753 + 0.479113i \(0.159042\pi\)
\(308\) 80.0000 124.708i 0.0148001 0.0230710i
\(309\) 0 0
\(310\) 1660.00 + 2875.20i 0.304134 + 0.526776i
\(311\) −4997.00 + 8655.06i −0.911106 + 1.57808i −0.0986008 + 0.995127i \(0.531437\pi\)
−0.812505 + 0.582954i \(0.801897\pi\)
\(312\) 0 0
\(313\) −728.000 1260.93i −0.131466 0.227707i 0.792776 0.609514i \(-0.208635\pi\)
−0.924242 + 0.381807i \(0.875302\pi\)
\(314\) 2452.00 0.440683
\(315\) 0 0
\(316\) 4680.00 0.833135
\(317\) 3436.00 + 5951.33i 0.608785 + 1.05445i 0.991441 + 0.130556i \(0.0416763\pi\)
−0.382655 + 0.923891i \(0.624990\pi\)
\(318\) 0 0
\(319\) 69.0000 119.512i 0.0121105 0.0209760i
\(320\) −160.000 277.128i −0.0279508 0.0484123i
\(321\) 0 0
\(322\) 2479.00 + 116.047i 0.429035 + 0.0200841i
\(323\) 1352.00 0.232902
\(324\) 0 0
\(325\) 100.000 173.205i 0.0170677 0.0295621i
\(326\) 660.000 1143.15i 0.112129 0.194213i
\(327\) 0 0
\(328\) −2824.00 −0.475394
\(329\) −880.000 + 1371.78i −0.147465 + 0.229875i
\(330\) 0 0
\(331\) 196.000 + 339.482i 0.0325472 + 0.0563735i 0.881840 0.471548i \(-0.156305\pi\)
−0.849293 + 0.527922i \(0.822971\pi\)
\(332\) 1050.00 1818.65i 0.173573 0.300637i
\(333\) 0 0
\(334\) −949.000 1643.72i −0.155470 0.269282i
\(335\) 1455.00 0.237299
\(336\) 0 0
\(337\) 3926.00 0.634608 0.317304 0.948324i \(-0.397222\pi\)
0.317304 + 0.948324i \(0.397222\pi\)
\(338\) 2133.00 + 3694.46i 0.343254 + 0.594534i
\(339\) 0 0
\(340\) −520.000 + 900.666i −0.0829440 + 0.143663i
\(341\) 332.000 + 575.041i 0.0527238 + 0.0913203i
\(342\) 0 0
\(343\) −6290.00 888.542i −0.990169 0.139874i
\(344\) −2952.00 −0.462678
\(345\) 0 0
\(346\) 3392.00 5875.12i 0.527038 0.912856i
\(347\) −892.500 + 1545.86i −0.138075 + 0.239152i −0.926768 0.375635i \(-0.877425\pi\)
0.788693 + 0.614787i \(0.210758\pi\)
\(348\) 0 0
\(349\) −1591.00 −0.244024 −0.122012 0.992529i \(-0.538935\pi\)
−0.122012 + 0.992529i \(0.538935\pi\)
\(350\) 425.000 + 822.724i 0.0649063 + 0.125647i
\(351\) 0 0
\(352\) −32.0000 55.4256i −0.00484547 0.00839260i
\(353\) 843.000 1460.12i 0.127106 0.220154i −0.795448 0.606021i \(-0.792765\pi\)
0.922554 + 0.385868i \(0.126098\pi\)
\(354\) 0 0
\(355\) 1925.00 + 3334.20i 0.287798 + 0.498481i
\(356\) −356.000 −0.0529999
\(357\) 0 0
\(358\) −536.000 −0.0791298
\(359\) 3686.00 + 6384.34i 0.541893 + 0.938586i 0.998795 + 0.0490695i \(0.0156256\pi\)
−0.456902 + 0.889517i \(0.651041\pi\)
\(360\) 0 0
\(361\) 3091.50 5354.64i 0.450722 0.780673i
\(362\) 4093.00 + 7089.28i 0.594263 + 1.02929i
\(363\) 0 0
\(364\) 592.000 + 27.7128i 0.0852451 + 0.00399051i
\(365\) 3140.00 0.450288
\(366\) 0 0
\(367\) −3318.50 + 5747.81i −0.472001 + 0.817529i −0.999487 0.0320344i \(-0.989801\pi\)
0.527486 + 0.849564i \(0.323135\pi\)
\(368\) 536.000 928.379i 0.0759264 0.131508i
\(369\) 0 0
\(370\) 1960.00 0.275393
\(371\) 10767.0 + 504.027i 1.50672 + 0.0705331i
\(372\) 0 0
\(373\) −1738.00 3010.30i −0.241261 0.417876i 0.719813 0.694168i \(-0.244228\pi\)
−0.961074 + 0.276292i \(0.910894\pi\)
\(374\) −104.000 + 180.133i −0.0143789 + 0.0249050i
\(375\) 0 0
\(376\) 352.000 + 609.682i 0.0482793 + 0.0836222i
\(377\) 552.000 0.0754097
\(378\) 0 0
\(379\) −2378.00 −0.322295 −0.161147 0.986930i \(-0.551519\pi\)
−0.161147 + 0.986930i \(0.551519\pi\)
\(380\) −260.000 450.333i −0.0350993 0.0607937i
\(381\) 0 0
\(382\) −1978.00 + 3426.00i −0.264930 + 0.458872i
\(383\) −1228.50 2127.82i −0.163899 0.283882i 0.772365 0.635179i \(-0.219074\pi\)
−0.936264 + 0.351298i \(0.885741\pi\)
\(384\) 0 0
\(385\) 85.0000 + 164.545i 0.0112520 + 0.0217818i
\(386\) −7996.00 −1.05437
\(387\) 0 0
\(388\) 580.000 1004.59i 0.0758893 0.131444i
\(389\) 4281.00 7414.91i 0.557983 0.966455i −0.439682 0.898154i \(-0.644909\pi\)
0.997665 0.0683010i \(-0.0217578\pi\)
\(390\) 0 0
\(391\) −3484.00 −0.450623
\(392\) −1588.00 + 2237.81i −0.204607 + 0.288333i
\(393\) 0 0
\(394\) −3030.00 5248.11i −0.387435 0.671056i
\(395\) −2925.00 + 5066.25i −0.372589 + 0.645343i
\(396\) 0 0
\(397\) 4921.00 + 8523.42i 0.622111 + 1.07753i 0.989092 + 0.147299i \(0.0470579\pi\)
−0.366981 + 0.930228i \(0.619609\pi\)
\(398\) 712.000 0.0896717
\(399\) 0 0
\(400\) 400.000 0.0500000
\(401\) −4048.50 7012.21i −0.504171 0.873249i −0.999988 0.00482260i \(-0.998465\pi\)
0.495818 0.868427i \(-0.334868\pi\)
\(402\) 0 0
\(403\) −1328.00 + 2300.16i −0.164150 + 0.284316i
\(404\) −2466.00 4271.24i −0.303683 0.525995i
\(405\) 0 0
\(406\) −1380.00 + 2151.21i −0.168690 + 0.262962i
\(407\) 392.000 0.0477413
\(408\) 0 0
\(409\) −7629.50 + 13214.7i −0.922383 + 1.59761i −0.126665 + 0.991946i \(0.540427\pi\)
−0.795717 + 0.605668i \(0.792906\pi\)
\(410\) 1765.00 3057.07i 0.212603 0.368239i
\(411\) 0 0
\(412\) 6212.00 0.742823
\(413\) −6475.00 303.109i −0.771462 0.0361138i
\(414\) 0 0
\(415\) 1312.50 + 2273.32i 0.155248 + 0.268898i
\(416\) 128.000 221.703i 0.0150859 0.0261295i
\(417\) 0 0
\(418\) −52.0000 90.0666i −0.00608470 0.0105390i
\(419\) −16224.0 −1.89163 −0.945817 0.324701i \(-0.894736\pi\)
−0.945817 + 0.324701i \(0.894736\pi\)
\(420\) 0 0
\(421\) 2977.00 0.344632 0.172316 0.985042i \(-0.444875\pi\)
0.172316 + 0.985042i \(0.444875\pi\)
\(422\) 2602.00 + 4506.80i 0.300150 + 0.519875i
\(423\) 0 0
\(424\) 2328.00 4032.21i 0.266645 0.461843i
\(425\) −650.000 1125.83i −0.0741874 0.128496i
\(426\) 0 0
\(427\) −4670.00 + 7279.81i −0.529267 + 0.825046i
\(428\) −7324.00 −0.827147
\(429\) 0 0
\(430\) 1845.00 3195.63i 0.206916 0.358389i
\(431\) 7101.00 12299.3i 0.793604 1.37456i −0.130119 0.991498i \(-0.541536\pi\)
0.923722 0.383063i \(-0.125131\pi\)
\(432\) 0 0
\(433\) 14310.0 1.58821 0.794105 0.607781i \(-0.207940\pi\)
0.794105 + 0.607781i \(0.207940\pi\)
\(434\) −5644.00 10925.8i −0.624241 1.20842i
\(435\) 0 0
\(436\) −1622.00 2809.39i −0.178164 0.308590i
\(437\) 871.000 1508.62i 0.0953446 0.165142i
\(438\) 0 0
\(439\) 1178.00 + 2040.36i 0.128070 + 0.221824i 0.922929 0.384970i \(-0.125788\pi\)
−0.794859 + 0.606795i \(0.792455\pi\)
\(440\) 80.0000 0.00866784
\(441\) 0 0
\(442\) −832.000 −0.0895344
\(443\) 4145.50 + 7180.22i 0.444602 + 0.770073i 0.998024 0.0628276i \(-0.0200118\pi\)
−0.553422 + 0.832901i \(0.686678\pi\)
\(444\) 0 0
\(445\) 222.500 385.381i 0.0237023 0.0410535i
\(446\) 3156.00 + 5466.35i 0.335069 + 0.580357i
\(447\) 0 0
\(448\) 544.000 + 1053.09i 0.0573696 + 0.111057i
\(449\) 3521.00 0.370081 0.185040 0.982731i \(-0.440758\pi\)
0.185040 + 0.982731i \(0.440758\pi\)
\(450\) 0 0
\(451\) 353.000 611.414i 0.0368561 0.0638367i
\(452\) 4340.00 7517.10i 0.451629 0.782245i
\(453\) 0 0
\(454\) −8472.00 −0.875794
\(455\) −400.000 + 623.538i −0.0412138 + 0.0642460i
\(456\) 0 0
\(457\) 2716.00 + 4704.25i 0.278007 + 0.481522i 0.970889 0.239529i \(-0.0769929\pi\)
−0.692882 + 0.721051i \(0.743660\pi\)
\(458\) −6334.00 + 10970.8i −0.646219 + 1.11928i
\(459\) 0 0
\(460\) 670.000 + 1160.47i 0.0679107 + 0.117625i
\(461\) 5350.00 0.540508 0.270254 0.962789i \(-0.412892\pi\)
0.270254 + 0.962789i \(0.412892\pi\)
\(462\) 0 0
\(463\) −10123.0 −1.01610 −0.508052 0.861327i \(-0.669634\pi\)
−0.508052 + 0.861327i \(0.669634\pi\)
\(464\) 552.000 + 956.092i 0.0552284 + 0.0956583i
\(465\) 0 0
\(466\) −4688.00 + 8119.85i −0.466024 + 0.807178i
\(467\) 3231.50 + 5597.12i 0.320206 + 0.554612i 0.980530 0.196368i \(-0.0629147\pi\)
−0.660325 + 0.750980i \(0.729581\pi\)
\(468\) 0 0
\(469\) −5383.50 252.013i −0.530036 0.0248121i
\(470\) −880.000 −0.0863646
\(471\) 0 0
\(472\) −1400.00 + 2424.87i −0.136526 + 0.236470i
\(473\) 369.000 639.127i 0.0358703 0.0621291i
\(474\) 0 0
\(475\) 650.000 0.0627875
\(476\) 2080.00 3242.40i 0.200287 0.312217i
\(477\) 0 0
\(478\) 1856.00 + 3214.69i 0.177597 + 0.307607i
\(479\) −8820.00 + 15276.7i −0.841328 + 1.45722i 0.0474444 + 0.998874i \(0.484892\pi\)
−0.888772 + 0.458349i \(0.848441\pi\)
\(480\) 0 0
\(481\) 784.000 + 1357.93i 0.0743188 + 0.128724i
\(482\) −9612.00 −0.908329
\(483\) 0 0
\(484\) −5308.00 −0.498497
\(485\) 725.000 + 1255.74i 0.0678774 + 0.117567i
\(486\) 0 0
\(487\) 5016.00 8687.97i 0.466728 0.808397i −0.532549 0.846399i \(-0.678766\pi\)
0.999278 + 0.0380019i \(0.0120993\pi\)
\(488\) 1868.00 + 3235.47i 0.173279 + 0.300129i
\(489\) 0 0
\(490\) −1430.00 3117.69i −0.131838 0.287435i
\(491\) −5916.00 −0.543758 −0.271879 0.962331i \(-0.587645\pi\)
−0.271879 + 0.962331i \(0.587645\pi\)
\(492\) 0 0
\(493\) 1794.00 3107.30i 0.163890 0.283866i
\(494\) 208.000 360.267i 0.0189441 0.0328121i
\(495\) 0 0
\(496\) −5312.00 −0.480879
\(497\) −6545.00 12670.0i −0.590711 1.14351i
\(498\) 0 0
\(499\) −6947.00 12032.6i −0.623227 1.07946i −0.988881 0.148710i \(-0.952488\pi\)
0.365653 0.930751i \(-0.380846\pi\)
\(500\) −250.000 + 433.013i −0.0223607 + 0.0387298i
\(501\) 0 0
\(502\) −3200.00 5542.56i −0.284508 0.492782i
\(503\) −18427.0 −1.63344 −0.816719 0.577036i \(-0.804209\pi\)
−0.816719 + 0.577036i \(0.804209\pi\)
\(504\) 0 0
\(505\) 6165.00 0.543245
\(506\) 134.000 + 232.095i 0.0117728 + 0.0203911i
\(507\) 0 0
\(508\) −96.0000 + 166.277i −0.00838447 + 0.0145223i
\(509\) 9278.50 + 16070.8i 0.807981 + 1.39946i 0.914260 + 0.405128i \(0.132773\pi\)
−0.106279 + 0.994336i \(0.533894\pi\)
\(510\) 0 0
\(511\) −11618.0 543.864i −1.00577 0.0470824i
\(512\) 512.000 0.0441942
\(513\) 0 0
\(514\) −1120.00 + 1939.90i −0.0961111 + 0.166469i
\(515\) −3882.50 + 6724.69i −0.332201 + 0.575389i
\(516\) 0 0
\(517\) −176.000 −0.0149719
\(518\) −7252.00 339.482i −0.615125 0.0287953i
\(519\) 0 0
\(520\) 160.000 + 277.128i 0.0134932 + 0.0233709i
\(521\) −4965.00 + 8599.63i −0.417506 + 0.723142i −0.995688 0.0927663i \(-0.970429\pi\)
0.578182 + 0.815908i \(0.303762\pi\)
\(522\) 0 0
\(523\) 3962.00 + 6862.39i 0.331255 + 0.573750i 0.982758 0.184896i \(-0.0591948\pi\)
−0.651504 + 0.758646i \(0.725861\pi\)
\(524\) 3168.00 0.264112
\(525\) 0 0
\(526\) −12810.0 −1.06187
\(527\) 8632.00 + 14951.1i 0.713503 + 1.23582i
\(528\) 0 0
\(529\) 3839.00 6649.34i 0.315526 0.546506i
\(530\) 2910.00 + 5040.27i 0.238495 + 0.413085i
\(531\) 0 0
\(532\) 884.000 + 1711.27i 0.0720418 + 0.139460i
\(533\) 2824.00 0.229495
\(534\) 0 0
\(535\) 4577.50 7928.46i 0.369911 0.640705i
\(536\) −1164.00 + 2016.11i −0.0938006 + 0.162467i
\(537\) 0 0
\(538\) −9870.00 −0.790940
\(539\) −286.000 623.538i −0.0228551 0.0498287i
\(540\) 0 0
\(541\) 11748.5 + 20349.0i 0.933655 + 1.61714i 0.777015 + 0.629483i \(0.216733\pi\)
0.156641 + 0.987656i \(0.449934\pi\)
\(542\) 1446.00 2504.55i 0.114596 0.198486i
\(543\) 0 0
\(544\) −832.000 1441.07i −0.0655730 0.113576i
\(545\) 4055.00 0.318710
\(546\) 0 0
\(547\) 11131.0 0.870068 0.435034 0.900414i \(-0.356736\pi\)
0.435034 + 0.900414i \(0.356736\pi\)
\(548\) 2168.00 + 3755.09i 0.169001 + 0.292718i
\(549\) 0 0
\(550\) −50.0000 + 86.6025i −0.00387638 + 0.00671408i
\(551\) 897.000 + 1553.65i 0.0693530 + 0.120123i
\(552\) 0 0
\(553\) 11700.0 18238.5i 0.899701 1.40249i
\(554\) −16040.0 −1.23010
\(555\) 0 0
\(556\) 92.0000 159.349i 0.00701739 0.0121545i
\(557\) −5989.00 + 10373.3i −0.455587 + 0.789100i −0.998722 0.0505455i \(-0.983904\pi\)
0.543135 + 0.839646i \(0.317237\pi\)
\(558\) 0 0
\(559\) 2952.00 0.223357
\(560\) −1480.00 69.2820i −0.111681 0.00522804i
\(561\) 0 0
\(562\) 4978.00 + 8622.15i 0.373637 + 0.647159i
\(563\) −5029.50 + 8711.35i −0.376498 + 0.652113i −0.990550 0.137152i \(-0.956205\pi\)
0.614052 + 0.789265i \(0.289538\pi\)
\(564\) 0 0
\(565\) 5425.00 + 9396.38i 0.403949 + 0.699661i
\(566\) 11704.0 0.869180
\(567\) 0 0
\(568\) −6160.00 −0.455049
\(569\) −7833.00 13567.2i −0.577111 0.999586i −0.995809 0.0914605i \(-0.970846\pi\)
0.418697 0.908126i \(-0.362487\pi\)
\(570\) 0 0
\(571\) −1265.00 + 2191.04i −0.0927121 + 0.160582i −0.908651 0.417555i \(-0.862887\pi\)
0.815939 + 0.578138i \(0.196220\pi\)
\(572\) 32.0000 + 55.4256i 0.00233914 + 0.00405151i
\(573\) 0 0
\(574\) −7060.00 + 11005.5i −0.513378 + 0.800276i
\(575\) −1675.00 −0.121482
\(576\) 0 0
\(577\) −6409.00 + 11100.7i −0.462409 + 0.800916i −0.999080 0.0428751i \(-0.986348\pi\)
0.536671 + 0.843791i \(0.319682\pi\)
\(578\) 2209.00 3826.10i 0.158966 0.275337i
\(579\) 0 0
\(580\) −1380.00 −0.0987955
\(581\) −4462.50 8638.60i −0.318650 0.616850i
\(582\) 0 0
\(583\) 582.000 + 1008.05i 0.0413447 + 0.0716112i
\(584\) −2512.00 + 4350.91i −0.177992 + 0.308291i
\(585\) 0 0
\(586\) −3012.00 5216.94i −0.212329 0.367764i
\(587\) 15228.0 1.07074 0.535372 0.844616i \(-0.320171\pi\)
0.535372 + 0.844616i \(0.320171\pi\)
\(588\) 0 0
\(589\) −8632.00 −0.603863
\(590\) −1750.00 3031.09i −0.122112 0.211505i
\(591\) 0 0
\(592\) −1568.00 + 2715.86i −0.108859 + 0.188549i
\(593\) −1299.00 2249.93i −0.0899554 0.155807i 0.817537 0.575877i \(-0.195339\pi\)
−0.907492 + 0.420069i \(0.862006\pi\)
\(594\) 0 0
\(595\) 2210.00 + 4278.17i 0.152271 + 0.294769i
\(596\) 1476.00 0.101442
\(597\) 0 0
\(598\) −536.000 + 928.379i −0.0366533 + 0.0634854i
\(599\) −1274.00 + 2206.63i −0.0869019 + 0.150518i −0.906200 0.422849i \(-0.861030\pi\)
0.819298 + 0.573368i \(0.194363\pi\)
\(600\) 0 0
\(601\) 1706.00 0.115789 0.0578945 0.998323i \(-0.481561\pi\)
0.0578945 + 0.998323i \(0.481561\pi\)
\(602\) −7380.00 + 11504.3i −0.499645 + 0.778870i
\(603\) 0 0
\(604\) −4960.00 8590.97i −0.334138 0.578745i
\(605\) 3317.50 5746.08i 0.222935 0.386134i
\(606\) 0 0
\(607\) 6283.50 + 10883.3i 0.420164 + 0.727745i 0.995955 0.0898517i \(-0.0286393\pi\)
−0.575791 + 0.817597i \(0.695306\pi\)
\(608\) 832.000 0.0554968
\(609\) 0 0
\(610\) −4670.00 −0.309972
\(611\) −352.000 609.682i −0.0233067 0.0403684i
\(612\) 0 0
\(613\) 4814.00 8338.09i 0.317187 0.549384i −0.662713 0.748874i \(-0.730595\pi\)
0.979900 + 0.199490i \(0.0639284\pi\)
\(614\) −9443.00 16355.8i −0.620665 1.07502i
\(615\) 0 0
\(616\) −296.000 13.8564i −0.0193607 0.000906316i
\(617\) 4316.00 0.281614 0.140807 0.990037i \(-0.455030\pi\)
0.140807 + 0.990037i \(0.455030\pi\)
\(618\) 0 0
\(619\) −8201.00 + 14204.5i −0.532514 + 0.922341i 0.466766 + 0.884381i \(0.345419\pi\)
−0.999279 + 0.0379598i \(0.987914\pi\)
\(620\) 3320.00 5750.41i 0.215055 0.372487i
\(621\) 0 0
\(622\) 19988.0 1.28850
\(623\) −890.000 + 1387.37i −0.0572345 + 0.0892198i
\(624\) 0 0
\(625\) −312.500 541.266i −0.0200000 0.0346410i
\(626\) −1456.00 + 2521.87i −0.0929608 + 0.161013i
\(627\) 0 0
\(628\) −2452.00 4246.99i −0.155805 0.269862i
\(629\) 10192.0 0.646076
\(630\) 0 0
\(631\) 8490.00 0.535628 0.267814 0.963471i \(-0.413699\pi\)
0.267814 + 0.963471i \(0.413699\pi\)
\(632\) −4680.00 8106.00i −0.294558 0.510189i
\(633\) 0 0
\(634\) 6872.00 11902.7i 0.430476 0.745607i
\(635\) −120.000 207.846i −0.00749930 0.0129892i
\(636\) 0 0
\(637\) 1588.00 2237.81i 0.0987737 0.139192i
\(638\) −276.000 −0.0171269
\(639\) 0 0
\(640\) −320.000 + 554.256i −0.0197642 + 0.0342327i
\(641\) −61.5000 + 106.521i −0.00378955 + 0.00656370i −0.867914 0.496715i \(-0.834540\pi\)
0.864124 + 0.503278i \(0.167873\pi\)
\(642\) 0 0
\(643\) −23924.0 −1.46729 −0.733647 0.679530i \(-0.762184\pi\)
−0.733647 + 0.679530i \(0.762184\pi\)
\(644\) −2278.00 4409.80i −0.139388 0.269830i
\(645\) 0 0
\(646\) −1352.00 2341.73i −0.0823432 0.142623i
\(647\) 90.5000 156.751i 0.00549911 0.00952473i −0.863263 0.504755i \(-0.831583\pi\)
0.868762 + 0.495230i \(0.164916\pi\)
\(648\) 0 0
\(649\) −350.000 606.218i −0.0211690 0.0366658i
\(650\) −400.000 −0.0241374
\(651\) 0 0
\(652\) −2640.00 −0.158574
\(653\) −8906.00 15425.6i −0.533719 0.924429i −0.999224 0.0393836i \(-0.987461\pi\)
0.465505 0.885045i \(-0.345873\pi\)
\(654\) 0 0
\(655\) −1980.00 + 3429.46i −0.118115 + 0.204580i
\(656\) 2824.00 + 4891.31i 0.168077 + 0.291118i
\(657\) 0 0
\(658\) 3256.00 + 152.420i 0.192906 + 0.00903035i
\(659\) −15334.0 −0.906416 −0.453208 0.891405i \(-0.649720\pi\)
−0.453208 + 0.891405i \(0.649720\pi\)
\(660\) 0 0
\(661\) −668.500 + 1157.88i −0.0393368 + 0.0681334i −0.885024 0.465546i \(-0.845858\pi\)
0.845687 + 0.533680i \(0.179191\pi\)
\(662\) 392.000 678.964i 0.0230144 0.0398621i
\(663\) 0 0
\(664\) −4200.00 −0.245469
\(665\) −2405.00 112.583i −0.140243 0.00656510i
\(666\) 0 0
\(667\) −2311.50 4003.64i −0.134185 0.232416i
\(668\) −1898.00 + 3287.43i −0.109934 + 0.190411i
\(669\) 0 0
\(670\) −1455.00 2520.13i −0.0838978 0.145315i
\(671\) −934.000 −0.0537357
\(672\) 0 0
\(673\) −15112.0 −0.865564 −0.432782 0.901499i \(-0.642468\pi\)
−0.432782 + 0.901499i \(0.642468\pi\)
\(674\) −3926.00 6800.03i −0.224368 0.388616i
\(675\) 0 0
\(676\) 4266.00 7388.93i 0.242717 0.420399i
\(677\) 12696.0 + 21990.1i 0.720749 + 1.24837i 0.960700 + 0.277589i \(0.0895352\pi\)
−0.239951 + 0.970785i \(0.577131\pi\)
\(678\) 0 0
\(679\) −2465.00 4771.80i −0.139320 0.269698i
\(680\) 2080.00 0.117301
\(681\) 0 0
\(682\) 664.000 1150.08i 0.0372813 0.0645732i
\(683\) 14615.5 25314.8i 0.818809 1.41822i −0.0877512 0.996142i \(-0.527968\pi\)
0.906560 0.422076i \(-0.138699\pi\)
\(684\) 0 0
\(685\) −5420.00 −0.302318
\(686\) 4751.00 + 11783.1i 0.264423 + 0.655805i
\(687\) 0 0
\(688\) 2952.00 + 5113.01i 0.163581 + 0.283331i
\(689\) −2328.00 + 4032.21i −0.128722 + 0.222954i
\(690\) 0 0
\(691\) 3769.00 + 6528.10i 0.207496 + 0.359393i 0.950925 0.309421i \(-0.100135\pi\)
−0.743429 + 0.668814i \(0.766802\pi\)
\(692\) −13568.0 −0.745344
\(693\) 0 0
\(694\) 3570.00 0.195267
\(695\) 115.000 + 199.186i 0.00627654 + 0.0108713i
\(696\) 0 0
\(697\) 9178.00 15896.8i 0.498768 0.863892i
\(698\) 1591.00 + 2755.69i 0.0862754 + 0.149433i
\(699\) 0 0
\(700\) 1000.00 1558.85i 0.0539949 0.0841698i
\(701\) −22125.0 −1.19208 −0.596041 0.802954i \(-0.703261\pi\)
−0.596041 + 0.802954i \(0.703261\pi\)
\(702\) 0 0
\(703\) −2548.00 + 4413.27i −0.136699 + 0.236770i
\(704\) −64.0000 + 110.851i −0.00342627 + 0.00593447i
\(705\) 0 0
\(706\) −3372.00 −0.179755
\(707\) −22810.5 1067.81i −1.21340 0.0568021i
\(708\) 0 0
\(709\) 2219.50 + 3844.29i 0.117567 + 0.203632i 0.918803 0.394716i \(-0.129157\pi\)
−0.801236 + 0.598349i \(0.795824\pi\)
\(710\) 3850.00 6668.40i 0.203504 0.352479i
\(711\) 0 0
\(712\) 356.000 + 616.610i 0.0187383 + 0.0324557i
\(713\) 22244.0 1.16837
\(714\) 0 0
\(715\) −80.0000 −0.00418438
\(716\) 536.000 + 928.379i 0.0279766 + 0.0484569i
\(717\) 0 0
\(718\) 7372.00 12768.7i 0.383176 0.663681i
\(719\) 6825.00 + 11821.2i 0.354005 + 0.613155i 0.986947 0.161045i \(-0.0514863\pi\)
−0.632942 + 0.774199i \(0.718153\pi\)
\(720\) 0 0
\(721\) 15530.0 24208.9i 0.802174 1.25047i
\(722\) −12366.0 −0.637417
\(723\) 0 0
\(724\) 8186.00 14178.6i 0.420208 0.727821i
\(725\) 862.500 1493.89i 0.0441827 0.0765267i
\(726\) 0 0
\(727\) −11397.0 −0.581419 −0.290709 0.956811i \(-0.593891\pi\)
−0.290709 + 0.956811i \(0.593891\pi\)
\(728\) −544.000 1053.09i −0.0276950 0.0536126i
\(729\) 0 0
\(730\) −3140.00 5438.64i −0.159201 0.275744i
\(731\) 9594.00 16617.3i 0.485427 0.840784i
\(732\) 0 0
\(733\) −8343.00 14450.5i −0.420403 0.728160i 0.575575 0.817749i \(-0.304778\pi\)
−0.995979 + 0.0895886i \(0.971445\pi\)
\(734\) 13274.0 0.667510
\(735\) 0 0
\(736\) −2144.00 −0.107376
\(737\) −291.000 504.027i −0.0145443 0.0251914i
\(738\) 0 0
\(739\) −11235.0 + 19459.6i −0.559251 + 0.968650i 0.438309 + 0.898825i \(0.355578\pi\)
−0.997559 + 0.0698258i \(0.977756\pi\)
\(740\) −1960.00 3394.82i −0.0973663 0.168643i
\(741\) 0 0
\(742\) −9894.00 19153.0i −0.489515 0.947614i
\(743\) −5625.00 −0.277741 −0.138870 0.990311i \(-0.544347\pi\)
−0.138870 + 0.990311i \(0.544347\pi\)
\(744\) 0 0
\(745\) −922.500 + 1597.82i −0.0453662 + 0.0785765i
\(746\) −3476.00 + 6020.61i −0.170597 + 0.295483i
\(747\) 0 0
\(748\) 416.000 0.0203348
\(749\) −18310.0 + 28542.5i −0.893235 + 1.39242i
\(750\) 0 0
\(751\) −8810.00 15259.4i −0.428071 0.741441i 0.568631 0.822593i \(-0.307473\pi\)
−0.996702 + 0.0811520i \(0.974140\pi\)
\(752\) 704.000 1219.36i 0.0341386 0.0591298i
\(753\) 0 0
\(754\) −552.000 956.092i −0.0266613 0.0461788i
\(755\) 12400.0 0.597725
\(756\) 0 0
\(757\) 39056.0 1.87518 0.937592 0.347737i \(-0.113050\pi\)
0.937592 + 0.347737i \(0.113050\pi\)
\(758\) 2378.00 + 4118.82i 0.113948 + 0.197364i
\(759\) 0 0
\(760\) −520.000 + 900.666i −0.0248189 + 0.0429876i
\(761\) 14869.0 + 25753.9i 0.708280 + 1.22678i 0.965495 + 0.260422i \(0.0838618\pi\)
−0.257215 + 0.966354i \(0.582805\pi\)
\(762\) 0 0
\(763\) −15003.5 702.347i −0.711878 0.0333246i
\(764\) 7912.00 0.374668
\(765\) 0 0
\(766\) −2457.00 + 4255.65i −0.115894 + 0.200735i
\(767\) 1400.00 2424.87i 0.0659075 0.114155i
\(768\) 0 0
\(769\) −1118.00 −0.0524267 −0.0262133 0.999656i \(-0.508345\pi\)
−0.0262133 + 0.999656i \(0.508345\pi\)
\(770\) 200.000 311.769i 0.00936039 0.0145914i
\(771\) 0 0
\(772\) 7996.00 + 13849.5i 0.372775 + 0.645665i
\(773\) 6716.00 11632.5i 0.312494 0.541255i −0.666408 0.745587i \(-0.732169\pi\)
0.978902 + 0.204332i \(0.0655023\pi\)
\(774\) 0 0
\(775\) 4150.00 + 7188.01i 0.192351 + 0.333163i
\(776\) −2320.00 −0.107324
\(777\) 0 0
\(778\) −17124.0 −0.789107
\(779\) 4589.00 + 7948.38i 0.211063 + 0.365572i
\(780\) 0 0
\(781\) 770.000 1333.68i 0.0352788 0.0611047i
\(782\) 3484.00 + 6034.47i 0.159319 + 0.275949i
\(783\) 0 0
\(784\) 5464.00 + 512.687i 0.248907 + 0.0233549i
\(785\) 6130.00 0.278712
\(786\) 0 0
\(787\) 4674.50 8096.47i 0.211725 0.366719i −0.740529 0.672024i \(-0.765425\pi\)
0.952255 + 0.305305i \(0.0987584\pi\)
\(788\) −6060.00 + 10496.2i −0.273958 + 0.474508i
\(789\) 0 0
\(790\) 11700.0 0.526921
\(791\) −18445.0 35706.2i −0.829113 1.60502i
\(792\) 0 0
\(793\) −1868.00 3235.47i −0.0836502 0.144886i
\(794\) 9842.00 17046.8i 0.439899 0.761927i
\(795\) 0 0
\(796\) −712.000 1233.22i −0.0317037 0.0549125i
\(797\) 28008.0 1.24479 0.622393 0.782705i \(-0.286161\pi\)
0.622393 + 0.782705i \(0.286161\pi\)
\(798\) 0 0
\(799\) −4576.00 −0.202612
\(800\) −400.000 692.820i −0.0176777 0.0306186i
\(801\) 0 0
\(802\) −8097.00 + 14024.4i −0.356503 + 0.617480i
\(803\) −628.000 1087.73i −0.0275986 0.0478021i
\(804\) 0 0
\(805\) 6197.50 + 290.119i 0.271346 + 0.0127023i
\(806\) 5312.00 0.232143
\(807\) 0 0
\(808\) −4932.00 + 8542.47i −0.214737 + 0.371935i
\(809\) 9834.50 17033.9i 0.427395 0.740270i −0.569246 0.822167i \(-0.692765\pi\)
0.996641 + 0.0818975i \(0.0260980\pi\)
\(810\) 0 0
\(811\) 31860.0 1.37948 0.689739 0.724059i \(-0.257725\pi\)
0.689739 + 0.724059i \(0.257725\pi\)
\(812\) 5106.00 + 239.023i 0.220672 + 0.0103301i
\(813\) 0 0
\(814\) −392.000 678.964i −0.0168791 0.0292355i
\(815\) 1650.00 2857.88i 0.0709165 0.122831i
\(816\) 0 0
\(817\) 4797.00 + 8308.65i 0.205417 + 0.355793i
\(818\) 30518.0 1.30445
\(819\) 0 0
\(820\) −7060.00 −0.300666
\(821\) 1115.00 + 1931.24i 0.0473980 + 0.0820958i 0.888751 0.458390i \(-0.151574\pi\)
−0.841353 + 0.540486i \(0.818240\pi\)
\(822\) 0 0
\(823\) −7401.50 + 12819.8i −0.313487 + 0.542976i −0.979115 0.203308i \(-0.934831\pi\)
0.665627 + 0.746284i \(0.268164\pi\)
\(824\) −6212.00 10759.5i −0.262628 0.454885i
\(825\) 0 0
\(826\) 5950.00 + 11518.1i 0.250638 + 0.485190i
\(827\) −13257.0 −0.557426 −0.278713 0.960374i \(-0.589908\pi\)
−0.278713 + 0.960374i \(0.589908\pi\)
\(828\) 0 0
\(829\) 10787.0 18683.6i 0.451928 0.782762i −0.546578 0.837408i \(-0.684070\pi\)
0.998506 + 0.0546465i \(0.0174032\pi\)
\(830\) 2625.00 4546.63i 0.109777 0.190140i
\(831\) 0 0
\(832\) −512.000 −0.0213346
\(833\) −7436.00 16212.0i −0.309294 0.674325i
\(834\) 0 0
\(835\) −2372.50 4109.29i −0.0983278 0.170309i
\(836\) −104.000 + 180.133i −0.00430253 + 0.00745220i
\(837\) 0 0
\(838\) 16224.0 + 28100.8i 0.668793 + 1.15838i
\(839\) −12990.0 −0.534523 −0.267261 0.963624i \(-0.586119\pi\)
−0.267261 + 0.963624i \(0.586119\pi\)
\(840\) 0 0
\(841\) −19628.0 −0.804789
\(842\) −2977.00 5156.32i −0.121846 0.211043i
\(843\) 0 0
\(844\) 5204.00 9013.59i 0.212238 0.367607i
\(845\) 5332.50 + 9236.16i 0.217093 + 0.376016i
\(846\) 0 0
\(847\) −13270.0 + 20685.9i −0.538327 + 0.839168i
\(848\) −9312.00 −0.377094
\(849\) 0 0
\(850\) −1300.00 + 2251.67i −0.0524584 + 0.0908606i
\(851\) 6566.00 11372.6i 0.264488 0.458107i
\(852\) 0 0
\(853\) 24838.0 0.996995 0.498498 0.866891i \(-0.333885\pi\)
0.498498 + 0.866891i \(0.333885\pi\)
\(854\) 17279.0 + 808.868i 0.692360 + 0.0324109i
\(855\) 0 0
\(856\) 7324.00 + 12685.5i 0.292441 + 0.506522i
\(857\) −8513.00 + 14744.9i −0.339322 + 0.587722i −0.984305 0.176474i \(-0.943531\pi\)
0.644984 + 0.764196i \(0.276864\pi\)
\(858\) 0 0
\(859\) −3364.00 5826.62i −0.133618 0.231434i 0.791450 0.611233i \(-0.209326\pi\)
−0.925069 + 0.379800i \(0.875993\pi\)
\(860\) −7380.00 −0.292623
\(861\) 0 0
\(862\) −28404.0 −1.12232
\(863\) −15049.5 26066.5i −0.593616 1.02817i −0.993741 0.111713i \(-0.964366\pi\)
0.400124 0.916461i \(-0.368967\pi\)
\(864\) 0 0
\(865\) 8480.00 14687.8i 0.333328 0.577341i
\(866\) −14310.0 24785.6i −0.561517 0.972576i
\(867\) 0 0
\(868\) −13280.0 + 20701.5i −0.519300 + 0.809509i
\(869\) 2340.00 0.0913453
\(870\) 0 0
\(871\) 1164.00 2016.11i 0.0452820 0.0784308i
\(872\) −3244.00 + 5618.77i −0.125981 + 0.218206i
\(873\) 0 0
\(874\) −3484.00 −0.134838
\(875\) 1062.50 + 2056.81i 0.0410503 + 0.0794661i
\(876\) 0 0
\(877\) 2813.00 + 4872.26i 0.108310 + 0.187599i 0.915086 0.403259i \(-0.132123\pi\)
−0.806775 + 0.590858i \(0.798789\pi\)
\(878\) 2356.00 4080.71i 0.0905594 0.156853i
\(879\) 0 0
\(880\) −80.0000 138.564i −0.00306454 0.00530795i
\(881\) 15927.0 0.609074 0.304537 0.952500i \(-0.401498\pi\)
0.304537 + 0.952500i \(0.401498\pi\)
\(882\) 0 0
\(883\) 39124.0 1.49108 0.745542 0.666458i \(-0.232191\pi\)
0.745542 + 0.666458i \(0.232191\pi\)
\(884\) 832.000 + 1441.07i 0.0316552 + 0.0548284i
\(885\) 0 0
\(886\) 8291.00 14360.4i 0.314381 0.544524i
\(887\) −12665.5 21937.3i −0.479443 0.830419i 0.520279 0.853996i \(-0.325828\pi\)
−0.999722 + 0.0235768i \(0.992495\pi\)
\(888\) 0 0
\(889\) 408.000 + 789.815i 0.0153924 + 0.0297970i
\(890\) −890.000 −0.0335201
\(891\) 0 0
\(892\) 6312.00 10932.7i 0.236930 0.410374i
\(893\) 1144.00 1981.47i 0.0428695 0.0742522i
\(894\) 0 0
\(895\) −1340.00 −0.0500461
\(896\) 1280.00 1995.32i 0.0477252 0.0743963i
\(897\) 0 0
\(898\) −3521.00 6098.55i −0.130843 0.226627i
\(899\) −11454.0 + 19838.9i −0.424930 + 0.736001i
\(900\) 0 0
\(901\) 15132.0 + 26209.4i 0.559512 + 0.969103i
\(902\) −1412.00 −0.0521225
\(903\) 0 0
\(904\) −17360.0 −0.638700
\(905\) 10232.5 + 17723.2i 0.375845 + 0.650983i
\(906\) 0 0
\(907\) −13192.5 + 22850.1i −0.482966 + 0.836521i −0.999809 0.0195592i \(-0.993774\pi\)
0.516843 + 0.856080i \(0.327107\pi\)
\(908\) 8472.00 + 14673.9i 0.309640 + 0.536312i
\(909\) 0 0
\(910\) 1480.00 + 69.2820i 0.0539138 + 0.00252382i
\(911\) 40770.0 1.48273 0.741367 0.671100i \(-0.234178\pi\)
0.741367 + 0.671100i \(0.234178\pi\)
\(912\) 0 0
\(913\) 525.000 909.327i 0.0190306 0.0329620i
\(914\) 5432.00 9408.50i 0.196581 0.340487i
\(915\) 0 0
\(916\) 25336.0 0.913892
\(917\) 7920.00 12346.1i 0.285214 0.444605i
\(918\) 0 0
\(919\) 7309.00 + 12659.6i 0.262352 + 0.454407i 0.966867 0.255282i \(-0.0821685\pi\)
−0.704514 + 0.709690i \(0.748835\pi\)
\(920\) 1340.00 2320.95i 0.0480201 0.0831733i
\(921\) 0 0
\(922\) −5350.00 9266.47i −0.191099 0.330992i
\(923\) 6160.00 0.219674
\(924\) 0 0
\(925\) 4900.00 0.174174
\(926\) 10123.0 + 17533.6i 0.359247 + 0.622233i
\(927\) 0 0
\(928\) 1104.00 1912.18i 0.0390523 0.0676406i
\(929\) 20661.5 + 35786.8i 0.729690 + 1.26386i 0.957014 + 0.290041i \(0.0936689\pi\)
−0.227324 + 0.973819i \(0.572998\pi\)
\(930\) 0 0
\(931\) 8879.00 + 833.116i 0.312564 + 0.0293279i
\(932\) 18752.0 0.659058
\(933\) 0 0
\(934\) 6463.00 11194.2i 0.226420 0.392170i
\(935\) −260.000 + 450.333i −0.00909402 + 0.0157513i
\(936\) 0 0
\(937\) −22620.0 −0.788648 −0.394324 0.918971i \(-0.629021\pi\)
−0.394324 + 0.918971i \(0.629021\pi\)
\(938\) 4947.00 + 9576.51i 0.172202 + 0.333352i
\(939\) 0 0
\(940\) 880.000 + 1524.20i 0.0305345 + 0.0528873i
\(941\) 25989.0 45014.3i 0.900337 1.55943i 0.0732801 0.997311i \(-0.476653\pi\)
0.827057 0.562118i \(-0.190013\pi\)
\(942\) 0 0
\(943\) −11825.5 20482.4i −0.408368 0.707315i
\(944\) 5600.00 0.193077
\(945\) 0 0
\(946\) −1476.00 −0.0507282
\(947\) 4993.50 + 8649.00i 0.171348 + 0.296784i 0.938892 0.344213i \(-0.111854\pi\)
−0.767543 + 0.640997i \(0.778521\pi\)
\(948\) 0 0
\(949\) 2512.00 4350.91i 0.0859252 0.148827i
\(950\) −650.000 1125.83i −0.0221987 0.0384493i
\(951\) 0 0
\(952\) −7696.00 360.267i −0.262005 0.0122650i
\(953\) −6588.00 −0.223931 −0.111966 0.993712i \(-0.535715\pi\)
−0.111966 + 0.993712i \(0.535715\pi\)
\(954\) 0 0
\(955\) −4945.00 + 8564.99i −0.167556 + 0.290216i
\(956\) 3712.00 6429.37i 0.125580 0.217511i
\(957\) 0 0
\(958\) 35280.0 1.18982
\(959\) 20054.0 + 938.772i 0.675263 + 0.0316105i
\(960\) 0 0
\(961\) −40216.5 69657.0i −1.34995 2.33819i
\(962\) 1568.00 2715.86i 0.0525513 0.0910215i
\(963\) 0 0
\(964\) 9612.00 + 16648.5i 0.321143 + 0.556236i
\(965\) −19990.0 −0.666840
\(966\) 0 0
\(967\) −4091.00 −0.136047 −0.0680236 0.997684i \(-0.521669\pi\)
−0.0680236 + 0.997684i \(0.521669\pi\)
\(968\) 5308.00 + 9193.73i 0.176245 + 0.305266i
\(969\) 0 0
\(970\) 1450.00 2511.47i 0.0479966 0.0831325i
\(971\) 11820.0 + 20472.8i 0.390651 + 0.676627i 0.992536 0.121956i \(-0.0389167\pi\)
−0.601885 + 0.798583i \(0.705583\pi\)
\(972\) 0 0
\(973\) −391.000 756.906i −0.0128827 0.0249386i
\(974\) −20064.0 −0.660053
\(975\) 0 0
\(976\) 3736.00 6470.94i 0.122527 0.212223i
\(977\) 18333.0 31753.7i 0.600332 1.03981i −0.392438 0.919778i \(-0.628368\pi\)
0.992771 0.120028i \(-0.0382983\pi\)
\(978\) 0 0
\(979\) −178.000 −0.00581093
\(980\) −3970.00 + 5594.52i −0.129405 + 0.182358i
\(981\) 0 0
\(982\) 5916.00 + 10246.8i 0.192248 + 0.332983i
\(983\) −20535.5 + 35568.5i −0.666308 + 1.15408i 0.312621 + 0.949878i \(0.398793\pi\)
−0.978929 + 0.204201i \(0.934540\pi\)
\(984\) 0 0
\(985\) −7575.00 13120.3i −0.245035 0.424413i
\(986\) −7176.00 −0.231775
\(987\) 0 0
\(988\) −832.000 −0.0267909
\(989\) −12361.5 21410.7i −0.397445 0.688394i
\(990\) 0 0
\(991\) −15992.0 + 27699.0i −0.512616 + 0.887877i 0.487277 + 0.873248i \(0.337990\pi\)
−0.999893 + 0.0146297i \(0.995343\pi\)
\(992\) 5312.00 + 9200.65i 0.170016 + 0.294477i
\(993\) 0 0
\(994\) −15400.0 + 24006.2i −0.491407 + 0.766027i
\(995\) 1780.00 0.0567134
\(996\) 0 0
\(997\) 21947.0 38013.3i 0.697160 1.20752i −0.272287 0.962216i \(-0.587780\pi\)
0.969447 0.245300i \(-0.0788866\pi\)
\(998\) −13894.0 + 24065.1i −0.440688 + 0.763294i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.4.k.b.361.1 2
3.2 odd 2 70.4.e.c.11.1 2
7.2 even 3 inner 630.4.k.b.541.1 2
12.11 even 2 560.4.q.d.81.1 2
15.2 even 4 350.4.j.e.249.1 4
15.8 even 4 350.4.j.e.249.2 4
15.14 odd 2 350.4.e.a.151.1 2
21.2 odd 6 70.4.e.c.51.1 yes 2
21.5 even 6 490.4.e.m.471.1 2
21.11 odd 6 490.4.a.c.1.1 1
21.17 even 6 490.4.a.e.1.1 1
21.20 even 2 490.4.e.m.361.1 2
84.23 even 6 560.4.q.d.401.1 2
105.2 even 12 350.4.j.e.149.2 4
105.23 even 12 350.4.j.e.149.1 4
105.44 odd 6 350.4.e.a.51.1 2
105.59 even 6 2450.4.a.be.1.1 1
105.74 odd 6 2450.4.a.bg.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.4.e.c.11.1 2 3.2 odd 2
70.4.e.c.51.1 yes 2 21.2 odd 6
350.4.e.a.51.1 2 105.44 odd 6
350.4.e.a.151.1 2 15.14 odd 2
350.4.j.e.149.1 4 105.23 even 12
350.4.j.e.149.2 4 105.2 even 12
350.4.j.e.249.1 4 15.2 even 4
350.4.j.e.249.2 4 15.8 even 4
490.4.a.c.1.1 1 21.11 odd 6
490.4.a.e.1.1 1 21.17 even 6
490.4.e.m.361.1 2 21.20 even 2
490.4.e.m.471.1 2 21.5 even 6
560.4.q.d.81.1 2 12.11 even 2
560.4.q.d.401.1 2 84.23 even 6
630.4.k.b.361.1 2 1.1 even 1 trivial
630.4.k.b.541.1 2 7.2 even 3 inner
2450.4.a.be.1.1 1 105.59 even 6
2450.4.a.bg.1.1 1 105.74 odd 6