Properties

Label 1680.3.s.a.1441.7
Level $1680$
Weight $3$
Character 1680.1441
Analytic conductor $45.777$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1680,3,Mod(1441,1680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1680.1441"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1680.s (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(45.7766844125\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.3317760000.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{6} + 7x^{4} - 36x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1441.7
Root \(1.72286 + 0.178197i\) of defining polynomial
Character \(\chi\) \(=\) 1680.1441
Dual form 1680.3.s.a.1441.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73205i q^{3} +2.23607i q^{5} +(-6.70141 - 2.02265i) q^{7} -3.00000 q^{9} -11.9625 q^{11} -9.67294i q^{13} -3.87298 q^{15} +7.09185i q^{17} +17.5508i q^{19} +(3.50333 - 11.6072i) q^{21} +2.84923 q^{23} -5.00000 q^{25} -5.19615i q^{27} -13.6929 q^{29} -19.9468i q^{31} -20.7197i q^{33} +(4.52277 - 14.9848i) q^{35} -11.0672 q^{37} +16.7540 q^{39} +28.2902i q^{41} +72.9666 q^{43} -6.70820i q^{45} -28.3312i q^{47} +(40.8178 + 27.1092i) q^{49} -12.2834 q^{51} -11.7110 q^{53} -26.7490i q^{55} -30.3989 q^{57} -101.160i q^{59} -76.7055i q^{61} +(20.1042 + 6.06794i) q^{63} +21.6294 q^{65} +76.2407 q^{67} +4.93501i q^{69} +95.4493 q^{71} -120.684i q^{73} -8.66025i q^{75} +(80.1657 + 24.1959i) q^{77} +14.8096 q^{79} +9.00000 q^{81} +60.9570i q^{83} -15.8579 q^{85} -23.7169i q^{87} +88.6302i q^{89} +(-19.5649 + 64.8223i) q^{91} +34.5489 q^{93} -39.2448 q^{95} +18.8547i q^{97} +35.8875 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 24 q^{9} + 16 q^{11} - 40 q^{25} - 144 q^{29} + 80 q^{35} - 48 q^{37} + 48 q^{39} + 64 q^{43} - 24 q^{49} + 128 q^{53} + 144 q^{57} + 80 q^{65} + 192 q^{67} - 176 q^{71} + 192 q^{77} + 288 q^{79}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73205i 0.577350i
\(4\) 0 0
\(5\) 2.23607i 0.447214i
\(6\) 0 0
\(7\) −6.70141 2.02265i −0.957344 0.288949i
\(8\) 0 0
\(9\) −3.00000 −0.333333
\(10\) 0 0
\(11\) −11.9625 −1.08750 −0.543750 0.839247i \(-0.682996\pi\)
−0.543750 + 0.839247i \(0.682996\pi\)
\(12\) 0 0
\(13\) 9.67294i 0.744072i −0.928218 0.372036i \(-0.878660\pi\)
0.928218 0.372036i \(-0.121340\pi\)
\(14\) 0 0
\(15\) −3.87298 −0.258199
\(16\) 0 0
\(17\) 7.09185i 0.417168i 0.978004 + 0.208584i \(0.0668854\pi\)
−0.978004 + 0.208584i \(0.933115\pi\)
\(18\) 0 0
\(19\) 17.5508i 0.923727i 0.886951 + 0.461864i \(0.152819\pi\)
−0.886951 + 0.461864i \(0.847181\pi\)
\(20\) 0 0
\(21\) 3.50333 11.6072i 0.166825 0.552723i
\(22\) 0 0
\(23\) 2.84923 0.123879 0.0619397 0.998080i \(-0.480271\pi\)
0.0619397 + 0.998080i \(0.480271\pi\)
\(24\) 0 0
\(25\) −5.00000 −0.200000
\(26\) 0 0
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) −13.6929 −0.472170 −0.236085 0.971732i \(-0.575864\pi\)
−0.236085 + 0.971732i \(0.575864\pi\)
\(30\) 0 0
\(31\) 19.9468i 0.643445i −0.946834 0.321723i \(-0.895738\pi\)
0.946834 0.321723i \(-0.104262\pi\)
\(32\) 0 0
\(33\) 20.7197i 0.627869i
\(34\) 0 0
\(35\) 4.52277 14.9848i 0.129222 0.428137i
\(36\) 0 0
\(37\) −11.0672 −0.299113 −0.149556 0.988753i \(-0.547785\pi\)
−0.149556 + 0.988753i \(0.547785\pi\)
\(38\) 0 0
\(39\) 16.7540 0.429590
\(40\) 0 0
\(41\) 28.2902i 0.690004i 0.938602 + 0.345002i \(0.112122\pi\)
−0.938602 + 0.345002i \(0.887878\pi\)
\(42\) 0 0
\(43\) 72.9666 1.69690 0.848449 0.529278i \(-0.177537\pi\)
0.848449 + 0.529278i \(0.177537\pi\)
\(44\) 0 0
\(45\) 6.70820i 0.149071i
\(46\) 0 0
\(47\) 28.3312i 0.602792i −0.953499 0.301396i \(-0.902547\pi\)
0.953499 0.301396i \(-0.0974526\pi\)
\(48\) 0 0
\(49\) 40.8178 + 27.1092i 0.833016 + 0.553248i
\(50\) 0 0
\(51\) −12.2834 −0.240852
\(52\) 0 0
\(53\) −11.7110 −0.220962 −0.110481 0.993878i \(-0.535239\pi\)
−0.110481 + 0.993878i \(0.535239\pi\)
\(54\) 0 0
\(55\) 26.7490i 0.486345i
\(56\) 0 0
\(57\) −30.3989 −0.533314
\(58\) 0 0
\(59\) 101.160i 1.71458i −0.514833 0.857291i \(-0.672146\pi\)
0.514833 0.857291i \(-0.327854\pi\)
\(60\) 0 0
\(61\) 76.7055i 1.25747i −0.777621 0.628733i \(-0.783574\pi\)
0.777621 0.628733i \(-0.216426\pi\)
\(62\) 0 0
\(63\) 20.1042 + 6.06794i 0.319115 + 0.0963165i
\(64\) 0 0
\(65\) 21.6294 0.332759
\(66\) 0 0
\(67\) 76.2407 1.13792 0.568960 0.822365i \(-0.307346\pi\)
0.568960 + 0.822365i \(0.307346\pi\)
\(68\) 0 0
\(69\) 4.93501i 0.0715218i
\(70\) 0 0
\(71\) 95.4493 1.34436 0.672178 0.740389i \(-0.265359\pi\)
0.672178 + 0.740389i \(0.265359\pi\)
\(72\) 0 0
\(73\) 120.684i 1.65321i −0.562782 0.826605i \(-0.690269\pi\)
0.562782 0.826605i \(-0.309731\pi\)
\(74\) 0 0
\(75\) 8.66025i 0.115470i
\(76\) 0 0
\(77\) 80.1657 + 24.1959i 1.04111 + 0.314233i
\(78\) 0 0
\(79\) 14.8096 0.187463 0.0937317 0.995597i \(-0.470120\pi\)
0.0937317 + 0.995597i \(0.470120\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) 60.9570i 0.734422i 0.930138 + 0.367211i \(0.119687\pi\)
−0.930138 + 0.367211i \(0.880313\pi\)
\(84\) 0 0
\(85\) −15.8579 −0.186563
\(86\) 0 0
\(87\) 23.7169i 0.272608i
\(88\) 0 0
\(89\) 88.6302i 0.995845i 0.867222 + 0.497922i \(0.165904\pi\)
−0.867222 + 0.497922i \(0.834096\pi\)
\(90\) 0 0
\(91\) −19.5649 + 64.8223i −0.214999 + 0.712333i
\(92\) 0 0
\(93\) 34.5489 0.371493
\(94\) 0 0
\(95\) −39.2448 −0.413103
\(96\) 0 0
\(97\) 18.8547i 0.194378i 0.995266 + 0.0971891i \(0.0309852\pi\)
−0.995266 + 0.0971891i \(0.969015\pi\)
\(98\) 0 0
\(99\) 35.8875 0.362500
\(100\) 0 0
\(101\) 30.1594i 0.298608i −0.988791 0.149304i \(-0.952297\pi\)
0.988791 0.149304i \(-0.0477033\pi\)
\(102\) 0 0
\(103\) 150.869i 1.46475i 0.680903 + 0.732374i \(0.261588\pi\)
−0.680903 + 0.732374i \(0.738412\pi\)
\(104\) 0 0
\(105\) 25.9545 + 7.83368i 0.247185 + 0.0746064i
\(106\) 0 0
\(107\) −88.2689 −0.824943 −0.412472 0.910970i \(-0.635334\pi\)
−0.412472 + 0.910970i \(0.635334\pi\)
\(108\) 0 0
\(109\) 92.7216 0.850657 0.425328 0.905039i \(-0.360159\pi\)
0.425328 + 0.905039i \(0.360159\pi\)
\(110\) 0 0
\(111\) 19.1689i 0.172693i
\(112\) 0 0
\(113\) −63.4942 −0.561896 −0.280948 0.959723i \(-0.590649\pi\)
−0.280948 + 0.959723i \(0.590649\pi\)
\(114\) 0 0
\(115\) 6.37107i 0.0554006i
\(116\) 0 0
\(117\) 29.0188i 0.248024i
\(118\) 0 0
\(119\) 14.3443 47.5254i 0.120540 0.399373i
\(120\) 0 0
\(121\) 22.1016 0.182658
\(122\) 0 0
\(123\) −49.0000 −0.398374
\(124\) 0 0
\(125\) 11.1803i 0.0894427i
\(126\) 0 0
\(127\) 252.418 1.98755 0.993773 0.111423i \(-0.0355408\pi\)
0.993773 + 0.111423i \(0.0355408\pi\)
\(128\) 0 0
\(129\) 126.382i 0.979704i
\(130\) 0 0
\(131\) 206.558i 1.57678i −0.615174 0.788391i \(-0.710914\pi\)
0.615174 0.788391i \(-0.289086\pi\)
\(132\) 0 0
\(133\) 35.4991 117.615i 0.266910 0.884325i
\(134\) 0 0
\(135\) 11.6190 0.0860663
\(136\) 0 0
\(137\) 179.062 1.30702 0.653512 0.756916i \(-0.273295\pi\)
0.653512 + 0.756916i \(0.273295\pi\)
\(138\) 0 0
\(139\) 29.8412i 0.214685i −0.994222 0.107342i \(-0.965766\pi\)
0.994222 0.107342i \(-0.0342341\pi\)
\(140\) 0 0
\(141\) 49.0711 0.348022
\(142\) 0 0
\(143\) 115.713i 0.809179i
\(144\) 0 0
\(145\) 30.6184i 0.211161i
\(146\) 0 0
\(147\) −46.9545 + 70.6985i −0.319418 + 0.480942i
\(148\) 0 0
\(149\) 233.638 1.56804 0.784020 0.620736i \(-0.213166\pi\)
0.784020 + 0.620736i \(0.213166\pi\)
\(150\) 0 0
\(151\) −280.637 −1.85852 −0.929262 0.369421i \(-0.879556\pi\)
−0.929262 + 0.369421i \(0.879556\pi\)
\(152\) 0 0
\(153\) 21.2756i 0.139056i
\(154\) 0 0
\(155\) 44.6024 0.287757
\(156\) 0 0
\(157\) 54.3182i 0.345976i −0.984924 0.172988i \(-0.944658\pi\)
0.984924 0.172988i \(-0.0553422\pi\)
\(158\) 0 0
\(159\) 20.2840i 0.127572i
\(160\) 0 0
\(161\) −19.0938 5.76298i −0.118595 0.0357949i
\(162\) 0 0
\(163\) −200.523 −1.23020 −0.615101 0.788448i \(-0.710885\pi\)
−0.615101 + 0.788448i \(0.710885\pi\)
\(164\) 0 0
\(165\) 46.3306 0.280791
\(166\) 0 0
\(167\) 282.815i 1.69351i 0.531987 + 0.846753i \(0.321446\pi\)
−0.531987 + 0.846753i \(0.678554\pi\)
\(168\) 0 0
\(169\) 75.4342 0.446356
\(170\) 0 0
\(171\) 52.6524i 0.307909i
\(172\) 0 0
\(173\) 127.279i 0.735714i −0.929882 0.367857i \(-0.880092\pi\)
0.929882 0.367857i \(-0.119908\pi\)
\(174\) 0 0
\(175\) 33.5071 + 10.1132i 0.191469 + 0.0577899i
\(176\) 0 0
\(177\) 175.215 0.989914
\(178\) 0 0
\(179\) −122.342 −0.683472 −0.341736 0.939796i \(-0.611015\pi\)
−0.341736 + 0.939796i \(0.611015\pi\)
\(180\) 0 0
\(181\) 97.3605i 0.537903i 0.963154 + 0.268952i \(0.0866772\pi\)
−0.963154 + 0.268952i \(0.913323\pi\)
\(182\) 0 0
\(183\) 132.858 0.725999
\(184\) 0 0
\(185\) 24.7469i 0.133767i
\(186\) 0 0
\(187\) 84.8363i 0.453670i
\(188\) 0 0
\(189\) −10.5100 + 34.8216i −0.0556083 + 0.184241i
\(190\) 0 0
\(191\) 290.175 1.51924 0.759621 0.650367i \(-0.225385\pi\)
0.759621 + 0.650367i \(0.225385\pi\)
\(192\) 0 0
\(193\) 90.7789 0.470357 0.235179 0.971952i \(-0.424433\pi\)
0.235179 + 0.971952i \(0.424433\pi\)
\(194\) 0 0
\(195\) 37.4631i 0.192119i
\(196\) 0 0
\(197\) −53.3711 −0.270919 −0.135460 0.990783i \(-0.543251\pi\)
−0.135460 + 0.990783i \(0.543251\pi\)
\(198\) 0 0
\(199\) 301.563i 1.51539i −0.652607 0.757696i \(-0.726325\pi\)
0.652607 0.757696i \(-0.273675\pi\)
\(200\) 0 0
\(201\) 132.053i 0.656979i
\(202\) 0 0
\(203\) 91.7620 + 27.6960i 0.452030 + 0.136433i
\(204\) 0 0
\(205\) −63.2587 −0.308579
\(206\) 0 0
\(207\) −8.54768 −0.0412931
\(208\) 0 0
\(209\) 209.952i 1.00455i
\(210\) 0 0
\(211\) 74.7911 0.354460 0.177230 0.984169i \(-0.443286\pi\)
0.177230 + 0.984169i \(0.443286\pi\)
\(212\) 0 0
\(213\) 165.323i 0.776165i
\(214\) 0 0
\(215\) 163.158i 0.758876i
\(216\) 0 0
\(217\) −40.3453 + 133.672i −0.185923 + 0.615999i
\(218\) 0 0
\(219\) 209.032 0.954482
\(220\) 0 0
\(221\) 68.5991 0.310403
\(222\) 0 0
\(223\) 413.129i 1.85260i −0.376789 0.926299i \(-0.622972\pi\)
0.376789 0.926299i \(-0.377028\pi\)
\(224\) 0 0
\(225\) 15.0000 0.0666667
\(226\) 0 0
\(227\) 298.691i 1.31582i 0.753097 + 0.657910i \(0.228559\pi\)
−0.753097 + 0.657910i \(0.771441\pi\)
\(228\) 0 0
\(229\) 323.323i 1.41189i −0.708265 0.705946i \(-0.750522\pi\)
0.708265 0.705946i \(-0.249478\pi\)
\(230\) 0 0
\(231\) −41.9086 + 138.851i −0.181422 + 0.601087i
\(232\) 0 0
\(233\) −323.951 −1.39035 −0.695174 0.718841i \(-0.744673\pi\)
−0.695174 + 0.718841i \(0.744673\pi\)
\(234\) 0 0
\(235\) 63.3505 0.269577
\(236\) 0 0
\(237\) 25.6510i 0.108232i
\(238\) 0 0
\(239\) 362.459 1.51657 0.758283 0.651926i \(-0.226039\pi\)
0.758283 + 0.651926i \(0.226039\pi\)
\(240\) 0 0
\(241\) 124.863i 0.518102i 0.965864 + 0.259051i \(0.0834098\pi\)
−0.965864 + 0.259051i \(0.916590\pi\)
\(242\) 0 0
\(243\) 15.5885i 0.0641500i
\(244\) 0 0
\(245\) −60.6179 + 91.2714i −0.247420 + 0.372536i
\(246\) 0 0
\(247\) 169.768 0.687320
\(248\) 0 0
\(249\) −105.581 −0.424018
\(250\) 0 0
\(251\) 18.4515i 0.0735121i −0.999324 0.0367561i \(-0.988298\pi\)
0.999324 0.0367561i \(-0.0117025\pi\)
\(252\) 0 0
\(253\) −34.0839 −0.134719
\(254\) 0 0
\(255\) 27.4666i 0.107712i
\(256\) 0 0
\(257\) 428.659i 1.66793i 0.551816 + 0.833966i \(0.313935\pi\)
−0.551816 + 0.833966i \(0.686065\pi\)
\(258\) 0 0
\(259\) 74.1657 + 22.3850i 0.286354 + 0.0864285i
\(260\) 0 0
\(261\) 41.0788 0.157390
\(262\) 0 0
\(263\) 133.575 0.507888 0.253944 0.967219i \(-0.418272\pi\)
0.253944 + 0.967219i \(0.418272\pi\)
\(264\) 0 0
\(265\) 26.1865i 0.0988170i
\(266\) 0 0
\(267\) −153.512 −0.574951
\(268\) 0 0
\(269\) 493.257i 1.83367i −0.399269 0.916834i \(-0.630736\pi\)
0.399269 0.916834i \(-0.369264\pi\)
\(270\) 0 0
\(271\) 432.545i 1.59611i −0.602586 0.798054i \(-0.705863\pi\)
0.602586 0.798054i \(-0.294137\pi\)
\(272\) 0 0
\(273\) −112.276 33.8875i −0.411266 0.124130i
\(274\) 0 0
\(275\) 59.8125 0.217500
\(276\) 0 0
\(277\) −171.941 −0.620724 −0.310362 0.950618i \(-0.600450\pi\)
−0.310362 + 0.950618i \(0.600450\pi\)
\(278\) 0 0
\(279\) 59.8404i 0.214482i
\(280\) 0 0
\(281\) 74.7499 0.266014 0.133007 0.991115i \(-0.457537\pi\)
0.133007 + 0.991115i \(0.457537\pi\)
\(282\) 0 0
\(283\) 165.904i 0.586232i 0.956077 + 0.293116i \(0.0946922\pi\)
−0.956077 + 0.293116i \(0.905308\pi\)
\(284\) 0 0
\(285\) 67.9740i 0.238505i
\(286\) 0 0
\(287\) 57.2210 189.584i 0.199376 0.660571i
\(288\) 0 0
\(289\) 238.706 0.825971
\(290\) 0 0
\(291\) −32.6573 −0.112224
\(292\) 0 0
\(293\) 495.925i 1.69258i 0.532725 + 0.846289i \(0.321168\pi\)
−0.532725 + 0.846289i \(0.678832\pi\)
\(294\) 0 0
\(295\) 226.201 0.766784
\(296\) 0 0
\(297\) 62.1590i 0.209290i
\(298\) 0 0
\(299\) 27.5604i 0.0921753i
\(300\) 0 0
\(301\) −488.979 147.586i −1.62452 0.490318i
\(302\) 0 0
\(303\) 52.2376 0.172401
\(304\) 0 0
\(305\) 171.519 0.562356
\(306\) 0 0
\(307\) 316.942i 1.03238i −0.856473 0.516192i \(-0.827349\pi\)
0.856473 0.516192i \(-0.172651\pi\)
\(308\) 0 0
\(309\) −261.313 −0.845673
\(310\) 0 0
\(311\) 27.1325i 0.0872428i 0.999048 + 0.0436214i \(0.0138895\pi\)
−0.999048 + 0.0436214i \(0.986110\pi\)
\(312\) 0 0
\(313\) 517.236i 1.65251i −0.563296 0.826255i \(-0.690467\pi\)
0.563296 0.826255i \(-0.309533\pi\)
\(314\) 0 0
\(315\) −13.5683 + 44.9544i −0.0430740 + 0.142712i
\(316\) 0 0
\(317\) 213.041 0.672054 0.336027 0.941852i \(-0.390917\pi\)
0.336027 + 0.941852i \(0.390917\pi\)
\(318\) 0 0
\(319\) 163.802 0.513486
\(320\) 0 0
\(321\) 152.886i 0.476281i
\(322\) 0 0
\(323\) −124.468 −0.385349
\(324\) 0 0
\(325\) 48.3647i 0.148814i
\(326\) 0 0
\(327\) 160.599i 0.491127i
\(328\) 0 0
\(329\) −57.3040 + 189.859i −0.174176 + 0.577079i
\(330\) 0 0
\(331\) −292.516 −0.883735 −0.441867 0.897080i \(-0.645684\pi\)
−0.441867 + 0.897080i \(0.645684\pi\)
\(332\) 0 0
\(333\) 33.2015 0.0997042
\(334\) 0 0
\(335\) 170.479i 0.508894i
\(336\) 0 0
\(337\) −122.881 −0.364633 −0.182316 0.983240i \(-0.558360\pi\)
−0.182316 + 0.983240i \(0.558360\pi\)
\(338\) 0 0
\(339\) 109.975i 0.324411i
\(340\) 0 0
\(341\) 238.614i 0.699747i
\(342\) 0 0
\(343\) −218.705 264.230i −0.637623 0.770349i
\(344\) 0 0
\(345\) −11.0350 −0.0319855
\(346\) 0 0
\(347\) −207.406 −0.597713 −0.298856 0.954298i \(-0.596605\pi\)
−0.298856 + 0.954298i \(0.596605\pi\)
\(348\) 0 0
\(349\) 490.264i 1.40477i −0.711798 0.702384i \(-0.752119\pi\)
0.711798 0.702384i \(-0.247881\pi\)
\(350\) 0 0
\(351\) −50.2621 −0.143197
\(352\) 0 0
\(353\) 454.199i 1.28668i −0.765579 0.643342i \(-0.777547\pi\)
0.765579 0.643342i \(-0.222453\pi\)
\(354\) 0 0
\(355\) 213.431i 0.601214i
\(356\) 0 0
\(357\) 82.3164 + 24.8451i 0.230578 + 0.0695940i
\(358\) 0 0
\(359\) −378.429 −1.05412 −0.527060 0.849828i \(-0.676706\pi\)
−0.527060 + 0.849828i \(0.676706\pi\)
\(360\) 0 0
\(361\) 52.9689 0.146728
\(362\) 0 0
\(363\) 38.2810i 0.105457i
\(364\) 0 0
\(365\) 269.859 0.739338
\(366\) 0 0
\(367\) 181.636i 0.494920i −0.968898 0.247460i \(-0.920404\pi\)
0.968898 0.247460i \(-0.0795959\pi\)
\(368\) 0 0
\(369\) 84.8705i 0.230001i
\(370\) 0 0
\(371\) 78.4800 + 23.6871i 0.211536 + 0.0638467i
\(372\) 0 0
\(373\) 302.597 0.811253 0.405626 0.914039i \(-0.367053\pi\)
0.405626 + 0.914039i \(0.367053\pi\)
\(374\) 0 0
\(375\) 19.3649 0.0516398
\(376\) 0 0
\(377\) 132.451i 0.351329i
\(378\) 0 0
\(379\) −706.225 −1.86339 −0.931695 0.363243i \(-0.881670\pi\)
−0.931695 + 0.363243i \(0.881670\pi\)
\(380\) 0 0
\(381\) 437.201i 1.14751i
\(382\) 0 0
\(383\) 238.607i 0.622995i −0.950247 0.311498i \(-0.899169\pi\)
0.950247 0.311498i \(-0.100831\pi\)
\(384\) 0 0
\(385\) −54.1037 + 179.256i −0.140529 + 0.465600i
\(386\) 0 0
\(387\) −218.900 −0.565632
\(388\) 0 0
\(389\) −523.592 −1.34599 −0.672997 0.739645i \(-0.734993\pi\)
−0.672997 + 0.739645i \(0.734993\pi\)
\(390\) 0 0
\(391\) 20.2063i 0.0516785i
\(392\) 0 0
\(393\) 357.770 0.910356
\(394\) 0 0
\(395\) 33.1153i 0.0838362i
\(396\) 0 0
\(397\) 219.940i 0.554004i 0.960869 + 0.277002i \(0.0893408\pi\)
−0.960869 + 0.277002i \(0.910659\pi\)
\(398\) 0 0
\(399\) 203.716 + 61.4862i 0.510565 + 0.154101i
\(400\) 0 0
\(401\) 559.885 1.39622 0.698111 0.715989i \(-0.254024\pi\)
0.698111 + 0.715989i \(0.254024\pi\)
\(402\) 0 0
\(403\) −192.944 −0.478770
\(404\) 0 0
\(405\) 20.1246i 0.0496904i
\(406\) 0 0
\(407\) 132.391 0.325285
\(408\) 0 0
\(409\) 477.443i 1.16734i −0.811990 0.583672i \(-0.801616\pi\)
0.811990 0.583672i \(-0.198384\pi\)
\(410\) 0 0
\(411\) 310.145i 0.754611i
\(412\) 0 0
\(413\) −204.611 + 677.917i −0.495427 + 1.64144i
\(414\) 0 0
\(415\) −136.304 −0.328443
\(416\) 0 0
\(417\) 51.6865 0.123948
\(418\) 0 0
\(419\) 618.800i 1.47685i 0.674335 + 0.738425i \(0.264430\pi\)
−0.674335 + 0.738425i \(0.735570\pi\)
\(420\) 0 0
\(421\) 23.7665 0.0564524 0.0282262 0.999602i \(-0.491014\pi\)
0.0282262 + 0.999602i \(0.491014\pi\)
\(422\) 0 0
\(423\) 84.9936i 0.200931i
\(424\) 0 0
\(425\) 35.4593i 0.0834336i
\(426\) 0 0
\(427\) −155.148 + 514.035i −0.363344 + 1.20383i
\(428\) 0 0
\(429\) −200.420 −0.467180
\(430\) 0 0
\(431\) 244.991 0.568424 0.284212 0.958762i \(-0.408268\pi\)
0.284212 + 0.958762i \(0.408268\pi\)
\(432\) 0 0
\(433\) 630.500i 1.45612i 0.685514 + 0.728060i \(0.259578\pi\)
−0.685514 + 0.728060i \(0.740422\pi\)
\(434\) 0 0
\(435\) 53.0325 0.121914
\(436\) 0 0
\(437\) 50.0063i 0.114431i
\(438\) 0 0
\(439\) 79.2321i 0.180483i −0.995920 0.0902416i \(-0.971236\pi\)
0.995920 0.0902416i \(-0.0287639\pi\)
\(440\) 0 0
\(441\) −122.453 81.3275i −0.277672 0.184416i
\(442\) 0 0
\(443\) −494.991 −1.11736 −0.558680 0.829383i \(-0.688692\pi\)
−0.558680 + 0.829383i \(0.688692\pi\)
\(444\) 0 0
\(445\) −198.183 −0.445355
\(446\) 0 0
\(447\) 404.673i 0.905308i
\(448\) 0 0
\(449\) 539.070 1.20060 0.600301 0.799774i \(-0.295048\pi\)
0.600301 + 0.799774i \(0.295048\pi\)
\(450\) 0 0
\(451\) 338.421i 0.750379i
\(452\) 0 0
\(453\) 486.078i 1.07302i
\(454\) 0 0
\(455\) −144.947 43.7485i −0.318565 0.0961506i
\(456\) 0 0
\(457\) −265.432 −0.580814 −0.290407 0.956903i \(-0.593791\pi\)
−0.290407 + 0.956903i \(0.593791\pi\)
\(458\) 0 0
\(459\) 36.8503 0.0802840
\(460\) 0 0
\(461\) 358.881i 0.778484i −0.921136 0.389242i \(-0.872737\pi\)
0.921136 0.389242i \(-0.127263\pi\)
\(462\) 0 0
\(463\) −112.645 −0.243294 −0.121647 0.992573i \(-0.538818\pi\)
−0.121647 + 0.992573i \(0.538818\pi\)
\(464\) 0 0
\(465\) 77.2536i 0.166137i
\(466\) 0 0
\(467\) 409.478i 0.876826i −0.898774 0.438413i \(-0.855541\pi\)
0.898774 0.438413i \(-0.144459\pi\)
\(468\) 0 0
\(469\) −510.920 154.208i −1.08938 0.328802i
\(470\) 0 0
\(471\) 94.0819 0.199749
\(472\) 0 0
\(473\) −872.863 −1.84538
\(474\) 0 0
\(475\) 87.7541i 0.184745i
\(476\) 0 0
\(477\) 35.1329 0.0736539
\(478\) 0 0
\(479\) 99.5292i 0.207785i −0.994589 0.103893i \(-0.966870\pi\)
0.994589 0.103893i \(-0.0331299\pi\)
\(480\) 0 0
\(481\) 107.052i 0.222561i
\(482\) 0 0
\(483\) 9.98177 33.0715i 0.0206662 0.0684710i
\(484\) 0 0
\(485\) −42.1603 −0.0869286
\(486\) 0 0
\(487\) 123.746 0.254098 0.127049 0.991896i \(-0.459449\pi\)
0.127049 + 0.991896i \(0.459449\pi\)
\(488\) 0 0
\(489\) 347.316i 0.710258i
\(490\) 0 0
\(491\) −42.2815 −0.0861131 −0.0430565 0.999073i \(-0.513710\pi\)
−0.0430565 + 0.999073i \(0.513710\pi\)
\(492\) 0 0
\(493\) 97.1083i 0.196974i
\(494\) 0 0
\(495\) 80.2469i 0.162115i
\(496\) 0 0
\(497\) −639.645 193.060i −1.28701 0.388451i
\(498\) 0 0
\(499\) −87.3026 −0.174955 −0.0874775 0.996166i \(-0.527881\pi\)
−0.0874775 + 0.996166i \(0.527881\pi\)
\(500\) 0 0
\(501\) −489.851 −0.977746
\(502\) 0 0
\(503\) 452.879i 0.900356i −0.892939 0.450178i \(-0.851361\pi\)
0.892939 0.450178i \(-0.148639\pi\)
\(504\) 0 0
\(505\) 67.4385 0.133542
\(506\) 0 0
\(507\) 130.656i 0.257704i
\(508\) 0 0
\(509\) 236.371i 0.464382i 0.972670 + 0.232191i \(0.0745895\pi\)
−0.972670 + 0.232191i \(0.925410\pi\)
\(510\) 0 0
\(511\) −244.102 + 808.756i −0.477694 + 1.58269i
\(512\) 0 0
\(513\) 91.1967 0.177771
\(514\) 0 0
\(515\) −337.353 −0.655055
\(516\) 0 0
\(517\) 338.912i 0.655536i
\(518\) 0 0
\(519\) 220.453 0.424765
\(520\) 0 0
\(521\) 446.261i 0.856548i 0.903649 + 0.428274i \(0.140878\pi\)
−0.903649 + 0.428274i \(0.859122\pi\)
\(522\) 0 0
\(523\) 271.135i 0.518423i −0.965821 0.259211i \(-0.916537\pi\)
0.965821 0.259211i \(-0.0834626\pi\)
\(524\) 0 0
\(525\) −17.5166 + 58.0359i −0.0333650 + 0.110545i
\(526\) 0 0
\(527\) 141.460 0.268425
\(528\) 0 0
\(529\) −520.882 −0.984654
\(530\) 0 0
\(531\) 303.481i 0.571527i
\(532\) 0 0
\(533\) 273.649 0.513413
\(534\) 0 0
\(535\) 197.375i 0.368926i
\(536\) 0 0
\(537\) 211.902i 0.394603i
\(538\) 0 0
\(539\) −488.283 324.294i −0.905906 0.601658i
\(540\) 0 0
\(541\) 224.274 0.414555 0.207277 0.978282i \(-0.433540\pi\)
0.207277 + 0.978282i \(0.433540\pi\)
\(542\) 0 0
\(543\) −168.633 −0.310559
\(544\) 0 0
\(545\) 207.332i 0.380425i
\(546\) 0 0
\(547\) −88.4533 −0.161706 −0.0808531 0.996726i \(-0.525764\pi\)
−0.0808531 + 0.996726i \(0.525764\pi\)
\(548\) 0 0
\(549\) 230.116i 0.419155i
\(550\) 0 0
\(551\) 240.322i 0.436157i
\(552\) 0 0
\(553\) −99.2453 29.9546i −0.179467 0.0541675i
\(554\) 0 0
\(555\) 42.8630 0.0772306
\(556\) 0 0
\(557\) −54.4040 −0.0976733 −0.0488367 0.998807i \(-0.515551\pi\)
−0.0488367 + 0.998807i \(0.515551\pi\)
\(558\) 0 0
\(559\) 705.801i 1.26261i
\(560\) 0 0
\(561\) 146.941 0.261927
\(562\) 0 0
\(563\) 484.965i 0.861394i 0.902497 + 0.430697i \(0.141732\pi\)
−0.902497 + 0.430697i \(0.858268\pi\)
\(564\) 0 0
\(565\) 141.977i 0.251287i
\(566\) 0 0
\(567\) −60.3127 18.2038i −0.106372 0.0321055i
\(568\) 0 0
\(569\) −306.635 −0.538902 −0.269451 0.963014i \(-0.586842\pi\)
−0.269451 + 0.963014i \(0.586842\pi\)
\(570\) 0 0
\(571\) −471.839 −0.826339 −0.413169 0.910654i \(-0.635578\pi\)
−0.413169 + 0.910654i \(0.635578\pi\)
\(572\) 0 0
\(573\) 502.598i 0.877134i
\(574\) 0 0
\(575\) −14.2461 −0.0247759
\(576\) 0 0
\(577\) 81.1961i 0.140721i −0.997522 0.0703606i \(-0.977585\pi\)
0.997522 0.0703606i \(-0.0224150\pi\)
\(578\) 0 0
\(579\) 157.234i 0.271561i
\(580\) 0 0
\(581\) 123.294 408.498i 0.212211 0.703094i
\(582\) 0 0
\(583\) 140.093 0.240296
\(584\) 0 0
\(585\) −64.8881 −0.110920
\(586\) 0 0
\(587\) 905.925i 1.54331i 0.636039 + 0.771657i \(0.280572\pi\)
−0.636039 + 0.771657i \(0.719428\pi\)
\(588\) 0 0
\(589\) 350.083 0.594368
\(590\) 0 0
\(591\) 92.4415i 0.156415i
\(592\) 0 0
\(593\) 455.850i 0.768719i −0.923184 0.384359i \(-0.874422\pi\)
0.923184 0.384359i \(-0.125578\pi\)
\(594\) 0 0
\(595\) 106.270 + 32.0748i 0.178605 + 0.0539073i
\(596\) 0 0
\(597\) 522.323 0.874912
\(598\) 0 0
\(599\) −72.2734 −0.120657 −0.0603284 0.998179i \(-0.519215\pi\)
−0.0603284 + 0.998179i \(0.519215\pi\)
\(600\) 0 0
\(601\) 396.088i 0.659048i −0.944147 0.329524i \(-0.893112\pi\)
0.944147 0.329524i \(-0.106888\pi\)
\(602\) 0 0
\(603\) −228.722 −0.379307
\(604\) 0 0
\(605\) 49.4206i 0.0816870i
\(606\) 0 0
\(607\) 6.14590i 0.0101250i −0.999987 0.00506252i \(-0.998389\pi\)
0.999987 0.00506252i \(-0.00161146\pi\)
\(608\) 0 0
\(609\) −47.9708 + 158.937i −0.0787699 + 0.260979i
\(610\) 0 0
\(611\) −274.046 −0.448521
\(612\) 0 0
\(613\) −197.286 −0.321837 −0.160918 0.986968i \(-0.551446\pi\)
−0.160918 + 0.986968i \(0.551446\pi\)
\(614\) 0 0
\(615\) 109.567i 0.178158i
\(616\) 0 0
\(617\) 152.122 0.246551 0.123276 0.992372i \(-0.460660\pi\)
0.123276 + 0.992372i \(0.460660\pi\)
\(618\) 0 0
\(619\) 700.262i 1.13128i −0.824653 0.565639i \(-0.808629\pi\)
0.824653 0.565639i \(-0.191371\pi\)
\(620\) 0 0
\(621\) 14.8050i 0.0238406i
\(622\) 0 0
\(623\) 179.267 593.947i 0.287749 0.953366i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 0 0
\(627\) 363.647 0.579979
\(628\) 0 0
\(629\) 78.4867i 0.124780i
\(630\) 0 0
\(631\) 133.714 0.211908 0.105954 0.994371i \(-0.466210\pi\)
0.105954 + 0.994371i \(0.466210\pi\)
\(632\) 0 0
\(633\) 129.542i 0.204648i
\(634\) 0 0
\(635\) 564.425i 0.888858i
\(636\) 0 0
\(637\) 262.225 394.828i 0.411657 0.619824i
\(638\) 0 0
\(639\) −286.348 −0.448119
\(640\) 0 0
\(641\) −781.577 −1.21931 −0.609654 0.792667i \(-0.708692\pi\)
−0.609654 + 0.792667i \(0.708692\pi\)
\(642\) 0 0
\(643\) 346.920i 0.539533i −0.962926 0.269766i \(-0.913054\pi\)
0.962926 0.269766i \(-0.0869465\pi\)
\(644\) 0 0
\(645\) −282.598 −0.438137
\(646\) 0 0
\(647\) 971.001i 1.50077i 0.660998 + 0.750387i \(0.270133\pi\)
−0.660998 + 0.750387i \(0.729867\pi\)
\(648\) 0 0
\(649\) 1210.13i 1.86461i
\(650\) 0 0
\(651\) −231.526 69.8802i −0.355647 0.107343i
\(652\) 0 0
\(653\) −326.428 −0.499890 −0.249945 0.968260i \(-0.580413\pi\)
−0.249945 + 0.968260i \(0.580413\pi\)
\(654\) 0 0
\(655\) 461.879 0.705158
\(656\) 0 0
\(657\) 362.053i 0.551070i
\(658\) 0 0
\(659\) −305.606 −0.463743 −0.231871 0.972746i \(-0.574485\pi\)
−0.231871 + 0.972746i \(0.574485\pi\)
\(660\) 0 0
\(661\) 232.398i 0.351586i −0.984427 0.175793i \(-0.943751\pi\)
0.984427 0.175793i \(-0.0562489\pi\)
\(662\) 0 0
\(663\) 118.817i 0.179211i
\(664\) 0 0
\(665\) 262.996 + 79.3784i 0.395482 + 0.119366i
\(666\) 0 0
\(667\) −39.0143 −0.0584922
\(668\) 0 0
\(669\) 715.561 1.06960
\(670\) 0 0
\(671\) 917.589i 1.36750i
\(672\) 0 0
\(673\) 283.273 0.420911 0.210455 0.977603i \(-0.432505\pi\)
0.210455 + 0.977603i \(0.432505\pi\)
\(674\) 0 0
\(675\) 25.9808i 0.0384900i
\(676\) 0 0
\(677\) 425.511i 0.628524i 0.949336 + 0.314262i \(0.101757\pi\)
−0.949336 + 0.314262i \(0.898243\pi\)
\(678\) 0 0
\(679\) 38.1364 126.353i 0.0561655 0.186087i
\(680\) 0 0
\(681\) −517.348 −0.759689
\(682\) 0 0
\(683\) 126.763 0.185597 0.0927986 0.995685i \(-0.470419\pi\)
0.0927986 + 0.995685i \(0.470419\pi\)
\(684\) 0 0
\(685\) 400.395i 0.584519i
\(686\) 0 0
\(687\) 560.013 0.815157
\(688\) 0 0
\(689\) 113.279i 0.164411i
\(690\) 0 0
\(691\) 124.435i 0.180080i −0.995938 0.0900401i \(-0.971300\pi\)
0.995938 0.0900401i \(-0.0286995\pi\)
\(692\) 0 0
\(693\) −240.497 72.5878i −0.347038 0.104744i
\(694\) 0 0
\(695\) 66.7270 0.0960100
\(696\) 0 0
\(697\) −200.630 −0.287847
\(698\) 0 0
\(699\) 561.100i 0.802718i
\(700\) 0 0
\(701\) 273.794 0.390576 0.195288 0.980746i \(-0.437436\pi\)
0.195288 + 0.980746i \(0.437436\pi\)
\(702\) 0 0
\(703\) 194.238i 0.276299i
\(704\) 0 0
\(705\) 109.726i 0.155640i
\(706\) 0 0
\(707\) −61.0018 + 202.111i −0.0862826 + 0.285871i
\(708\) 0 0
\(709\) −462.551 −0.652399 −0.326200 0.945301i \(-0.605768\pi\)
−0.326200 + 0.945301i \(0.605768\pi\)
\(710\) 0 0
\(711\) −44.4288 −0.0624878
\(712\) 0 0
\(713\) 56.8330i 0.0797096i
\(714\) 0 0
\(715\) −258.741 −0.361876
\(716\) 0 0
\(717\) 627.798i 0.875589i
\(718\) 0 0
\(719\) 773.673i 1.07604i −0.842932 0.538020i \(-0.819172\pi\)
0.842932 0.538020i \(-0.180828\pi\)
\(720\) 0 0
\(721\) 305.155 1011.04i 0.423238 1.40227i
\(722\) 0 0
\(723\) −216.268 −0.299127
\(724\) 0 0
\(725\) 68.4647 0.0944341
\(726\) 0 0
\(727\) 1233.31i 1.69644i 0.529645 + 0.848219i \(0.322325\pi\)
−0.529645 + 0.848219i \(0.677675\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) 517.468i 0.707891i
\(732\) 0 0
\(733\) 1421.58i 1.93939i −0.244309 0.969697i \(-0.578561\pi\)
0.244309 0.969697i \(-0.421439\pi\)
\(734\) 0 0
\(735\) −158.087 104.993i −0.215084 0.142848i
\(736\) 0 0
\(737\) −912.030 −1.23749
\(738\) 0 0
\(739\) −518.845 −0.702091 −0.351045 0.936358i \(-0.614174\pi\)
−0.351045 + 0.936358i \(0.614174\pi\)
\(740\) 0 0
\(741\) 294.047i 0.396824i
\(742\) 0 0
\(743\) 1012.05 1.36212 0.681058 0.732230i \(-0.261520\pi\)
0.681058 + 0.732230i \(0.261520\pi\)
\(744\) 0 0
\(745\) 522.430i 0.701248i
\(746\) 0 0
\(747\) 182.871i 0.244807i
\(748\) 0 0
\(749\) 591.526 + 178.537i 0.789755 + 0.238367i
\(750\) 0 0
\(751\) 1274.40 1.69694 0.848470 0.529243i \(-0.177524\pi\)
0.848470 + 0.529243i \(0.177524\pi\)
\(752\) 0 0
\(753\) 31.9590 0.0424423
\(754\) 0 0
\(755\) 627.524i 0.831157i
\(756\) 0 0
\(757\) 1145.83 1.51364 0.756822 0.653621i \(-0.226751\pi\)
0.756822 + 0.653621i \(0.226751\pi\)
\(758\) 0 0
\(759\) 59.0350i 0.0777800i
\(760\) 0 0
\(761\) 580.236i 0.762465i −0.924479 0.381233i \(-0.875500\pi\)
0.924479 0.381233i \(-0.124500\pi\)
\(762\) 0 0
\(763\) −621.365 187.543i −0.814372 0.245797i
\(764\) 0 0
\(765\) 47.5736 0.0621877
\(766\) 0 0
\(767\) −978.517 −1.27577
\(768\) 0 0
\(769\) 58.9626i 0.0766744i −0.999265 0.0383372i \(-0.987794\pi\)
0.999265 0.0383372i \(-0.0122061\pi\)
\(770\) 0 0
\(771\) −742.459 −0.962981
\(772\) 0 0
\(773\) 368.237i 0.476374i 0.971219 + 0.238187i \(0.0765531\pi\)
−0.971219 + 0.238187i \(0.923447\pi\)
\(774\) 0 0
\(775\) 99.7340i 0.128689i
\(776\) 0 0
\(777\) −38.7719 + 128.459i −0.0498995 + 0.165326i
\(778\) 0 0
\(779\) −496.515 −0.637375
\(780\) 0 0
\(781\) −1141.81 −1.46199
\(782\) 0 0
\(783\) 71.1506i 0.0908692i
\(784\) 0 0
\(785\) 121.459 0.154725
\(786\) 0 0
\(787\) 1063.41i 1.35122i 0.737261 + 0.675608i \(0.236119\pi\)
−0.737261 + 0.675608i \(0.763881\pi\)
\(788\) 0 0
\(789\) 231.358i 0.293229i
\(790\) 0 0
\(791\) 425.501 + 128.426i 0.537928 + 0.162359i
\(792\) 0 0
\(793\) −741.967 −0.935646
\(794\) 0 0
\(795\) 45.3564 0.0570520
\(796\) 0 0
\(797\) 274.031i 0.343828i 0.985112 + 0.171914i \(0.0549951\pi\)
−0.985112 + 0.171914i \(0.945005\pi\)
\(798\) 0 0
\(799\) 200.921 0.251465
\(800\) 0 0
\(801\) 265.890i 0.331948i
\(802\) 0 0
\(803\) 1443.69i 1.79787i
\(804\) 0 0
\(805\) 12.8864 42.6951i 0.0160080 0.0530374i
\(806\) 0 0
\(807\) 854.345 1.05867
\(808\) 0 0
\(809\) 125.869 0.155586 0.0777930 0.996970i \(-0.475213\pi\)
0.0777930 + 0.996970i \(0.475213\pi\)
\(810\) 0 0
\(811\) 566.987i 0.699121i −0.936914 0.349560i \(-0.886331\pi\)
0.936914 0.349560i \(-0.113669\pi\)
\(812\) 0 0
\(813\) 749.191 0.921514
\(814\) 0 0
\(815\) 448.383i 0.550163i
\(816\) 0 0
\(817\) 1280.62i 1.56747i
\(818\) 0 0
\(819\) 58.6948 194.467i 0.0716664 0.237444i
\(820\) 0 0
\(821\) −444.471 −0.541377 −0.270689 0.962667i \(-0.587251\pi\)
−0.270689 + 0.962667i \(0.587251\pi\)
\(822\) 0 0
\(823\) −1028.74 −1.24999 −0.624995 0.780629i \(-0.714899\pi\)
−0.624995 + 0.780629i \(0.714899\pi\)
\(824\) 0 0
\(825\) 103.598i 0.125574i
\(826\) 0 0
\(827\) 515.113 0.622870 0.311435 0.950267i \(-0.399190\pi\)
0.311435 + 0.950267i \(0.399190\pi\)
\(828\) 0 0
\(829\) 1334.96i 1.61032i −0.593055 0.805162i \(-0.702078\pi\)
0.593055 0.805162i \(-0.297922\pi\)
\(830\) 0 0
\(831\) 297.810i 0.358375i
\(832\) 0 0
\(833\) −192.254 + 289.474i −0.230797 + 0.347508i
\(834\) 0 0
\(835\) −632.394 −0.757359
\(836\) 0 0
\(837\) −103.647 −0.123831
\(838\) 0 0
\(839\) 2.13640i 0.00254637i 0.999999 + 0.00127318i \(0.000405267\pi\)
−0.999999 + 0.00127318i \(0.999595\pi\)
\(840\) 0 0
\(841\) −653.503 −0.777055
\(842\) 0 0
\(843\) 129.471i 0.153583i
\(844\) 0 0
\(845\) 168.676i 0.199617i
\(846\) 0 0
\(847\) −148.112 44.7037i −0.174866 0.0527788i
\(848\) 0 0
\(849\) −287.354 −0.338461
\(850\) 0 0
\(851\) −31.5329 −0.0370539
\(852\) 0 0
\(853\) 89.0278i 0.104370i 0.998637 + 0.0521851i \(0.0166186\pi\)
−0.998637 + 0.0521851i \(0.983381\pi\)
\(854\) 0 0
\(855\) 117.734 0.137701
\(856\) 0 0
\(857\) 820.566i 0.957486i 0.877955 + 0.478743i \(0.158907\pi\)
−0.877955 + 0.478743i \(0.841093\pi\)
\(858\) 0 0
\(859\) 534.947i 0.622756i −0.950286 0.311378i \(-0.899210\pi\)
0.950286 0.311378i \(-0.100790\pi\)
\(860\) 0 0
\(861\) 328.369 + 99.1096i 0.381381 + 0.115110i
\(862\) 0 0
\(863\) 276.972 0.320941 0.160471 0.987041i \(-0.448699\pi\)
0.160471 + 0.987041i \(0.448699\pi\)
\(864\) 0 0
\(865\) 284.603 0.329021
\(866\) 0 0
\(867\) 413.450i 0.476875i
\(868\) 0 0
\(869\) −177.160 −0.203867
\(870\) 0 0
\(871\) 737.472i 0.846695i
\(872\) 0 0
\(873\) 56.5640i 0.0647927i
\(874\) 0 0
\(875\) −22.6139 + 74.9240i −0.0258444 + 0.0856275i
\(876\) 0 0
\(877\) 420.192 0.479125 0.239562 0.970881i \(-0.422996\pi\)
0.239562 + 0.970881i \(0.422996\pi\)
\(878\) 0 0
\(879\) −858.967 −0.977210
\(880\) 0 0
\(881\) 897.207i 1.01840i −0.860649 0.509198i \(-0.829942\pi\)
0.860649 0.509198i \(-0.170058\pi\)
\(882\) 0 0
\(883\) 1515.08 1.71584 0.857918 0.513786i \(-0.171757\pi\)
0.857918 + 0.513786i \(0.171757\pi\)
\(884\) 0 0
\(885\) 391.792i 0.442703i
\(886\) 0 0
\(887\) 976.074i 1.10042i 0.835026 + 0.550211i \(0.185453\pi\)
−0.835026 + 0.550211i \(0.814547\pi\)
\(888\) 0 0
\(889\) −1691.56 510.553i −1.90277 0.574300i
\(890\) 0 0
\(891\) −107.663 −0.120833
\(892\) 0 0
\(893\) 497.236 0.556815
\(894\) 0 0
\(895\) 273.564i 0.305658i
\(896\) 0 0
\(897\) 47.7360 0.0532174
\(898\) 0 0
\(899\) 273.130i 0.303816i
\(900\) 0 0
\(901\) 83.0524i 0.0921781i
\(902\) 0 0
\(903\) 255.626 846.937i 0.283085 0.937914i
\(904\) 0 0
\(905\) −217.705 −0.240558
\(906\) 0 0
\(907\) −1329.48 −1.46580 −0.732901 0.680335i \(-0.761834\pi\)
−0.732901 + 0.680335i \(0.761834\pi\)
\(908\) 0 0
\(909\) 90.4782i 0.0995360i
\(910\) 0 0
\(911\) 1270.75 1.39489 0.697447 0.716637i \(-0.254319\pi\)
0.697447 + 0.716637i \(0.254319\pi\)
\(912\) 0 0
\(913\) 729.198i 0.798684i
\(914\) 0 0
\(915\) 297.079i 0.324676i
\(916\) 0 0
\(917\) −417.795 + 1384.23i −0.455610 + 1.50952i
\(918\) 0 0
\(919\) 1641.49 1.78617 0.893083 0.449893i \(-0.148538\pi\)
0.893083 + 0.449893i \(0.148538\pi\)
\(920\) 0 0
\(921\) 548.959 0.596047
\(922\) 0 0
\(923\) 923.275i 1.00030i
\(924\) 0 0
\(925\) 55.3359 0.0598225
\(926\) 0 0
\(927\) 452.607i 0.488249i
\(928\) 0 0
\(929\) 1386.92i 1.49292i −0.665433 0.746458i \(-0.731753\pi\)
0.665433 0.746458i \(-0.268247\pi\)
\(930\) 0 0
\(931\) −475.788 + 716.386i −0.511050 + 0.769480i
\(932\) 0 0
\(933\) −46.9949 −0.0503697
\(934\) 0 0
\(935\) 189.700 0.202888
\(936\) 0 0
\(937\) 359.625i 0.383805i −0.981414 0.191903i \(-0.938534\pi\)
0.981414 0.191903i \(-0.0614658\pi\)
\(938\) 0 0
\(939\) 895.878 0.954077
\(940\) 0 0
\(941\) 1575.46i 1.67424i 0.547020 + 0.837119i \(0.315762\pi\)
−0.547020 + 0.837119i \(0.684238\pi\)
\(942\) 0 0
\(943\) 80.6051i 0.0854773i
\(944\) 0 0
\(945\) −77.8634 23.5010i −0.0823951 0.0248688i
\(946\) 0 0
\(947\) 1680.38 1.77442 0.887212 0.461361i \(-0.152639\pi\)
0.887212 + 0.461361i \(0.152639\pi\)
\(948\) 0 0
\(949\) −1167.37 −1.23011
\(950\) 0 0
\(951\) 368.998i 0.388010i
\(952\) 0 0
\(953\) 1419.84 1.48986 0.744931 0.667142i \(-0.232483\pi\)
0.744931 + 0.667142i \(0.232483\pi\)
\(954\) 0 0
\(955\) 648.851i 0.679425i
\(956\) 0 0
\(957\) 283.713i 0.296461i
\(958\) 0 0
\(959\) −1199.97 362.180i −1.25127 0.377664i
\(960\) 0 0
\(961\) 563.125 0.585978
\(962\) 0 0
\(963\) 264.807 0.274981
\(964\) 0 0
\(965\) 202.988i 0.210350i
\(966\) 0 0
\(967\) 1061.44 1.09766 0.548829 0.835934i \(-0.315074\pi\)
0.548829 + 0.835934i \(0.315074\pi\)
\(968\) 0 0
\(969\) 215.585i 0.222481i
\(970\) 0 0
\(971\) 1375.99i 1.41709i −0.705668 0.708543i \(-0.749353\pi\)
0.705668 0.708543i \(-0.250647\pi\)
\(972\) 0 0
\(973\) −60.3582 + 199.978i −0.0620331 + 0.205527i
\(974\) 0 0
\(975\) −83.7701 −0.0859181
\(976\) 0 0
\(977\) 541.316 0.554059 0.277030 0.960861i \(-0.410650\pi\)
0.277030 + 0.960861i \(0.410650\pi\)
\(978\) 0 0
\(979\) 1060.24i 1.08298i
\(980\) 0 0
\(981\) −278.165 −0.283552
\(982\) 0 0
\(983\) 975.992i 0.992871i −0.868074 0.496435i \(-0.834642\pi\)
0.868074 0.496435i \(-0.165358\pi\)
\(984\) 0 0
\(985\) 119.341i 0.121159i
\(986\) 0 0
\(987\) −328.846 99.2535i −0.333177 0.100561i
\(988\) 0 0
\(989\) 207.898 0.210211
\(990\) 0 0
\(991\) −459.246 −0.463417 −0.231708 0.972785i \(-0.574432\pi\)
−0.231708 + 0.972785i \(0.574432\pi\)
\(992\) 0 0
\(993\) 506.653i 0.510224i
\(994\) 0 0
\(995\) 674.316 0.677704
\(996\) 0 0
\(997\) 745.998i 0.748242i −0.927380 0.374121i \(-0.877944\pi\)
0.927380 0.374121i \(-0.122056\pi\)
\(998\) 0 0
\(999\) 57.5067i 0.0575643i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1680.3.s.a.1441.7 8
4.3 odd 2 210.3.f.a.181.6 8
7.6 odd 2 inner 1680.3.s.a.1441.1 8
12.11 even 2 630.3.f.c.181.2 8
20.3 even 4 1050.3.h.b.349.7 16
20.7 even 4 1050.3.h.b.349.10 16
20.19 odd 2 1050.3.f.b.601.3 8
28.27 even 2 210.3.f.a.181.7 yes 8
84.83 odd 2 630.3.f.c.181.4 8
140.27 odd 4 1050.3.h.b.349.15 16
140.83 odd 4 1050.3.h.b.349.2 16
140.139 even 2 1050.3.f.b.601.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
210.3.f.a.181.6 8 4.3 odd 2
210.3.f.a.181.7 yes 8 28.27 even 2
630.3.f.c.181.2 8 12.11 even 2
630.3.f.c.181.4 8 84.83 odd 2
1050.3.f.b.601.1 8 140.139 even 2
1050.3.f.b.601.3 8 20.19 odd 2
1050.3.h.b.349.2 16 140.83 odd 4
1050.3.h.b.349.7 16 20.3 even 4
1050.3.h.b.349.10 16 20.7 even 4
1050.3.h.b.349.15 16 140.27 odd 4
1680.3.s.a.1441.1 8 7.6 odd 2 inner
1680.3.s.a.1441.7 8 1.1 even 1 trivial