Properties

Label 630.3.f.c.181.4
Level $630$
Weight $3$
Character 630.181
Analytic conductor $17.166$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [630,3,Mod(181,630)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("630.181"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(630, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 630.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,16,0,0,0,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.1662566547\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.3317760000.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{6} + 7x^{4} - 36x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.4
Root \(1.72286 - 0.178197i\) of defining polynomial
Character \(\chi\) \(=\) 630.181
Dual form 630.3.f.c.181.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421 q^{2} +2.00000 q^{4} +2.23607i q^{5} +(6.70141 - 2.02265i) q^{7} -2.82843 q^{8} -3.16228i q^{10} -11.9625 q^{11} +9.67294i q^{13} +(-9.47723 + 2.86045i) q^{14} +4.00000 q^{16} +7.09185i q^{17} +17.5508i q^{19} +4.47214i q^{20} +16.9175 q^{22} +2.84923 q^{23} -5.00000 q^{25} -13.6796i q^{26} +(13.4028 - 4.04529i) q^{28} +13.6929 q^{29} -19.9468i q^{31} -5.65685 q^{32} -10.0294i q^{34} +(4.52277 + 14.9848i) q^{35} -11.0672 q^{37} -24.8206i q^{38} -6.32456i q^{40} +28.2902i q^{41} -72.9666 q^{43} -23.9250 q^{44} -4.02942 q^{46} +28.3312i q^{47} +(40.8178 - 27.1092i) q^{49} +7.07107 q^{50} +19.3459i q^{52} +11.7110 q^{53} -26.7490i q^{55} +(-18.9545 + 5.72091i) q^{56} -19.3647 q^{58} +101.160i q^{59} +76.7055i q^{61} +28.2090i q^{62} +8.00000 q^{64} -21.6294 q^{65} -76.2407 q^{67} +14.1837i q^{68} +(-6.39617 - 21.1917i) q^{70} +95.4493 q^{71} +120.684i q^{73} +15.6513 q^{74} +35.1016i q^{76} +(-80.1657 + 24.1959i) q^{77} -14.8096 q^{79} +8.94427i q^{80} -40.0083i q^{82} -60.9570i q^{83} -15.8579 q^{85} +103.190 q^{86} +33.8351 q^{88} +88.6302i q^{89} +(19.5649 + 64.8223i) q^{91} +5.69845 q^{92} -40.0664i q^{94} -39.2448 q^{95} -18.8547i q^{97} +(-57.7251 + 38.3381i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{4} + 16 q^{11} - 32 q^{14} + 32 q^{16} + 96 q^{22} - 40 q^{25} + 144 q^{29} + 80 q^{35} - 48 q^{37} - 64 q^{43} + 32 q^{44} + 128 q^{46} - 24 q^{49} - 128 q^{53} - 64 q^{56} + 224 q^{58} + 64 q^{64}+ \cdots - 80 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41421 −0.707107
\(3\) 0 0
\(4\) 2.00000 0.500000
\(5\) 2.23607i 0.447214i
\(6\) 0 0
\(7\) 6.70141 2.02265i 0.957344 0.288949i
\(8\) −2.82843 −0.353553
\(9\) 0 0
\(10\) 3.16228i 0.316228i
\(11\) −11.9625 −1.08750 −0.543750 0.839247i \(-0.682996\pi\)
−0.543750 + 0.839247i \(0.682996\pi\)
\(12\) 0 0
\(13\) 9.67294i 0.744072i 0.928218 + 0.372036i \(0.121340\pi\)
−0.928218 + 0.372036i \(0.878660\pi\)
\(14\) −9.47723 + 2.86045i −0.676945 + 0.204318i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) 7.09185i 0.417168i 0.978004 + 0.208584i \(0.0668854\pi\)
−0.978004 + 0.208584i \(0.933115\pi\)
\(18\) 0 0
\(19\) 17.5508i 0.923727i 0.886951 + 0.461864i \(0.152819\pi\)
−0.886951 + 0.461864i \(0.847181\pi\)
\(20\) 4.47214i 0.223607i
\(21\) 0 0
\(22\) 16.9175 0.768979
\(23\) 2.84923 0.123879 0.0619397 0.998080i \(-0.480271\pi\)
0.0619397 + 0.998080i \(0.480271\pi\)
\(24\) 0 0
\(25\) −5.00000 −0.200000
\(26\) 13.6796i 0.526139i
\(27\) 0 0
\(28\) 13.4028 4.04529i 0.478672 0.144475i
\(29\) 13.6929 0.472170 0.236085 0.971732i \(-0.424136\pi\)
0.236085 + 0.971732i \(0.424136\pi\)
\(30\) 0 0
\(31\) 19.9468i 0.643445i −0.946834 0.321723i \(-0.895738\pi\)
0.946834 0.321723i \(-0.104262\pi\)
\(32\) −5.65685 −0.176777
\(33\) 0 0
\(34\) 10.0294i 0.294982i
\(35\) 4.52277 + 14.9848i 0.129222 + 0.428137i
\(36\) 0 0
\(37\) −11.0672 −0.299113 −0.149556 0.988753i \(-0.547785\pi\)
−0.149556 + 0.988753i \(0.547785\pi\)
\(38\) 24.8206i 0.653174i
\(39\) 0 0
\(40\) 6.32456i 0.158114i
\(41\) 28.2902i 0.690004i 0.938602 + 0.345002i \(0.112122\pi\)
−0.938602 + 0.345002i \(0.887878\pi\)
\(42\) 0 0
\(43\) −72.9666 −1.69690 −0.848449 0.529278i \(-0.822463\pi\)
−0.848449 + 0.529278i \(0.822463\pi\)
\(44\) −23.9250 −0.543750
\(45\) 0 0
\(46\) −4.02942 −0.0875960
\(47\) 28.3312i 0.602792i 0.953499 + 0.301396i \(0.0974526\pi\)
−0.953499 + 0.301396i \(0.902547\pi\)
\(48\) 0 0
\(49\) 40.8178 27.1092i 0.833016 0.553248i
\(50\) 7.07107 0.141421
\(51\) 0 0
\(52\) 19.3459i 0.372036i
\(53\) 11.7110 0.220962 0.110481 0.993878i \(-0.464761\pi\)
0.110481 + 0.993878i \(0.464761\pi\)
\(54\) 0 0
\(55\) 26.7490i 0.486345i
\(56\) −18.9545 + 5.72091i −0.338472 + 0.102159i
\(57\) 0 0
\(58\) −19.3647 −0.333875
\(59\) 101.160i 1.71458i 0.514833 + 0.857291i \(0.327854\pi\)
−0.514833 + 0.857291i \(0.672146\pi\)
\(60\) 0 0
\(61\) 76.7055i 1.25747i 0.777621 + 0.628733i \(0.216426\pi\)
−0.777621 + 0.628733i \(0.783574\pi\)
\(62\) 28.2090i 0.454984i
\(63\) 0 0
\(64\) 8.00000 0.125000
\(65\) −21.6294 −0.332759
\(66\) 0 0
\(67\) −76.2407 −1.13792 −0.568960 0.822365i \(-0.692654\pi\)
−0.568960 + 0.822365i \(0.692654\pi\)
\(68\) 14.1837i 0.208584i
\(69\) 0 0
\(70\) −6.39617 21.1917i −0.0913738 0.302739i
\(71\) 95.4493 1.34436 0.672178 0.740389i \(-0.265359\pi\)
0.672178 + 0.740389i \(0.265359\pi\)
\(72\) 0 0
\(73\) 120.684i 1.65321i 0.562782 + 0.826605i \(0.309731\pi\)
−0.562782 + 0.826605i \(0.690269\pi\)
\(74\) 15.6513 0.211505
\(75\) 0 0
\(76\) 35.1016i 0.461864i
\(77\) −80.1657 + 24.1959i −1.04111 + 0.314233i
\(78\) 0 0
\(79\) −14.8096 −0.187463 −0.0937317 0.995597i \(-0.529880\pi\)
−0.0937317 + 0.995597i \(0.529880\pi\)
\(80\) 8.94427i 0.111803i
\(81\) 0 0
\(82\) 40.0083i 0.487906i
\(83\) 60.9570i 0.734422i −0.930138 0.367211i \(-0.880313\pi\)
0.930138 0.367211i \(-0.119687\pi\)
\(84\) 0 0
\(85\) −15.8579 −0.186563
\(86\) 103.190 1.19989
\(87\) 0 0
\(88\) 33.8351 0.384490
\(89\) 88.6302i 0.995845i 0.867222 + 0.497922i \(0.165904\pi\)
−0.867222 + 0.497922i \(0.834096\pi\)
\(90\) 0 0
\(91\) 19.5649 + 64.8223i 0.214999 + 0.712333i
\(92\) 5.69845 0.0619397
\(93\) 0 0
\(94\) 40.0664i 0.426238i
\(95\) −39.2448 −0.413103
\(96\) 0 0
\(97\) 18.8547i 0.194378i −0.995266 0.0971891i \(-0.969015\pi\)
0.995266 0.0971891i \(-0.0309852\pi\)
\(98\) −57.7251 + 38.3381i −0.589032 + 0.391206i
\(99\) 0 0
\(100\) −10.0000 −0.100000
\(101\) 30.1594i 0.298608i −0.988791 0.149304i \(-0.952297\pi\)
0.988791 0.149304i \(-0.0477033\pi\)
\(102\) 0 0
\(103\) 150.869i 1.46475i 0.680903 + 0.732374i \(0.261588\pi\)
−0.680903 + 0.732374i \(0.738412\pi\)
\(104\) 27.3592i 0.263069i
\(105\) 0 0
\(106\) −16.5618 −0.156243
\(107\) −88.2689 −0.824943 −0.412472 0.910970i \(-0.635334\pi\)
−0.412472 + 0.910970i \(0.635334\pi\)
\(108\) 0 0
\(109\) 92.7216 0.850657 0.425328 0.905039i \(-0.360159\pi\)
0.425328 + 0.905039i \(0.360159\pi\)
\(110\) 37.8288i 0.343898i
\(111\) 0 0
\(112\) 26.8056 8.09058i 0.239336 0.0722374i
\(113\) 63.4942 0.561896 0.280948 0.959723i \(-0.409351\pi\)
0.280948 + 0.959723i \(0.409351\pi\)
\(114\) 0 0
\(115\) 6.37107i 0.0554006i
\(116\) 27.3859 0.236085
\(117\) 0 0
\(118\) 143.062i 1.21239i
\(119\) 14.3443 + 47.5254i 0.120540 + 0.399373i
\(120\) 0 0
\(121\) 22.1016 0.182658
\(122\) 108.478i 0.889163i
\(123\) 0 0
\(124\) 39.8936i 0.321723i
\(125\) 11.1803i 0.0894427i
\(126\) 0 0
\(127\) −252.418 −1.98755 −0.993773 0.111423i \(-0.964459\pi\)
−0.993773 + 0.111423i \(0.964459\pi\)
\(128\) −11.3137 −0.0883883
\(129\) 0 0
\(130\) 30.5885 0.235296
\(131\) 206.558i 1.57678i 0.615174 + 0.788391i \(0.289086\pi\)
−0.615174 + 0.788391i \(0.710914\pi\)
\(132\) 0 0
\(133\) 35.4991 + 117.615i 0.266910 + 0.884325i
\(134\) 107.821 0.804631
\(135\) 0 0
\(136\) 20.0588i 0.147491i
\(137\) −179.062 −1.30702 −0.653512 0.756916i \(-0.726705\pi\)
−0.653512 + 0.756916i \(0.726705\pi\)
\(138\) 0 0
\(139\) 29.8412i 0.214685i −0.994222 0.107342i \(-0.965766\pi\)
0.994222 0.107342i \(-0.0342341\pi\)
\(140\) 9.04555 + 29.9696i 0.0646111 + 0.214069i
\(141\) 0 0
\(142\) −134.986 −0.950604
\(143\) 115.713i 0.809179i
\(144\) 0 0
\(145\) 30.6184i 0.211161i
\(146\) 170.674i 1.16900i
\(147\) 0 0
\(148\) −22.1343 −0.149556
\(149\) −233.638 −1.56804 −0.784020 0.620736i \(-0.786834\pi\)
−0.784020 + 0.620736i \(0.786834\pi\)
\(150\) 0 0
\(151\) 280.637 1.85852 0.929262 0.369421i \(-0.120444\pi\)
0.929262 + 0.369421i \(0.120444\pi\)
\(152\) 49.6412i 0.326587i
\(153\) 0 0
\(154\) 113.371 34.2182i 0.736178 0.222196i
\(155\) 44.6024 0.287757
\(156\) 0 0
\(157\) 54.3182i 0.345976i 0.984924 + 0.172988i \(0.0553422\pi\)
−0.984924 + 0.172988i \(0.944658\pi\)
\(158\) 20.9440 0.132557
\(159\) 0 0
\(160\) 12.6491i 0.0790569i
\(161\) 19.0938 5.76298i 0.118595 0.0357949i
\(162\) 0 0
\(163\) 200.523 1.23020 0.615101 0.788448i \(-0.289115\pi\)
0.615101 + 0.788448i \(0.289115\pi\)
\(164\) 56.5803i 0.345002i
\(165\) 0 0
\(166\) 86.2062i 0.519314i
\(167\) 282.815i 1.69351i −0.531987 0.846753i \(-0.678554\pi\)
0.531987 0.846753i \(-0.321446\pi\)
\(168\) 0 0
\(169\) 75.4342 0.446356
\(170\) 22.4264 0.131920
\(171\) 0 0
\(172\) −145.933 −0.848449
\(173\) 127.279i 0.735714i −0.929882 0.367857i \(-0.880092\pi\)
0.929882 0.367857i \(-0.119908\pi\)
\(174\) 0 0
\(175\) −33.5071 + 10.1132i −0.191469 + 0.0577899i
\(176\) −47.8500 −0.271875
\(177\) 0 0
\(178\) 125.342i 0.704168i
\(179\) −122.342 −0.683472 −0.341736 0.939796i \(-0.611015\pi\)
−0.341736 + 0.939796i \(0.611015\pi\)
\(180\) 0 0
\(181\) 97.3605i 0.537903i −0.963154 0.268952i \(-0.913323\pi\)
0.963154 0.268952i \(-0.0866772\pi\)
\(182\) −27.6690 91.6726i −0.152027 0.503696i
\(183\) 0 0
\(184\) −8.05883 −0.0437980
\(185\) 24.7469i 0.133767i
\(186\) 0 0
\(187\) 84.8363i 0.453670i
\(188\) 56.6624i 0.301396i
\(189\) 0 0
\(190\) 55.5005 0.292108
\(191\) 290.175 1.51924 0.759621 0.650367i \(-0.225385\pi\)
0.759621 + 0.650367i \(0.225385\pi\)
\(192\) 0 0
\(193\) 90.7789 0.470357 0.235179 0.971952i \(-0.424433\pi\)
0.235179 + 0.971952i \(0.424433\pi\)
\(194\) 26.6645i 0.137446i
\(195\) 0 0
\(196\) 81.6356 54.2183i 0.416508 0.276624i
\(197\) 53.3711 0.270919 0.135460 0.990783i \(-0.456749\pi\)
0.135460 + 0.990783i \(0.456749\pi\)
\(198\) 0 0
\(199\) 301.563i 1.51539i −0.652607 0.757696i \(-0.726325\pi\)
0.652607 0.757696i \(-0.273675\pi\)
\(200\) 14.1421 0.0707107
\(201\) 0 0
\(202\) 42.6518i 0.211148i
\(203\) 91.7620 27.6960i 0.452030 0.136433i
\(204\) 0 0
\(205\) −63.2587 −0.308579
\(206\) 213.361i 1.03573i
\(207\) 0 0
\(208\) 38.6918i 0.186018i
\(209\) 209.952i 1.00455i
\(210\) 0 0
\(211\) −74.7911 −0.354460 −0.177230 0.984169i \(-0.556714\pi\)
−0.177230 + 0.984169i \(0.556714\pi\)
\(212\) 23.4219 0.110481
\(213\) 0 0
\(214\) 124.831 0.583323
\(215\) 163.158i 0.758876i
\(216\) 0 0
\(217\) −40.3453 133.672i −0.185923 0.615999i
\(218\) −131.128 −0.601505
\(219\) 0 0
\(220\) 53.4980i 0.243173i
\(221\) −68.5991 −0.310403
\(222\) 0 0
\(223\) 413.129i 1.85260i −0.376789 0.926299i \(-0.622972\pi\)
0.376789 0.926299i \(-0.377028\pi\)
\(224\) −37.9089 + 11.4418i −0.169236 + 0.0510795i
\(225\) 0 0
\(226\) −89.7944 −0.397320
\(227\) 298.691i 1.31582i −0.753097 0.657910i \(-0.771441\pi\)
0.753097 0.657910i \(-0.228559\pi\)
\(228\) 0 0
\(229\) 323.323i 1.41189i 0.708265 + 0.705946i \(0.249478\pi\)
−0.708265 + 0.705946i \(0.750522\pi\)
\(230\) 9.01005i 0.0391741i
\(231\) 0 0
\(232\) −38.7295 −0.166937
\(233\) 323.951 1.39035 0.695174 0.718841i \(-0.255327\pi\)
0.695174 + 0.718841i \(0.255327\pi\)
\(234\) 0 0
\(235\) −63.3505 −0.269577
\(236\) 202.321i 0.857291i
\(237\) 0 0
\(238\) −20.2859 67.2111i −0.0852349 0.282400i
\(239\) 362.459 1.51657 0.758283 0.651926i \(-0.226039\pi\)
0.758283 + 0.651926i \(0.226039\pi\)
\(240\) 0 0
\(241\) 124.863i 0.518102i −0.965864 0.259051i \(-0.916590\pi\)
0.965864 0.259051i \(-0.0834098\pi\)
\(242\) −31.2563 −0.129158
\(243\) 0 0
\(244\) 153.411i 0.628733i
\(245\) 60.6179 + 91.2714i 0.247420 + 0.372536i
\(246\) 0 0
\(247\) −169.768 −0.687320
\(248\) 56.4181i 0.227492i
\(249\) 0 0
\(250\) 15.8114i 0.0632456i
\(251\) 18.4515i 0.0735121i 0.999324 + 0.0367561i \(0.0117025\pi\)
−0.999324 + 0.0367561i \(0.988298\pi\)
\(252\) 0 0
\(253\) −34.0839 −0.134719
\(254\) 356.973 1.40541
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 428.659i 1.66793i 0.551816 + 0.833966i \(0.313935\pi\)
−0.551816 + 0.833966i \(0.686065\pi\)
\(258\) 0 0
\(259\) −74.1657 + 22.3850i −0.286354 + 0.0864285i
\(260\) −43.2587 −0.166380
\(261\) 0 0
\(262\) 292.118i 1.11495i
\(263\) 133.575 0.507888 0.253944 0.967219i \(-0.418272\pi\)
0.253944 + 0.967219i \(0.418272\pi\)
\(264\) 0 0
\(265\) 26.1865i 0.0988170i
\(266\) −50.2033 166.333i −0.188734 0.625312i
\(267\) 0 0
\(268\) −152.481 −0.568960
\(269\) 493.257i 1.83367i −0.399269 0.916834i \(-0.630736\pi\)
0.399269 0.916834i \(-0.369264\pi\)
\(270\) 0 0
\(271\) 432.545i 1.59611i −0.602586 0.798054i \(-0.705863\pi\)
0.602586 0.798054i \(-0.294137\pi\)
\(272\) 28.3674i 0.104292i
\(273\) 0 0
\(274\) 253.232 0.924206
\(275\) 59.8125 0.217500
\(276\) 0 0
\(277\) −171.941 −0.620724 −0.310362 0.950618i \(-0.600450\pi\)
−0.310362 + 0.950618i \(0.600450\pi\)
\(278\) 42.2018i 0.151805i
\(279\) 0 0
\(280\) −12.7923 42.3834i −0.0456869 0.151369i
\(281\) −74.7499 −0.266014 −0.133007 0.991115i \(-0.542463\pi\)
−0.133007 + 0.991115i \(0.542463\pi\)
\(282\) 0 0
\(283\) 165.904i 0.586232i 0.956077 + 0.293116i \(0.0946922\pi\)
−0.956077 + 0.293116i \(0.905308\pi\)
\(284\) 190.899 0.672178
\(285\) 0 0
\(286\) 163.642i 0.572176i
\(287\) 57.2210 + 189.584i 0.199376 + 0.660571i
\(288\) 0 0
\(289\) 238.706 0.825971
\(290\) 43.3009i 0.149313i
\(291\) 0 0
\(292\) 241.369i 0.826605i
\(293\) 495.925i 1.69258i 0.532725 + 0.846289i \(0.321168\pi\)
−0.532725 + 0.846289i \(0.678832\pi\)
\(294\) 0 0
\(295\) −226.201 −0.766784
\(296\) 31.3027 0.105752
\(297\) 0 0
\(298\) 330.414 1.10877
\(299\) 27.5604i 0.0921753i
\(300\) 0 0
\(301\) −488.979 + 147.586i −1.62452 + 0.490318i
\(302\) −396.881 −1.31418
\(303\) 0 0
\(304\) 70.2033i 0.230932i
\(305\) −171.519 −0.562356
\(306\) 0 0
\(307\) 316.942i 1.03238i −0.856473 0.516192i \(-0.827349\pi\)
0.856473 0.516192i \(-0.172651\pi\)
\(308\) −160.331 + 48.3918i −0.520556 + 0.157116i
\(309\) 0 0
\(310\) −63.0773 −0.203475
\(311\) 27.1325i 0.0872428i −0.999048 0.0436214i \(-0.986110\pi\)
0.999048 0.0436214i \(-0.0138895\pi\)
\(312\) 0 0
\(313\) 517.236i 1.65251i 0.563296 + 0.826255i \(0.309533\pi\)
−0.563296 + 0.826255i \(0.690467\pi\)
\(314\) 76.8176i 0.244642i
\(315\) 0 0
\(316\) −29.6192 −0.0937317
\(317\) −213.041 −0.672054 −0.336027 0.941852i \(-0.609083\pi\)
−0.336027 + 0.941852i \(0.609083\pi\)
\(318\) 0 0
\(319\) −163.802 −0.513486
\(320\) 17.8885i 0.0559017i
\(321\) 0 0
\(322\) −27.0028 + 8.15008i −0.0838595 + 0.0253108i
\(323\) −124.468 −0.385349
\(324\) 0 0
\(325\) 48.3647i 0.148814i
\(326\) −283.582 −0.869884
\(327\) 0 0
\(328\) 80.0166i 0.243953i
\(329\) 57.3040 + 189.859i 0.174176 + 0.577079i
\(330\) 0 0
\(331\) 292.516 0.883735 0.441867 0.897080i \(-0.354316\pi\)
0.441867 + 0.897080i \(0.354316\pi\)
\(332\) 121.914i 0.367211i
\(333\) 0 0
\(334\) 399.961i 1.19749i
\(335\) 170.479i 0.508894i
\(336\) 0 0
\(337\) −122.881 −0.364633 −0.182316 0.983240i \(-0.558360\pi\)
−0.182316 + 0.983240i \(0.558360\pi\)
\(338\) −106.680 −0.315622
\(339\) 0 0
\(340\) −31.7157 −0.0932816
\(341\) 238.614i 0.699747i
\(342\) 0 0
\(343\) 218.705 264.230i 0.637623 0.770349i
\(344\) 206.381 0.599944
\(345\) 0 0
\(346\) 179.999i 0.520228i
\(347\) −207.406 −0.597713 −0.298856 0.954298i \(-0.596605\pi\)
−0.298856 + 0.954298i \(0.596605\pi\)
\(348\) 0 0
\(349\) 490.264i 1.40477i 0.711798 + 0.702384i \(0.247881\pi\)
−0.711798 + 0.702384i \(0.752119\pi\)
\(350\) 47.3861 14.3023i 0.135389 0.0408636i
\(351\) 0 0
\(352\) 67.6702 0.192245
\(353\) 454.199i 1.28668i −0.765579 0.643342i \(-0.777547\pi\)
0.765579 0.643342i \(-0.222453\pi\)
\(354\) 0 0
\(355\) 213.431i 0.601214i
\(356\) 177.260i 0.497922i
\(357\) 0 0
\(358\) 173.017 0.483288
\(359\) −378.429 −1.05412 −0.527060 0.849828i \(-0.676706\pi\)
−0.527060 + 0.849828i \(0.676706\pi\)
\(360\) 0 0
\(361\) 52.9689 0.146728
\(362\) 137.689i 0.380355i
\(363\) 0 0
\(364\) 39.1299 + 129.645i 0.107500 + 0.356167i
\(365\) −269.859 −0.739338
\(366\) 0 0
\(367\) 181.636i 0.494920i −0.968898 0.247460i \(-0.920404\pi\)
0.968898 0.247460i \(-0.0795959\pi\)
\(368\) 11.3969 0.0309699
\(369\) 0 0
\(370\) 34.9975i 0.0945878i
\(371\) 78.4800 23.6871i 0.211536 0.0638467i
\(372\) 0 0
\(373\) 302.597 0.811253 0.405626 0.914039i \(-0.367053\pi\)
0.405626 + 0.914039i \(0.367053\pi\)
\(374\) 119.977i 0.320793i
\(375\) 0 0
\(376\) 80.1328i 0.213119i
\(377\) 132.451i 0.351329i
\(378\) 0 0
\(379\) 706.225 1.86339 0.931695 0.363243i \(-0.118330\pi\)
0.931695 + 0.363243i \(0.118330\pi\)
\(380\) −78.4896 −0.206552
\(381\) 0 0
\(382\) −410.369 −1.07427
\(383\) 238.607i 0.622995i 0.950247 + 0.311498i \(0.100831\pi\)
−0.950247 + 0.311498i \(0.899169\pi\)
\(384\) 0 0
\(385\) −54.1037 179.256i −0.140529 0.465600i
\(386\) −128.381 −0.332593
\(387\) 0 0
\(388\) 37.7094i 0.0971891i
\(389\) 523.592 1.34599 0.672997 0.739645i \(-0.265007\pi\)
0.672997 + 0.739645i \(0.265007\pi\)
\(390\) 0 0
\(391\) 20.2063i 0.0516785i
\(392\) −115.450 + 76.6763i −0.294516 + 0.195603i
\(393\) 0 0
\(394\) −75.4781 −0.191569
\(395\) 33.1153i 0.0838362i
\(396\) 0 0
\(397\) 219.940i 0.554004i −0.960869 0.277002i \(-0.910659\pi\)
0.960869 0.277002i \(-0.0893408\pi\)
\(398\) 426.475i 1.07154i
\(399\) 0 0
\(400\) −20.0000 −0.0500000
\(401\) −559.885 −1.39622 −0.698111 0.715989i \(-0.745976\pi\)
−0.698111 + 0.715989i \(0.745976\pi\)
\(402\) 0 0
\(403\) 192.944 0.478770
\(404\) 60.3188i 0.149304i
\(405\) 0 0
\(406\) −129.771 + 39.1680i −0.319633 + 0.0964730i
\(407\) 132.391 0.325285
\(408\) 0 0
\(409\) 477.443i 1.16734i 0.811990 + 0.583672i \(0.198384\pi\)
−0.811990 + 0.583672i \(0.801616\pi\)
\(410\) 89.4613 0.218198
\(411\) 0 0
\(412\) 301.738i 0.732374i
\(413\) 204.611 + 677.917i 0.495427 + 1.64144i
\(414\) 0 0
\(415\) 136.304 0.328443
\(416\) 54.7184i 0.131535i
\(417\) 0 0
\(418\) 296.917i 0.710327i
\(419\) 618.800i 1.47685i −0.674335 0.738425i \(-0.735570\pi\)
0.674335 0.738425i \(-0.264430\pi\)
\(420\) 0 0
\(421\) 23.7665 0.0564524 0.0282262 0.999602i \(-0.491014\pi\)
0.0282262 + 0.999602i \(0.491014\pi\)
\(422\) 105.771 0.250641
\(423\) 0 0
\(424\) −33.1236 −0.0781217
\(425\) 35.4593i 0.0834336i
\(426\) 0 0
\(427\) 155.148 + 514.035i 0.363344 + 1.20383i
\(428\) −176.538 −0.412472
\(429\) 0 0
\(430\) 230.741i 0.536606i
\(431\) 244.991 0.568424 0.284212 0.958762i \(-0.408268\pi\)
0.284212 + 0.958762i \(0.408268\pi\)
\(432\) 0 0
\(433\) 630.500i 1.45612i −0.685514 0.728060i \(-0.740422\pi\)
0.685514 0.728060i \(-0.259578\pi\)
\(434\) 57.0569 + 189.040i 0.131468 + 0.435577i
\(435\) 0 0
\(436\) 185.443 0.425328
\(437\) 50.0063i 0.114431i
\(438\) 0 0
\(439\) 79.2321i 0.180483i −0.995920 0.0902416i \(-0.971236\pi\)
0.995920 0.0902416i \(-0.0287639\pi\)
\(440\) 75.6575i 0.171949i
\(441\) 0 0
\(442\) 97.0137 0.219488
\(443\) −494.991 −1.11736 −0.558680 0.829383i \(-0.688692\pi\)
−0.558680 + 0.829383i \(0.688692\pi\)
\(444\) 0 0
\(445\) −198.183 −0.445355
\(446\) 584.253i 1.30998i
\(447\) 0 0
\(448\) 53.6113 16.1812i 0.119668 0.0361187i
\(449\) −539.070 −1.20060 −0.600301 0.799774i \(-0.704952\pi\)
−0.600301 + 0.799774i \(0.704952\pi\)
\(450\) 0 0
\(451\) 338.421i 0.750379i
\(452\) 126.988 0.280948
\(453\) 0 0
\(454\) 422.413i 0.930425i
\(455\) −144.947 + 43.7485i −0.318565 + 0.0961506i
\(456\) 0 0
\(457\) −265.432 −0.580814 −0.290407 0.956903i \(-0.593791\pi\)
−0.290407 + 0.956903i \(0.593791\pi\)
\(458\) 457.248i 0.998359i
\(459\) 0 0
\(460\) 12.7421i 0.0277003i
\(461\) 358.881i 0.778484i −0.921136 0.389242i \(-0.872737\pi\)
0.921136 0.389242i \(-0.127263\pi\)
\(462\) 0 0
\(463\) 112.645 0.243294 0.121647 0.992573i \(-0.461182\pi\)
0.121647 + 0.992573i \(0.461182\pi\)
\(464\) 54.7718 0.118043
\(465\) 0 0
\(466\) −458.136 −0.983125
\(467\) 409.478i 0.876826i 0.898774 + 0.438413i \(0.144459\pi\)
−0.898774 + 0.438413i \(0.855541\pi\)
\(468\) 0 0
\(469\) −510.920 + 154.208i −1.08938 + 0.328802i
\(470\) 89.5912 0.190619
\(471\) 0 0
\(472\) 286.125i 0.606196i
\(473\) 872.863 1.84538
\(474\) 0 0
\(475\) 87.7541i 0.184745i
\(476\) 28.6886 + 95.0508i 0.0602702 + 0.199687i
\(477\) 0 0
\(478\) −512.595 −1.07237
\(479\) 99.5292i 0.207785i 0.994589 + 0.103893i \(0.0331299\pi\)
−0.994589 + 0.103893i \(0.966870\pi\)
\(480\) 0 0
\(481\) 107.052i 0.222561i
\(482\) 176.582i 0.366354i
\(483\) 0 0
\(484\) 44.2031 0.0913288
\(485\) 42.1603 0.0869286
\(486\) 0 0
\(487\) −123.746 −0.254098 −0.127049 0.991896i \(-0.540551\pi\)
−0.127049 + 0.991896i \(0.540551\pi\)
\(488\) 216.956i 0.444582i
\(489\) 0 0
\(490\) −85.7267 129.077i −0.174952 0.263423i
\(491\) −42.2815 −0.0861131 −0.0430565 0.999073i \(-0.513710\pi\)
−0.0430565 + 0.999073i \(0.513710\pi\)
\(492\) 0 0
\(493\) 97.1083i 0.196974i
\(494\) 240.088 0.486008
\(495\) 0 0
\(496\) 79.7872i 0.160861i
\(497\) 639.645 193.060i 1.28701 0.388451i
\(498\) 0 0
\(499\) 87.3026 0.174955 0.0874775 0.996166i \(-0.472119\pi\)
0.0874775 + 0.996166i \(0.472119\pi\)
\(500\) 22.3607i 0.0447214i
\(501\) 0 0
\(502\) 26.0944i 0.0519809i
\(503\) 452.879i 0.900356i 0.892939 + 0.450178i \(0.148639\pi\)
−0.892939 + 0.450178i \(0.851361\pi\)
\(504\) 0 0
\(505\) 67.4385 0.133542
\(506\) 48.2019 0.0952607
\(507\) 0 0
\(508\) −504.837 −0.993773
\(509\) 236.371i 0.464382i 0.972670 + 0.232191i \(0.0745895\pi\)
−0.972670 + 0.232191i \(0.925410\pi\)
\(510\) 0 0
\(511\) 244.102 + 808.756i 0.477694 + 1.58269i
\(512\) −22.6274 −0.0441942
\(513\) 0 0
\(514\) 606.215i 1.17941i
\(515\) −337.353 −0.655055
\(516\) 0 0
\(517\) 338.912i 0.655536i
\(518\) 104.886 31.6571i 0.202483 0.0611142i
\(519\) 0 0
\(520\) 61.1770 0.117648
\(521\) 446.261i 0.856548i 0.903649 + 0.428274i \(0.140878\pi\)
−0.903649 + 0.428274i \(0.859122\pi\)
\(522\) 0 0
\(523\) 271.135i 0.518423i −0.965821 0.259211i \(-0.916537\pi\)
0.965821 0.259211i \(-0.0834626\pi\)
\(524\) 413.117i 0.788391i
\(525\) 0 0
\(526\) −188.903 −0.359131
\(527\) 141.460 0.268425
\(528\) 0 0
\(529\) −520.882 −0.984654
\(530\) 37.0333i 0.0698742i
\(531\) 0 0
\(532\) 70.9982 + 235.230i 0.133455 + 0.442162i
\(533\) −273.649 −0.513413
\(534\) 0 0
\(535\) 197.375i 0.368926i
\(536\) 215.641 0.402316
\(537\) 0 0
\(538\) 697.570i 1.29660i
\(539\) −488.283 + 324.294i −0.905906 + 0.601658i
\(540\) 0 0
\(541\) 224.274 0.414555 0.207277 0.978282i \(-0.433540\pi\)
0.207277 + 0.978282i \(0.433540\pi\)
\(542\) 611.712i 1.12862i
\(543\) 0 0
\(544\) 40.1176i 0.0737455i
\(545\) 207.332i 0.380425i
\(546\) 0 0
\(547\) 88.4533 0.161706 0.0808531 0.996726i \(-0.474236\pi\)
0.0808531 + 0.996726i \(0.474236\pi\)
\(548\) −358.125 −0.653512
\(549\) 0 0
\(550\) −84.5877 −0.153796
\(551\) 240.322i 0.436157i
\(552\) 0 0
\(553\) −99.2453 + 29.9546i −0.179467 + 0.0541675i
\(554\) 243.161 0.438918
\(555\) 0 0
\(556\) 59.6824i 0.107342i
\(557\) 54.4040 0.0976733 0.0488367 0.998807i \(-0.484449\pi\)
0.0488367 + 0.998807i \(0.484449\pi\)
\(558\) 0 0
\(559\) 705.801i 1.26261i
\(560\) 18.0911 + 59.9392i 0.0323055 + 0.107034i
\(561\) 0 0
\(562\) 105.712 0.188100
\(563\) 484.965i 0.861394i −0.902497 0.430697i \(-0.858268\pi\)
0.902497 0.430697i \(-0.141732\pi\)
\(564\) 0 0
\(565\) 141.977i 0.251287i
\(566\) 234.623i 0.414529i
\(567\) 0 0
\(568\) −269.971 −0.475302
\(569\) 306.635 0.538902 0.269451 0.963014i \(-0.413158\pi\)
0.269451 + 0.963014i \(0.413158\pi\)
\(570\) 0 0
\(571\) 471.839 0.826339 0.413169 0.910654i \(-0.364422\pi\)
0.413169 + 0.910654i \(0.364422\pi\)
\(572\) 231.425i 0.404590i
\(573\) 0 0
\(574\) −80.9227 268.112i −0.140980 0.467094i
\(575\) −14.2461 −0.0247759
\(576\) 0 0
\(577\) 81.1961i 0.140721i 0.997522 + 0.0703606i \(0.0224150\pi\)
−0.997522 + 0.0703606i \(0.977585\pi\)
\(578\) −337.581 −0.584050
\(579\) 0 0
\(580\) 61.2367i 0.105581i
\(581\) −123.294 408.498i −0.212211 0.703094i
\(582\) 0 0
\(583\) −140.093 −0.240296
\(584\) 341.347i 0.584498i
\(585\) 0 0
\(586\) 701.344i 1.19683i
\(587\) 905.925i 1.54331i −0.636039 0.771657i \(-0.719428\pi\)
0.636039 0.771657i \(-0.280572\pi\)
\(588\) 0 0
\(589\) 350.083 0.594368
\(590\) 319.897 0.542198
\(591\) 0 0
\(592\) −44.2687 −0.0747782
\(593\) 455.850i 0.768719i −0.923184 0.384359i \(-0.874422\pi\)
0.923184 0.384359i \(-0.125578\pi\)
\(594\) 0 0
\(595\) −106.270 + 32.0748i −0.178605 + 0.0539073i
\(596\) −467.276 −0.784020
\(597\) 0 0
\(598\) 38.9763i 0.0651777i
\(599\) −72.2734 −0.120657 −0.0603284 0.998179i \(-0.519215\pi\)
−0.0603284 + 0.998179i \(0.519215\pi\)
\(600\) 0 0
\(601\) 396.088i 0.659048i 0.944147 + 0.329524i \(0.106888\pi\)
−0.944147 + 0.329524i \(0.893112\pi\)
\(602\) 691.521 208.718i 1.14871 0.346707i
\(603\) 0 0
\(604\) 561.274 0.929262
\(605\) 49.4206i 0.0816870i
\(606\) 0 0
\(607\) 6.14590i 0.0101250i −0.999987 0.00506252i \(-0.998389\pi\)
0.999987 0.00506252i \(-0.00161146\pi\)
\(608\) 99.2824i 0.163293i
\(609\) 0 0
\(610\) 242.564 0.397646
\(611\) −274.046 −0.448521
\(612\) 0 0
\(613\) −197.286 −0.321837 −0.160918 0.986968i \(-0.551446\pi\)
−0.160918 + 0.986968i \(0.551446\pi\)
\(614\) 448.223i 0.730005i
\(615\) 0 0
\(616\) 226.743 68.4364i 0.368089 0.111098i
\(617\) −152.122 −0.246551 −0.123276 0.992372i \(-0.539340\pi\)
−0.123276 + 0.992372i \(0.539340\pi\)
\(618\) 0 0
\(619\) 700.262i 1.13128i −0.824653 0.565639i \(-0.808629\pi\)
0.824653 0.565639i \(-0.191371\pi\)
\(620\) 89.2048 0.143879
\(621\) 0 0
\(622\) 38.3712i 0.0616900i
\(623\) 179.267 + 593.947i 0.287749 + 0.953366i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 731.482i 1.16850i
\(627\) 0 0
\(628\) 108.636i 0.172988i
\(629\) 78.4867i 0.124780i
\(630\) 0 0
\(631\) −133.714 −0.211908 −0.105954 0.994371i \(-0.533790\pi\)
−0.105954 + 0.994371i \(0.533790\pi\)
\(632\) 41.8879 0.0662783
\(633\) 0 0
\(634\) 301.285 0.475214
\(635\) 564.425i 0.888858i
\(636\) 0 0
\(637\) 262.225 + 394.828i 0.411657 + 0.619824i
\(638\) 231.651 0.363089
\(639\) 0 0
\(640\) 25.2982i 0.0395285i
\(641\) 781.577 1.21931 0.609654 0.792667i \(-0.291308\pi\)
0.609654 + 0.792667i \(0.291308\pi\)
\(642\) 0 0
\(643\) 346.920i 0.539533i −0.962926 0.269766i \(-0.913054\pi\)
0.962926 0.269766i \(-0.0869465\pi\)
\(644\) 38.1877 11.5260i 0.0592976 0.0178974i
\(645\) 0 0
\(646\) 176.024 0.272483
\(647\) 971.001i 1.50077i −0.660998 0.750387i \(-0.729867\pi\)
0.660998 0.750387i \(-0.270133\pi\)
\(648\) 0 0
\(649\) 1210.13i 1.86461i
\(650\) 68.3980i 0.105228i
\(651\) 0 0
\(652\) 401.046 0.615101
\(653\) 326.428 0.499890 0.249945 0.968260i \(-0.419587\pi\)
0.249945 + 0.968260i \(0.419587\pi\)
\(654\) 0 0
\(655\) −461.879 −0.705158
\(656\) 113.161i 0.172501i
\(657\) 0 0
\(658\) −81.0401 268.501i −0.123161 0.408057i
\(659\) −305.606 −0.463743 −0.231871 0.972746i \(-0.574485\pi\)
−0.231871 + 0.972746i \(0.574485\pi\)
\(660\) 0 0
\(661\) 232.398i 0.351586i 0.984427 + 0.175793i \(0.0562489\pi\)
−0.984427 + 0.175793i \(0.943751\pi\)
\(662\) −413.680 −0.624895
\(663\) 0 0
\(664\) 172.412i 0.259657i
\(665\) −262.996 + 79.3784i −0.395482 + 0.119366i
\(666\) 0 0
\(667\) 39.0143 0.0584922
\(668\) 565.631i 0.846753i
\(669\) 0 0
\(670\) 241.094i 0.359842i
\(671\) 917.589i 1.36750i
\(672\) 0 0
\(673\) 283.273 0.420911 0.210455 0.977603i \(-0.432505\pi\)
0.210455 + 0.977603i \(0.432505\pi\)
\(674\) 173.780 0.257834
\(675\) 0 0
\(676\) 150.868 0.223178
\(677\) 425.511i 0.628524i 0.949336 + 0.314262i \(0.101757\pi\)
−0.949336 + 0.314262i \(0.898243\pi\)
\(678\) 0 0
\(679\) −38.1364 126.353i −0.0561655 0.186087i
\(680\) 44.8528 0.0659600
\(681\) 0 0
\(682\) 337.451i 0.494796i
\(683\) 126.763 0.185597 0.0927986 0.995685i \(-0.470419\pi\)
0.0927986 + 0.995685i \(0.470419\pi\)
\(684\) 0 0
\(685\) 400.395i 0.584519i
\(686\) −309.295 + 373.677i −0.450867 + 0.544719i
\(687\) 0 0
\(688\) −291.866 −0.424224
\(689\) 113.279i 0.164411i
\(690\) 0 0
\(691\) 124.435i 0.180080i −0.995938 0.0900401i \(-0.971300\pi\)
0.995938 0.0900401i \(-0.0286995\pi\)
\(692\) 254.557i 0.367857i
\(693\) 0 0
\(694\) 293.317 0.422647
\(695\) 66.7270 0.0960100
\(696\) 0 0
\(697\) −200.630 −0.287847
\(698\) 693.338i 0.993321i
\(699\) 0 0
\(700\) −67.0141 + 20.2265i −0.0957344 + 0.0288949i
\(701\) −273.794 −0.390576 −0.195288 0.980746i \(-0.562564\pi\)
−0.195288 + 0.980746i \(0.562564\pi\)
\(702\) 0 0
\(703\) 194.238i 0.276299i
\(704\) −95.7001 −0.135938
\(705\) 0 0
\(706\) 642.335i 0.909823i
\(707\) −61.0018 202.111i −0.0862826 0.285871i
\(708\) 0 0
\(709\) −462.551 −0.652399 −0.326200 0.945301i \(-0.605768\pi\)
−0.326200 + 0.945301i \(0.605768\pi\)
\(710\) 301.837i 0.425123i
\(711\) 0 0
\(712\) 250.684i 0.352084i
\(713\) 56.8330i 0.0797096i
\(714\) 0 0
\(715\) 258.741 0.361876
\(716\) −244.683 −0.341736
\(717\) 0 0
\(718\) 535.179 0.745375
\(719\) 773.673i 1.07604i 0.842932 + 0.538020i \(0.180828\pi\)
−0.842932 + 0.538020i \(0.819172\pi\)
\(720\) 0 0
\(721\) 305.155 + 1011.04i 0.423238 + 1.40227i
\(722\) −74.9093 −0.103753
\(723\) 0 0
\(724\) 194.721i 0.268952i
\(725\) −68.4647 −0.0944341
\(726\) 0 0
\(727\) 1233.31i 1.69644i 0.529645 + 0.848219i \(0.322325\pi\)
−0.529645 + 0.848219i \(0.677675\pi\)
\(728\) −55.3380 183.345i −0.0760137 0.251848i
\(729\) 0 0
\(730\) 381.638 0.522791
\(731\) 517.468i 0.707891i
\(732\) 0 0
\(733\) 1421.58i 1.93939i 0.244309 + 0.969697i \(0.421439\pi\)
−0.244309 + 0.969697i \(0.578561\pi\)
\(734\) 256.872i 0.349961i
\(735\) 0 0
\(736\) −16.1177 −0.0218990
\(737\) 912.030 1.23749
\(738\) 0 0
\(739\) 518.845 0.702091 0.351045 0.936358i \(-0.385826\pi\)
0.351045 + 0.936358i \(0.385826\pi\)
\(740\) 49.4939i 0.0668836i
\(741\) 0 0
\(742\) −110.987 + 33.4987i −0.149579 + 0.0451465i
\(743\) 1012.05 1.36212 0.681058 0.732230i \(-0.261520\pi\)
0.681058 + 0.732230i \(0.261520\pi\)
\(744\) 0 0
\(745\) 522.430i 0.701248i
\(746\) −427.937 −0.573642
\(747\) 0 0
\(748\) 169.673i 0.226835i
\(749\) −591.526 + 178.537i −0.789755 + 0.238367i
\(750\) 0 0
\(751\) −1274.40 −1.69694 −0.848470 0.529243i \(-0.822476\pi\)
−0.848470 + 0.529243i \(0.822476\pi\)
\(752\) 113.325i 0.150698i
\(753\) 0 0
\(754\) 187.314i 0.248427i
\(755\) 627.524i 0.831157i
\(756\) 0 0
\(757\) 1145.83 1.51364 0.756822 0.653621i \(-0.226751\pi\)
0.756822 + 0.653621i \(0.226751\pi\)
\(758\) −998.752 −1.31762
\(759\) 0 0
\(760\) 111.001 0.146054
\(761\) 580.236i 0.762465i −0.924479 0.381233i \(-0.875500\pi\)
0.924479 0.381233i \(-0.124500\pi\)
\(762\) 0 0
\(763\) 621.365 187.543i 0.814372 0.245797i
\(764\) 580.350 0.759621
\(765\) 0 0
\(766\) 337.441i 0.440524i
\(767\) −978.517 −1.27577
\(768\) 0 0
\(769\) 58.9626i 0.0766744i 0.999265 + 0.0383372i \(0.0122061\pi\)
−0.999265 + 0.0383372i \(0.987794\pi\)
\(770\) 76.5142 + 253.506i 0.0993691 + 0.329229i
\(771\) 0 0
\(772\) 181.558 0.235179
\(773\) 368.237i 0.476374i 0.971219 + 0.238187i \(0.0765531\pi\)
−0.971219 + 0.238187i \(0.923447\pi\)
\(774\) 0 0
\(775\) 99.7340i 0.128689i
\(776\) 53.3291i 0.0687231i
\(777\) 0 0
\(778\) −740.471 −0.951762
\(779\) −496.515 −0.637375
\(780\) 0 0
\(781\) −1141.81 −1.46199
\(782\) 28.5760i 0.0365422i
\(783\) 0 0
\(784\) 163.271 108.437i 0.208254 0.138312i
\(785\) −121.459 −0.154725
\(786\) 0 0
\(787\) 1063.41i 1.35122i 0.737261 + 0.675608i \(0.236119\pi\)
−0.737261 + 0.675608i \(0.763881\pi\)
\(788\) 106.742 0.135460
\(789\) 0 0
\(790\) 46.8321i 0.0592811i
\(791\) 425.501 128.426i 0.537928 0.162359i
\(792\) 0 0
\(793\) −741.967 −0.935646
\(794\) 311.041i 0.391740i
\(795\) 0 0
\(796\) 603.126i 0.757696i
\(797\) 274.031i 0.343828i 0.985112 + 0.171914i \(0.0549951\pi\)
−0.985112 + 0.171914i \(0.945005\pi\)
\(798\) 0 0
\(799\) −200.921 −0.251465
\(800\) 28.2843 0.0353553
\(801\) 0 0
\(802\) 791.797 0.987278
\(803\) 1443.69i 1.79787i
\(804\) 0 0
\(805\) 12.8864 + 42.6951i 0.0160080 + 0.0530374i
\(806\) −272.864 −0.338541
\(807\) 0 0
\(808\) 85.3037i 0.105574i
\(809\) −125.869 −0.155586 −0.0777930 0.996970i \(-0.524787\pi\)
−0.0777930 + 0.996970i \(0.524787\pi\)
\(810\) 0 0
\(811\) 566.987i 0.699121i −0.936914 0.349560i \(-0.886331\pi\)
0.936914 0.349560i \(-0.113669\pi\)
\(812\) 183.524 55.3920i 0.226015 0.0682167i
\(813\) 0 0
\(814\) −187.229 −0.230011
\(815\) 448.383i 0.550163i
\(816\) 0 0
\(817\) 1280.62i 1.56747i
\(818\) 675.207i 0.825436i
\(819\) 0 0
\(820\) −126.517 −0.154290
\(821\) 444.471 0.541377 0.270689 0.962667i \(-0.412749\pi\)
0.270689 + 0.962667i \(0.412749\pi\)
\(822\) 0 0
\(823\) 1028.74 1.24999 0.624995 0.780629i \(-0.285101\pi\)
0.624995 + 0.780629i \(0.285101\pi\)
\(824\) 426.722i 0.517867i
\(825\) 0 0
\(826\) −289.364 958.719i −0.350320 1.16068i
\(827\) 515.113 0.622870 0.311435 0.950267i \(-0.399190\pi\)
0.311435 + 0.950267i \(0.399190\pi\)
\(828\) 0 0
\(829\) 1334.96i 1.61032i 0.593055 + 0.805162i \(0.297922\pi\)
−0.593055 + 0.805162i \(0.702078\pi\)
\(830\) −192.763 −0.232244
\(831\) 0 0
\(832\) 77.3835i 0.0930090i
\(833\) 192.254 + 289.474i 0.230797 + 0.347508i
\(834\) 0 0
\(835\) 632.394 0.757359
\(836\) 419.903i 0.502277i
\(837\) 0 0
\(838\) 875.116i 1.04429i
\(839\) 2.13640i 0.00254637i −0.999999 0.00127318i \(-0.999595\pi\)
0.999999 0.00127318i \(-0.000405267\pi\)
\(840\) 0 0
\(841\) −653.503 −0.777055
\(842\) −33.6108 −0.0399179
\(843\) 0 0
\(844\) −149.582 −0.177230
\(845\) 168.676i 0.199617i
\(846\) 0 0
\(847\) 148.112 44.7037i 0.174866 0.0527788i
\(848\) 46.8439 0.0552404
\(849\) 0 0
\(850\) 50.1470i 0.0589964i
\(851\) −31.5329 −0.0370539
\(852\) 0 0
\(853\) 89.0278i 0.104370i −0.998637 0.0521851i \(-0.983381\pi\)
0.998637 0.0521851i \(-0.0166186\pi\)
\(854\) −219.412 726.955i −0.256923 0.851235i
\(855\) 0 0
\(856\) 249.662 0.291662
\(857\) 820.566i 0.957486i 0.877955 + 0.478743i \(0.158907\pi\)
−0.877955 + 0.478743i \(0.841093\pi\)
\(858\) 0 0
\(859\) 534.947i 0.622756i −0.950286 0.311378i \(-0.899210\pi\)
0.950286 0.311378i \(-0.100790\pi\)
\(860\) 326.317i 0.379438i
\(861\) 0 0
\(862\) −346.469 −0.401936
\(863\) 276.972 0.320941 0.160471 0.987041i \(-0.448699\pi\)
0.160471 + 0.987041i \(0.448699\pi\)
\(864\) 0 0
\(865\) 284.603 0.329021
\(866\) 891.661i 1.02963i
\(867\) 0 0
\(868\) −80.6906 267.343i −0.0929616 0.307999i
\(869\) 177.160 0.203867
\(870\) 0 0
\(871\) 737.472i 0.846695i
\(872\) −262.256 −0.300753
\(873\) 0 0
\(874\) 70.7195i 0.0809148i
\(875\) −22.6139 74.9240i −0.0258444 0.0856275i
\(876\) 0 0
\(877\) 420.192 0.479125 0.239562 0.970881i \(-0.422996\pi\)
0.239562 + 0.970881i \(0.422996\pi\)
\(878\) 112.051i 0.127621i
\(879\) 0 0
\(880\) 106.996i 0.121586i
\(881\) 897.207i 1.01840i −0.860649 0.509198i \(-0.829942\pi\)
0.860649 0.509198i \(-0.170058\pi\)
\(882\) 0 0
\(883\) −1515.08 −1.71584 −0.857918 0.513786i \(-0.828243\pi\)
−0.857918 + 0.513786i \(0.828243\pi\)
\(884\) −137.198 −0.155201
\(885\) 0 0
\(886\) 700.023 0.790093
\(887\) 976.074i 1.10042i −0.835026 0.550211i \(-0.814547\pi\)
0.835026 0.550211i \(-0.185453\pi\)
\(888\) 0 0
\(889\) −1691.56 + 510.553i −1.90277 + 0.574300i
\(890\) 280.273 0.314914
\(891\) 0 0
\(892\) 826.259i 0.926299i
\(893\) −497.236 −0.556815
\(894\) 0 0
\(895\) 273.564i 0.305658i
\(896\) −75.8178 + 22.8836i −0.0846181 + 0.0255398i
\(897\) 0 0
\(898\) 762.360 0.848953
\(899\) 273.130i 0.303816i
\(900\) 0 0
\(901\) 83.0524i 0.0921781i
\(902\) 478.600i 0.530598i
\(903\) 0 0
\(904\) −179.589 −0.198660
\(905\) 217.705 0.240558
\(906\) 0 0
\(907\) 1329.48 1.46580 0.732901 0.680335i \(-0.238166\pi\)
0.732901 + 0.680335i \(0.238166\pi\)
\(908\) 597.382i 0.657910i
\(909\) 0 0
\(910\) 204.986 61.8698i 0.225260 0.0679887i
\(911\) 1270.75 1.39489 0.697447 0.716637i \(-0.254319\pi\)
0.697447 + 0.716637i \(0.254319\pi\)
\(912\) 0 0
\(913\) 729.198i 0.798684i
\(914\) 375.377 0.410697
\(915\) 0 0
\(916\) 646.647i 0.705946i
\(917\) 417.795 + 1384.23i 0.455610 + 1.50952i
\(918\) 0 0
\(919\) −1641.49 −1.78617 −0.893083 0.449893i \(-0.851462\pi\)
−0.893083 + 0.449893i \(0.851462\pi\)
\(920\) 18.0201i 0.0195871i
\(921\) 0 0
\(922\) 507.534i 0.550471i
\(923\) 923.275i 1.00030i
\(924\) 0 0
\(925\) 55.3359 0.0598225
\(926\) −159.304 −0.172035
\(927\) 0 0
\(928\) −77.4590 −0.0834687
\(929\) 1386.92i 1.49292i −0.665433 0.746458i \(-0.731753\pi\)
0.665433 0.746458i \(-0.268247\pi\)
\(930\) 0 0
\(931\) 475.788 + 716.386i 0.511050 + 0.769480i
\(932\) 647.902 0.695174
\(933\) 0 0
\(934\) 579.089i 0.620010i
\(935\) 189.700 0.202888
\(936\) 0 0
\(937\) 359.625i 0.383805i 0.981414 + 0.191903i \(0.0614658\pi\)
−0.981414 + 0.191903i \(0.938534\pi\)
\(938\) 722.550 218.083i 0.770309 0.232498i
\(939\) 0 0
\(940\) −126.701 −0.134788
\(941\) 1575.46i 1.67424i 0.547020 + 0.837119i \(0.315762\pi\)
−0.547020 + 0.837119i \(0.684238\pi\)
\(942\) 0 0
\(943\) 80.6051i 0.0854773i
\(944\) 404.641i 0.428645i
\(945\) 0 0
\(946\) −1234.42 −1.30488
\(947\) 1680.38 1.77442 0.887212 0.461361i \(-0.152639\pi\)
0.887212 + 0.461361i \(0.152639\pi\)
\(948\) 0 0
\(949\) −1167.37 −1.23011
\(950\) 124.103i 0.130635i
\(951\) 0 0
\(952\) −40.5718 134.422i −0.0426175 0.141200i
\(953\) −1419.84 −1.48986 −0.744931 0.667142i \(-0.767517\pi\)
−0.744931 + 0.667142i \(0.767517\pi\)
\(954\) 0 0
\(955\) 648.851i 0.679425i
\(956\) 724.918 0.758283
\(957\) 0 0
\(958\) 140.756i 0.146926i
\(959\) −1199.97 + 362.180i −1.25127 + 0.377664i
\(960\) 0 0
\(961\) 563.125 0.585978
\(962\) 151.394i 0.157375i
\(963\) 0 0
\(964\) 249.725i 0.259051i
\(965\) 202.988i 0.210350i
\(966\) 0 0
\(967\) −1061.44 −1.09766 −0.548829 0.835934i \(-0.684926\pi\)
−0.548829 + 0.835934i \(0.684926\pi\)
\(968\) −62.5127 −0.0645792
\(969\) 0 0
\(970\) −59.6237 −0.0614678
\(971\) 1375.99i 1.41709i 0.705668 + 0.708543i \(0.250647\pi\)
−0.705668 + 0.708543i \(0.749353\pi\)
\(972\) 0 0
\(973\) −60.3582 199.978i −0.0620331 0.205527i
\(974\) 175.003 0.179675
\(975\) 0 0
\(976\) 306.822i 0.314367i
\(977\) −541.316 −0.554059 −0.277030 0.960861i \(-0.589350\pi\)
−0.277030 + 0.960861i \(0.589350\pi\)
\(978\) 0 0
\(979\) 1060.24i 1.08298i
\(980\) 121.236 + 182.543i 0.123710 + 0.186268i
\(981\) 0 0
\(982\) 59.7951 0.0608912
\(983\) 975.992i 0.992871i 0.868074 + 0.496435i \(0.165358\pi\)
−0.868074 + 0.496435i \(0.834642\pi\)
\(984\) 0 0
\(985\) 119.341i 0.121159i
\(986\) 137.332i 0.139282i
\(987\) 0 0
\(988\) −339.536 −0.343660
\(989\) −207.898 −0.210211
\(990\) 0 0
\(991\) 459.246 0.463417 0.231708 0.972785i \(-0.425568\pi\)
0.231708 + 0.972785i \(0.425568\pi\)
\(992\) 112.836i 0.113746i
\(993\) 0 0
\(994\) −904.595 + 273.028i −0.910055 + 0.274676i
\(995\) 674.316 0.677704
\(996\) 0 0
\(997\) 745.998i 0.748242i 0.927380 + 0.374121i \(0.122056\pi\)
−0.927380 + 0.374121i \(0.877944\pi\)
\(998\) −123.464 −0.123712
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.3.f.c.181.4 8
3.2 odd 2 210.3.f.a.181.7 yes 8
7.6 odd 2 inner 630.3.f.c.181.2 8
12.11 even 2 1680.3.s.a.1441.1 8
15.2 even 4 1050.3.h.b.349.15 16
15.8 even 4 1050.3.h.b.349.2 16
15.14 odd 2 1050.3.f.b.601.1 8
21.20 even 2 210.3.f.a.181.6 8
84.83 odd 2 1680.3.s.a.1441.7 8
105.62 odd 4 1050.3.h.b.349.10 16
105.83 odd 4 1050.3.h.b.349.7 16
105.104 even 2 1050.3.f.b.601.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
210.3.f.a.181.6 8 21.20 even 2
210.3.f.a.181.7 yes 8 3.2 odd 2
630.3.f.c.181.2 8 7.6 odd 2 inner
630.3.f.c.181.4 8 1.1 even 1 trivial
1050.3.f.b.601.1 8 15.14 odd 2
1050.3.f.b.601.3 8 105.104 even 2
1050.3.h.b.349.2 16 15.8 even 4
1050.3.h.b.349.7 16 105.83 odd 4
1050.3.h.b.349.10 16 105.62 odd 4
1050.3.h.b.349.15 16 15.2 even 4
1680.3.s.a.1441.1 8 12.11 even 2
1680.3.s.a.1441.7 8 84.83 odd 2