Properties

Label 630.2.p.c.433.3
Level $630$
Weight $2$
Character 630.433
Analytic conductor $5.031$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [630,2,Mod(307,630)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(630, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("630.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 630.p (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.03057532734\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.1698758656.6
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 18x^{6} + 97x^{4} + 176x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 433.3
Root \(-3.16053i\) of defining polynomial
Character \(\chi\) \(=\) 630.433
Dual form 630.2.p.c.307.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} -1.00000i q^{4} +(-1.52773 + 1.63280i) q^{5} +(-1.23483 - 2.33991i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(0.0743018 + 2.23483i) q^{10} +5.73528 q^{11} +(3.41421 - 3.41421i) q^{13} +(-2.52773 - 0.781409i) q^{14} -1.00000 q^{16} +(-2.57474 - 2.57474i) q^{17} +1.85140 q^{19} +(1.63280 + 1.52773i) q^{20} +(4.05545 - 4.05545i) q^{22} +(-6.46967 - 6.46967i) q^{23} +(-0.332104 - 4.98896i) q^{25} -4.82843i q^{26} +(-2.33991 + 1.23483i) q^{28} -3.47577i q^{29} -0.469666i q^{31} +(-0.707107 + 0.707107i) q^{32} -3.64124 q^{34} +(5.70711 + 1.55850i) q^{35} +(0.574745 - 0.574745i) q^{37} +(1.30913 - 1.30913i) q^{38} +(2.23483 - 0.0743018i) q^{40} -1.03858i q^{41} +(6.17246 + 6.17246i) q^{43} -5.73528i q^{44} -9.14949 q^{46} +(3.85140 + 3.85140i) q^{47} +(-3.95037 + 5.77880i) q^{49} +(-3.76256 - 3.29289i) q^{50} +(-3.41421 - 3.41421i) q^{52} +(1.85140 + 1.85140i) q^{53} +(-8.76193 + 9.36459i) q^{55} +(-0.781409 + 2.52773i) q^{56} +(-2.45774 - 2.45774i) q^{58} +13.3306 q^{59} +8.53122i q^{61} +(-0.332104 - 0.332104i) q^{62} +1.00000i q^{64} +(0.358761 + 10.7907i) q^{65} +(-4.46967 + 4.46967i) q^{67} +(-2.57474 + 2.57474i) q^{68} +(5.13756 - 2.93351i) q^{70} -5.13387 q^{71} +(7.80177 - 7.80177i) q^{73} -0.812812i q^{74} -1.85140i q^{76} +(-7.08211 - 13.4200i) q^{77} +4.16422i q^{79} +(1.52773 - 1.63280i) q^{80} +(-0.734390 - 0.734390i) q^{82} +(-1.77297 + 1.77297i) q^{83} +(8.13756 - 0.270551i) q^{85} +8.72918 q^{86} +(-4.05545 - 4.05545i) q^{88} -9.12563 q^{89} +(-12.2049 - 3.77297i) q^{91} +(-6.46967 + 6.46967i) q^{92} +5.44670 q^{94} +(-2.82843 + 3.02297i) q^{95} +(-0.0119278 - 0.0119278i) q^{97} +(1.29289 + 6.87957i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{7} + 4 q^{10} - 8 q^{11} + 16 q^{13} - 8 q^{14} - 8 q^{16} + 12 q^{17} + 8 q^{19} + 4 q^{20} + 8 q^{22} - 16 q^{23} - 4 q^{25} - 4 q^{28} - 16 q^{34} + 40 q^{35} - 28 q^{37} - 4 q^{38} - 8 q^{46}+ \cdots + 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.500000 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −1.52773 + 1.63280i −0.683220 + 0.730213i
\(6\) 0 0
\(7\) −1.23483 2.33991i −0.466723 0.884404i
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 0 0
\(10\) 0.0743018 + 2.23483i 0.0234963 + 0.706716i
\(11\) 5.73528 1.72925 0.864625 0.502417i \(-0.167556\pi\)
0.864625 + 0.502417i \(0.167556\pi\)
\(12\) 0 0
\(13\) 3.41421 3.41421i 0.946932 0.946932i −0.0517287 0.998661i \(-0.516473\pi\)
0.998661 + 0.0517287i \(0.0164731\pi\)
\(14\) −2.52773 0.781409i −0.675563 0.208840i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −2.57474 2.57474i −0.624467 0.624467i 0.322203 0.946671i \(-0.395577\pi\)
−0.946671 + 0.322203i \(0.895577\pi\)
\(18\) 0 0
\(19\) 1.85140 0.424739 0.212370 0.977189i \(-0.431882\pi\)
0.212370 + 0.977189i \(0.431882\pi\)
\(20\) 1.63280 + 1.52773i 0.365106 + 0.341610i
\(21\) 0 0
\(22\) 4.05545 4.05545i 0.864625 0.864625i
\(23\) −6.46967 6.46967i −1.34902 1.34902i −0.886729 0.462290i \(-0.847028\pi\)
−0.462290 0.886729i \(-0.652972\pi\)
\(24\) 0 0
\(25\) −0.332104 4.98896i −0.0664208 0.997792i
\(26\) 4.82843i 0.946932i
\(27\) 0 0
\(28\) −2.33991 + 1.23483i −0.442202 + 0.233362i
\(29\) 3.47577i 0.645434i −0.946496 0.322717i \(-0.895404\pi\)
0.946496 0.322717i \(-0.104596\pi\)
\(30\) 0 0
\(31\) 0.469666i 0.0843546i −0.999110 0.0421773i \(-0.986571\pi\)
0.999110 0.0421773i \(-0.0134294\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) 0 0
\(34\) −3.64124 −0.624467
\(35\) 5.70711 + 1.55850i 0.964677 + 0.263435i
\(36\) 0 0
\(37\) 0.574745 0.574745i 0.0944875 0.0944875i −0.658283 0.752771i \(-0.728717\pi\)
0.752771 + 0.658283i \(0.228717\pi\)
\(38\) 1.30913 1.30913i 0.212370 0.212370i
\(39\) 0 0
\(40\) 2.23483 0.0743018i 0.353358 0.0117481i
\(41\) 1.03858i 0.162200i −0.996706 0.0810998i \(-0.974157\pi\)
0.996706 0.0810998i \(-0.0258433\pi\)
\(42\) 0 0
\(43\) 6.17246 + 6.17246i 0.941291 + 0.941291i 0.998370 0.0570785i \(-0.0181785\pi\)
−0.0570785 + 0.998370i \(0.518179\pi\)
\(44\) 5.73528i 0.864625i
\(45\) 0 0
\(46\) −9.14949 −1.34902
\(47\) 3.85140 + 3.85140i 0.561784 + 0.561784i 0.929814 0.368030i \(-0.119968\pi\)
−0.368030 + 0.929814i \(0.619968\pi\)
\(48\) 0 0
\(49\) −3.95037 + 5.77880i −0.564339 + 0.825543i
\(50\) −3.76256 3.29289i −0.532106 0.465685i
\(51\) 0 0
\(52\) −3.41421 3.41421i −0.473466 0.473466i
\(53\) 1.85140 + 1.85140i 0.254309 + 0.254309i 0.822735 0.568426i \(-0.192447\pi\)
−0.568426 + 0.822735i \(0.692447\pi\)
\(54\) 0 0
\(55\) −8.76193 + 9.36459i −1.18146 + 1.26272i
\(56\) −0.781409 + 2.52773i −0.104420 + 0.337782i
\(57\) 0 0
\(58\) −2.45774 2.45774i −0.322717 0.322717i
\(59\) 13.3306 1.73549 0.867747 0.497007i \(-0.165568\pi\)
0.867747 + 0.497007i \(0.165568\pi\)
\(60\) 0 0
\(61\) 8.53122i 1.09231i 0.837684 + 0.546155i \(0.183909\pi\)
−0.837684 + 0.546155i \(0.816091\pi\)
\(62\) −0.332104 0.332104i −0.0421773 0.0421773i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 0.358761 + 10.7907i 0.0444988 + 1.33843i
\(66\) 0 0
\(67\) −4.46967 + 4.46967i −0.546057 + 0.546057i −0.925298 0.379241i \(-0.876185\pi\)
0.379241 + 0.925298i \(0.376185\pi\)
\(68\) −2.57474 + 2.57474i −0.312234 + 0.312234i
\(69\) 0 0
\(70\) 5.13756 2.93351i 0.614056 0.350621i
\(71\) −5.13387 −0.609279 −0.304639 0.952468i \(-0.598536\pi\)
−0.304639 + 0.952468i \(0.598536\pi\)
\(72\) 0 0
\(73\) 7.80177 7.80177i 0.913128 0.913128i −0.0833889 0.996517i \(-0.526574\pi\)
0.996517 + 0.0833889i \(0.0265744\pi\)
\(74\) 0.812812i 0.0944875i
\(75\) 0 0
\(76\) 1.85140i 0.212370i
\(77\) −7.08211 13.4200i −0.807081 1.52936i
\(78\) 0 0
\(79\) 4.16422i 0.468511i 0.972175 + 0.234256i \(0.0752653\pi\)
−0.972175 + 0.234256i \(0.924735\pi\)
\(80\) 1.52773 1.63280i 0.170805 0.182553i
\(81\) 0 0
\(82\) −0.734390 0.734390i −0.0810998 0.0810998i
\(83\) −1.77297 + 1.77297i −0.194609 + 0.194609i −0.797684 0.603075i \(-0.793942\pi\)
0.603075 + 0.797684i \(0.293942\pi\)
\(84\) 0 0
\(85\) 8.13756 0.270551i 0.882643 0.0293453i
\(86\) 8.72918 0.941291
\(87\) 0 0
\(88\) −4.05545 4.05545i −0.432313 0.432313i
\(89\) −9.12563 −0.967315 −0.483658 0.875257i \(-0.660692\pi\)
−0.483658 + 0.875257i \(0.660692\pi\)
\(90\) 0 0
\(91\) −12.2049 3.77297i −1.27943 0.395515i
\(92\) −6.46967 + 6.46967i −0.674509 + 0.674509i
\(93\) 0 0
\(94\) 5.44670 0.561784
\(95\) −2.82843 + 3.02297i −0.290191 + 0.310150i
\(96\) 0 0
\(97\) −0.0119278 0.0119278i −0.00121108 0.00121108i 0.706501 0.707712i \(-0.250273\pi\)
−0.707712 + 0.706501i \(0.750273\pi\)
\(98\) 1.29289 + 6.87957i 0.130602 + 0.694941i
\(99\) 0 0
\(100\) −4.98896 + 0.332104i −0.498896 + 0.0332104i
\(101\) 6.25088i 0.621986i −0.950412 0.310993i \(-0.899338\pi\)
0.950412 0.310993i \(-0.100662\pi\)
\(102\) 0 0
\(103\) 1.36459 1.36459i 0.134457 0.134457i −0.636675 0.771132i \(-0.719691\pi\)
0.771132 + 0.636675i \(0.219691\pi\)
\(104\) −4.82843 −0.473466
\(105\) 0 0
\(106\) 2.61827 0.254309
\(107\) −11.2981 + 11.2981i −1.09223 + 1.09223i −0.0969374 + 0.995290i \(0.530905\pi\)
−0.995290 + 0.0969374i \(0.969095\pi\)
\(108\) 0 0
\(109\) 1.91295i 0.183227i −0.995795 0.0916137i \(-0.970798\pi\)
0.995795 0.0916137i \(-0.0292025\pi\)
\(110\) 0.426141 + 12.8174i 0.0406310 + 1.22209i
\(111\) 0 0
\(112\) 1.23483 + 2.33991i 0.116681 + 0.221101i
\(113\) 2.37563 + 2.37563i 0.223480 + 0.223480i 0.809962 0.586482i \(-0.199488\pi\)
−0.586482 + 0.809962i \(0.699488\pi\)
\(114\) 0 0
\(115\) 20.4476 0.679824i 1.90675 0.0633939i
\(116\) −3.47577 −0.322717
\(117\) 0 0
\(118\) 9.42614 9.42614i 0.867747 0.867747i
\(119\) −2.84530 + 9.20406i −0.260828 + 0.843734i
\(120\) 0 0
\(121\) 21.8934 1.99031
\(122\) 6.03248 + 6.03248i 0.546155 + 0.546155i
\(123\) 0 0
\(124\) −0.469666 −0.0421773
\(125\) 8.65336 + 7.07950i 0.773980 + 0.633210i
\(126\) 0 0
\(127\) −13.3802 + 13.3802i −1.18730 + 1.18730i −0.209490 + 0.977811i \(0.567180\pi\)
−0.977811 + 0.209490i \(0.932820\pi\)
\(128\) 0.707107 + 0.707107i 0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) 7.88388 + 7.37652i 0.691462 + 0.646963i
\(131\) 11.5646i 1.01040i 0.863001 + 0.505201i \(0.168582\pi\)
−0.863001 + 0.505201i \(0.831418\pi\)
\(132\) 0 0
\(133\) −2.28617 4.33210i −0.198236 0.375641i
\(134\) 6.32106i 0.546057i
\(135\) 0 0
\(136\) 3.64124i 0.312234i
\(137\) 8.03248 8.03248i 0.686261 0.686261i −0.275142 0.961404i \(-0.588725\pi\)
0.961404 + 0.275142i \(0.0887249\pi\)
\(138\) 0 0
\(139\) −7.02297 −0.595680 −0.297840 0.954616i \(-0.596266\pi\)
−0.297840 + 0.954616i \(0.596266\pi\)
\(140\) 1.55850 5.70711i 0.131718 0.482339i
\(141\) 0 0
\(142\) −3.63020 + 3.63020i −0.304639 + 0.304639i
\(143\) 19.5815 19.5815i 1.63748 1.63748i
\(144\) 0 0
\(145\) 5.67525 + 5.31002i 0.471304 + 0.440973i
\(146\) 11.0334i 0.913128i
\(147\) 0 0
\(148\) −0.574745 0.574745i −0.0472437 0.0472437i
\(149\) 1.88388i 0.154333i 0.997018 + 0.0771667i \(0.0245874\pi\)
−0.997018 + 0.0771667i \(0.975413\pi\)
\(150\) 0 0
\(151\) 3.28248 0.267124 0.133562 0.991040i \(-0.457358\pi\)
0.133562 + 0.991040i \(0.457358\pi\)
\(152\) −1.30913 1.30913i −0.106185 0.106185i
\(153\) 0 0
\(154\) −14.4972 4.48159i −1.16822 0.361137i
\(155\) 0.766874 + 0.717522i 0.0615968 + 0.0576327i
\(156\) 0 0
\(157\) −7.57106 7.57106i −0.604236 0.604236i 0.337198 0.941434i \(-0.390521\pi\)
−0.941434 + 0.337198i \(0.890521\pi\)
\(158\) 2.94455 + 2.94455i 0.234256 + 0.234256i
\(159\) 0 0
\(160\) −0.0743018 2.23483i −0.00587407 0.176679i
\(161\) −7.14949 + 23.1274i −0.563459 + 1.82269i
\(162\) 0 0
\(163\) −10.3367 10.3367i −0.809631 0.809631i 0.174947 0.984578i \(-0.444025\pi\)
−0.984578 + 0.174947i \(0.944025\pi\)
\(164\) −1.03858 −0.0810998
\(165\) 0 0
\(166\) 2.50736i 0.194609i
\(167\) −9.85140 9.85140i −0.762324 0.762324i 0.214418 0.976742i \(-0.431215\pi\)
−0.976742 + 0.214418i \(0.931215\pi\)
\(168\) 0 0
\(169\) 10.3137i 0.793362i
\(170\) 5.56282 5.94543i 0.426649 0.455994i
\(171\) 0 0
\(172\) 6.17246 6.17246i 0.470646 0.470646i
\(173\) 8.83947 8.83947i 0.672052 0.672052i −0.286137 0.958189i \(-0.592371\pi\)
0.958189 + 0.286137i \(0.0923711\pi\)
\(174\) 0 0
\(175\) −11.2636 + 6.93763i −0.851450 + 0.524435i
\(176\) −5.73528 −0.432313
\(177\) 0 0
\(178\) −6.45280 + 6.45280i −0.483658 + 0.483658i
\(179\) 7.68934i 0.574728i 0.957821 + 0.287364i \(0.0927789\pi\)
−0.957821 + 0.287364i \(0.907221\pi\)
\(180\) 0 0
\(181\) 10.7071i 0.795852i 0.917418 + 0.397926i \(0.130270\pi\)
−0.917418 + 0.397926i \(0.869730\pi\)
\(182\) −11.2981 + 5.96230i −0.837470 + 0.441955i
\(183\) 0 0
\(184\) 9.14949i 0.674509i
\(185\) 0.0603934 + 1.81650i 0.00444021 + 0.133552i
\(186\) 0 0
\(187\) −14.7669 14.7669i −1.07986 1.07986i
\(188\) 3.85140 3.85140i 0.280892 0.280892i
\(189\) 0 0
\(190\) 0.137562 + 4.13756i 0.00997980 + 0.300170i
\(191\) 4.91206 0.355424 0.177712 0.984082i \(-0.443130\pi\)
0.177712 + 0.984082i \(0.443130\pi\)
\(192\) 0 0
\(193\) 16.4706 + 16.4706i 1.18558 + 1.18558i 0.978278 + 0.207299i \(0.0664672\pi\)
0.207299 + 0.978278i \(0.433533\pi\)
\(194\) −0.0168684 −0.00121108
\(195\) 0 0
\(196\) 5.77880 + 3.95037i 0.412772 + 0.282170i
\(197\) 5.13387 5.13387i 0.365773 0.365773i −0.500160 0.865933i \(-0.666725\pi\)
0.865933 + 0.500160i \(0.166725\pi\)
\(198\) 0 0
\(199\) −8.63388 −0.612040 −0.306020 0.952025i \(-0.598997\pi\)
−0.306020 + 0.952025i \(0.598997\pi\)
\(200\) −3.29289 + 3.76256i −0.232843 + 0.266053i
\(201\) 0 0
\(202\) −4.42004 4.42004i −0.310993 0.310993i
\(203\) −8.13299 + 4.29199i −0.570824 + 0.301239i
\(204\) 0 0
\(205\) 1.69581 + 1.58667i 0.118440 + 0.110818i
\(206\) 1.92982i 0.134457i
\(207\) 0 0
\(208\) −3.41421 + 3.41421i −0.236733 + 0.236733i
\(209\) 10.6183 0.734481
\(210\) 0 0
\(211\) 7.73402 0.532432 0.266216 0.963913i \(-0.414227\pi\)
0.266216 + 0.963913i \(0.414227\pi\)
\(212\) 1.85140 1.85140i 0.127154 0.127154i
\(213\) 0 0
\(214\) 15.9779i 1.09223i
\(215\) −19.5083 + 0.648593i −1.33045 + 0.0442337i
\(216\) 0 0
\(217\) −1.09898 + 0.579960i −0.0746035 + 0.0393702i
\(218\) −1.35266 1.35266i −0.0916137 0.0916137i
\(219\) 0 0
\(220\) 9.36459 + 8.76193i 0.631360 + 0.590729i
\(221\) −17.5815 −1.18266
\(222\) 0 0
\(223\) 8.63883 8.63883i 0.578499 0.578499i −0.355991 0.934489i \(-0.615857\pi\)
0.934489 + 0.355991i \(0.115857\pi\)
\(224\) 2.52773 + 0.781409i 0.168891 + 0.0522101i
\(225\) 0 0
\(226\) 3.35965 0.223480
\(227\) 4.08705 + 4.08705i 0.271267 + 0.271267i 0.829610 0.558343i \(-0.188563\pi\)
−0.558343 + 0.829610i \(0.688563\pi\)
\(228\) 0 0
\(229\) 9.31371 0.615467 0.307734 0.951473i \(-0.400429\pi\)
0.307734 + 0.951473i \(0.400429\pi\)
\(230\) 13.9779 14.9393i 0.921677 0.985070i
\(231\) 0 0
\(232\) −2.45774 + 2.45774i −0.161358 + 0.161358i
\(233\) 5.22791 + 5.22791i 0.342492 + 0.342492i 0.857303 0.514812i \(-0.172138\pi\)
−0.514812 + 0.857303i \(0.672138\pi\)
\(234\) 0 0
\(235\) −12.1725 + 0.404699i −0.794044 + 0.0263997i
\(236\) 13.3306i 0.867747i
\(237\) 0 0
\(238\) 4.49632 + 8.52018i 0.291453 + 0.552281i
\(239\) 7.38514i 0.477705i −0.971056 0.238853i \(-0.923229\pi\)
0.971056 0.238853i \(-0.0767713\pi\)
\(240\) 0 0
\(241\) 4.44417i 0.286274i −0.989703 0.143137i \(-0.954281\pi\)
0.989703 0.143137i \(-0.0457190\pi\)
\(242\) 15.4810 15.4810i 0.995154 0.995154i
\(243\) 0 0
\(244\) 8.53122 0.546155
\(245\) −3.40056 15.2786i −0.217254 0.976115i
\(246\) 0 0
\(247\) 6.32106 6.32106i 0.402200 0.402200i
\(248\) −0.332104 + 0.332104i −0.0210886 + 0.0210886i
\(249\) 0 0
\(250\) 11.1248 1.11289i 0.703595 0.0703851i
\(251\) 14.1400i 0.892507i 0.894907 + 0.446254i \(0.147242\pi\)
−0.894907 + 0.446254i \(0.852758\pi\)
\(252\) 0 0
\(253\) −37.1053 37.1053i −2.33279 2.33279i
\(254\) 18.9225i 1.18730i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 6.67400 + 6.67400i 0.416312 + 0.416312i 0.883931 0.467618i \(-0.154888\pi\)
−0.467618 + 0.883931i \(0.654888\pi\)
\(258\) 0 0
\(259\) −2.05457 0.635138i −0.127665 0.0394656i
\(260\) 10.7907 0.358761i 0.669213 0.0222494i
\(261\) 0 0
\(262\) 8.17740 + 8.17740i 0.505201 + 0.505201i
\(263\) −2.21016 2.21016i −0.136284 0.136284i 0.635674 0.771958i \(-0.280722\pi\)
−0.771958 + 0.635674i \(0.780722\pi\)
\(264\) 0 0
\(265\) −5.85140 + 0.194542i −0.359448 + 0.0119506i
\(266\) −4.67982 1.44670i −0.286938 0.0887027i
\(267\) 0 0
\(268\) 4.46967 + 4.46967i 0.273028 + 0.273028i
\(269\) 16.2362 0.989937 0.494968 0.868911i \(-0.335180\pi\)
0.494968 + 0.868911i \(0.335180\pi\)
\(270\) 0 0
\(271\) 30.1841i 1.83355i 0.399399 + 0.916777i \(0.369219\pi\)
−0.399399 + 0.916777i \(0.630781\pi\)
\(272\) 2.57474 + 2.57474i 0.156117 + 0.156117i
\(273\) 0 0
\(274\) 11.3596i 0.686261i
\(275\) −1.90471 28.6131i −0.114858 1.72543i
\(276\) 0 0
\(277\) 12.3646 12.3646i 0.742916 0.742916i −0.230222 0.973138i \(-0.573945\pi\)
0.973138 + 0.230222i \(0.0739453\pi\)
\(278\) −4.96599 + 4.96599i −0.297840 + 0.297840i
\(279\) 0 0
\(280\) −2.93351 5.13756i −0.175310 0.307028i
\(281\) 22.1127 1.31913 0.659566 0.751647i \(-0.270740\pi\)
0.659566 + 0.751647i \(0.270740\pi\)
\(282\) 0 0
\(283\) 14.9172 14.9172i 0.886738 0.886738i −0.107470 0.994208i \(-0.534275\pi\)
0.994208 + 0.107470i \(0.0342749\pi\)
\(284\) 5.13387i 0.304639i
\(285\) 0 0
\(286\) 27.6924i 1.63748i
\(287\) −2.43020 + 1.28248i −0.143450 + 0.0757023i
\(288\) 0 0
\(289\) 3.74138i 0.220081i
\(290\) 7.76776 0.258256i 0.456139 0.0151653i
\(291\) 0 0
\(292\) −7.80177 7.80177i −0.456564 0.456564i
\(293\) −11.5977 + 11.5977i −0.677546 + 0.677546i −0.959444 0.281899i \(-0.909036\pi\)
0.281899 + 0.959444i \(0.409036\pi\)
\(294\) 0 0
\(295\) −20.3655 + 21.7662i −1.18572 + 1.26728i
\(296\) −0.812812 −0.0472437
\(297\) 0 0
\(298\) 1.33210 + 1.33210i 0.0771667 + 0.0771667i
\(299\) −44.1776 −2.55486
\(300\) 0 0
\(301\) 6.82105 22.0650i 0.393159 1.27180i
\(302\) 2.32106 2.32106i 0.133562 0.133562i
\(303\) 0 0
\(304\) −1.85140 −0.106185
\(305\) −13.9298 13.0334i −0.797619 0.746289i
\(306\) 0 0
\(307\) 12.4164 + 12.4164i 0.708639 + 0.708639i 0.966249 0.257610i \(-0.0829350\pi\)
−0.257610 + 0.966249i \(0.582935\pi\)
\(308\) −13.4200 + 7.08211i −0.764678 + 0.403541i
\(309\) 0 0
\(310\) 1.04963 0.0348971i 0.0596147 0.00198202i
\(311\) 9.81370i 0.556484i 0.960511 + 0.278242i \(0.0897517\pi\)
−0.960511 + 0.278242i \(0.910248\pi\)
\(312\) 0 0
\(313\) −13.4586 + 13.4586i −0.760726 + 0.760726i −0.976454 0.215727i \(-0.930788\pi\)
0.215727 + 0.976454i \(0.430788\pi\)
\(314\) −10.7071 −0.604236
\(315\) 0 0
\(316\) 4.16422 0.234256
\(317\) 8.01040 8.01040i 0.449909 0.449909i −0.445415 0.895324i \(-0.646944\pi\)
0.895324 + 0.445415i \(0.146944\pi\)
\(318\) 0 0
\(319\) 19.9345i 1.11612i
\(320\) −1.63280 1.52773i −0.0912766 0.0854025i
\(321\) 0 0
\(322\) 11.2981 + 21.4090i 0.629618 + 1.19308i
\(323\) −4.76687 4.76687i −0.265236 0.265236i
\(324\) 0 0
\(325\) −18.1672 15.8995i −1.00774 0.881945i
\(326\) −14.6183 −0.809631
\(327\) 0 0
\(328\) −0.734390 + 0.734390i −0.0405499 + 0.0405499i
\(329\) 4.25610 13.7678i 0.234646 0.759041i
\(330\) 0 0
\(331\) −13.6906 −0.752503 −0.376251 0.926518i \(-0.622787\pi\)
−0.376251 + 0.926518i \(0.622787\pi\)
\(332\) 1.77297 + 1.77297i 0.0973046 + 0.0973046i
\(333\) 0 0
\(334\) −13.9320 −0.762324
\(335\) −0.469666 14.1265i −0.0256606 0.771814i
\(336\) 0 0
\(337\) −4.47055 + 4.47055i −0.243527 + 0.243527i −0.818307 0.574781i \(-0.805087\pi\)
0.574781 + 0.818307i \(0.305087\pi\)
\(338\) −7.29289 7.29289i −0.396681 0.396681i
\(339\) 0 0
\(340\) −0.270551 8.13756i −0.0146727 0.441321i
\(341\) 2.69367i 0.145870i
\(342\) 0 0
\(343\) 18.3999 + 2.10767i 0.993503 + 0.113804i
\(344\) 8.72918i 0.470646i
\(345\) 0 0
\(346\) 12.5009i 0.672052i
\(347\) −12.9103 + 12.9103i −0.693059 + 0.693059i −0.962904 0.269845i \(-0.913028\pi\)
0.269845 + 0.962904i \(0.413028\pi\)
\(348\) 0 0
\(349\) −13.5937 −0.727652 −0.363826 0.931467i \(-0.618530\pi\)
−0.363826 + 0.931467i \(0.618530\pi\)
\(350\) −3.05895 + 12.8702i −0.163508 + 0.687943i
\(351\) 0 0
\(352\) −4.05545 + 4.05545i −0.216156 + 0.216156i
\(353\) 17.4032 17.4032i 0.926277 0.926277i −0.0711857 0.997463i \(-0.522678\pi\)
0.997463 + 0.0711857i \(0.0226783\pi\)
\(354\) 0 0
\(355\) 7.84316 8.38262i 0.416271 0.444903i
\(356\) 9.12563i 0.483658i
\(357\) 0 0
\(358\) 5.43718 + 5.43718i 0.287364 + 0.287364i
\(359\) 7.02297i 0.370658i 0.982677 + 0.185329i \(0.0593351\pi\)
−0.982677 + 0.185329i \(0.940665\pi\)
\(360\) 0 0
\(361\) −15.5723 −0.819596
\(362\) 7.57106 + 7.57106i 0.397926 + 0.397926i
\(363\) 0 0
\(364\) −3.77297 + 12.2049i −0.197758 + 0.639713i
\(365\) 0.819799 + 24.6577i 0.0429103 + 1.29065i
\(366\) 0 0
\(367\) 23.0609 + 23.0609i 1.20377 + 1.20377i 0.973011 + 0.230759i \(0.0741209\pi\)
0.230759 + 0.973011i \(0.425879\pi\)
\(368\) 6.46967 + 6.46967i 0.337255 + 0.337255i
\(369\) 0 0
\(370\) 1.32716 + 1.24175i 0.0689959 + 0.0645557i
\(371\) 2.04594 6.61827i 0.106220 0.343603i
\(372\) 0 0
\(373\) −8.04352 8.04352i −0.416478 0.416478i 0.467510 0.883988i \(-0.345151\pi\)
−0.883988 + 0.467510i \(0.845151\pi\)
\(374\) −20.8835 −1.07986
\(375\) 0 0
\(376\) 5.44670i 0.280892i
\(377\) −11.8670 11.8670i −0.611182 0.611182i
\(378\) 0 0
\(379\) 11.4368i 0.587470i −0.955887 0.293735i \(-0.905102\pi\)
0.955887 0.293735i \(-0.0948983\pi\)
\(380\) 3.02297 + 2.82843i 0.155075 + 0.145095i
\(381\) 0 0
\(382\) 3.47335 3.47335i 0.177712 0.177712i
\(383\) 5.71841 5.71841i 0.292197 0.292197i −0.545751 0.837948i \(-0.683755\pi\)
0.837948 + 0.545751i \(0.183755\pi\)
\(384\) 0 0
\(385\) 32.7318 + 8.93845i 1.66817 + 0.455545i
\(386\) 23.2929 1.18558
\(387\) 0 0
\(388\) −0.0119278 + 0.0119278i −0.000605541 + 0.000605541i
\(389\) 32.4151i 1.64351i −0.569840 0.821755i \(-0.692995\pi\)
0.569840 0.821755i \(-0.307005\pi\)
\(390\) 0 0
\(391\) 33.3155i 1.68484i
\(392\) 6.87957 1.29289i 0.347471 0.0653010i
\(393\) 0 0
\(394\) 7.26040i 0.365773i
\(395\) −6.79936 6.36179i −0.342113 0.320096i
\(396\) 0 0
\(397\) −25.6023 25.6023i −1.28494 1.28494i −0.937820 0.347122i \(-0.887159\pi\)
−0.347122 0.937820i \(-0.612841\pi\)
\(398\) −6.10508 + 6.10508i −0.306020 + 0.306020i
\(399\) 0 0
\(400\) 0.332104 + 4.98896i 0.0166052 + 0.249448i
\(401\) 12.8597 0.642181 0.321090 0.947049i \(-0.395951\pi\)
0.321090 + 0.947049i \(0.395951\pi\)
\(402\) 0 0
\(403\) −1.60354 1.60354i −0.0798781 0.0798781i
\(404\) −6.25088 −0.310993
\(405\) 0 0
\(406\) −2.71599 + 8.78579i −0.134793 + 0.436031i
\(407\) 3.29632 3.29632i 0.163393 0.163393i
\(408\) 0 0
\(409\) 7.67894 0.379699 0.189850 0.981813i \(-0.439200\pi\)
0.189850 + 0.981813i \(0.439200\pi\)
\(410\) 2.32106 0.0771687i 0.114629 0.00381109i
\(411\) 0 0
\(412\) −1.36459 1.36459i −0.0672284 0.0672284i
\(413\) −16.4610 31.1924i −0.809995 1.53488i
\(414\) 0 0
\(415\) −0.186302 5.60354i −0.00914519 0.275067i
\(416\) 4.82843i 0.236733i
\(417\) 0 0
\(418\) 7.50825 7.50825i 0.367241 0.367241i
\(419\) 15.2534 0.745178 0.372589 0.927997i \(-0.378470\pi\)
0.372589 + 0.927997i \(0.378470\pi\)
\(420\) 0 0
\(421\) 16.5264 0.805447 0.402724 0.915322i \(-0.368064\pi\)
0.402724 + 0.915322i \(0.368064\pi\)
\(422\) 5.46878 5.46878i 0.266216 0.266216i
\(423\) 0 0
\(424\) 2.61827i 0.127154i
\(425\) −11.9902 + 13.7004i −0.581611 + 0.664566i
\(426\) 0 0
\(427\) 19.9623 10.5346i 0.966043 0.509807i
\(428\) 11.2981 + 11.2981i 0.546114 + 0.546114i
\(429\) 0 0
\(430\) −13.3358 + 14.2530i −0.643109 + 0.687343i
\(431\) −7.22830 −0.348175 −0.174087 0.984730i \(-0.555698\pi\)
−0.174087 + 0.984730i \(0.555698\pi\)
\(432\) 0 0
\(433\) −13.0916 + 13.0916i −0.629143 + 0.629143i −0.947853 0.318709i \(-0.896751\pi\)
0.318709 + 0.947853i \(0.396751\pi\)
\(434\) −0.367001 + 1.18719i −0.0176166 + 0.0569868i
\(435\) 0 0
\(436\) −1.91295 −0.0916137
\(437\) −11.9779 11.9779i −0.572981 0.572981i
\(438\) 0 0
\(439\) −24.9034 −1.18857 −0.594287 0.804253i \(-0.702566\pi\)
−0.594287 + 0.804253i \(0.702566\pi\)
\(440\) 12.8174 0.426141i 0.611045 0.0203155i
\(441\) 0 0
\(442\) −12.4320 + 12.4320i −0.591328 + 0.591328i
\(443\) −12.2821 12.2821i −0.583541 0.583541i 0.352334 0.935874i \(-0.385388\pi\)
−0.935874 + 0.352334i \(0.885388\pi\)
\(444\) 0 0
\(445\) 13.9415 14.9004i 0.660889 0.706346i
\(446\) 12.2171i 0.578499i
\(447\) 0 0
\(448\) 2.33991 1.23483i 0.110550 0.0583404i
\(449\) 4.53122i 0.213841i −0.994268 0.106921i \(-0.965901\pi\)
0.994268 0.106921i \(-0.0340991\pi\)
\(450\) 0 0
\(451\) 5.95657i 0.280484i
\(452\) 2.37563 2.37563i 0.111740 0.111740i
\(453\) 0 0
\(454\) 5.77996 0.271267
\(455\) 24.8063 14.1642i 1.16294 0.664029i
\(456\) 0 0
\(457\) −5.34315 + 5.34315i −0.249942 + 0.249942i −0.820947 0.571005i \(-0.806554\pi\)
0.571005 + 0.820947i \(0.306554\pi\)
\(458\) 6.58579 6.58579i 0.307734 0.307734i
\(459\) 0 0
\(460\) −0.679824 20.4476i −0.0316969 0.953373i
\(461\) 12.9004i 0.600831i 0.953808 + 0.300415i \(0.0971253\pi\)
−0.953808 + 0.300415i \(0.902875\pi\)
\(462\) 0 0
\(463\) 11.9452 + 11.9452i 0.555139 + 0.555139i 0.927919 0.372781i \(-0.121596\pi\)
−0.372781 + 0.927919i \(0.621596\pi\)
\(464\) 3.47577i 0.161358i
\(465\) 0 0
\(466\) 7.39338 0.342492
\(467\) 25.1204 + 25.1204i 1.16243 + 1.16243i 0.983941 + 0.178493i \(0.0571223\pi\)
0.178493 + 0.983941i \(0.442878\pi\)
\(468\) 0 0
\(469\) 15.9779 + 4.93933i 0.737792 + 0.228077i
\(470\) −8.32106 + 8.89339i −0.383822 + 0.410222i
\(471\) 0 0
\(472\) −9.42614 9.42614i −0.433873 0.433873i
\(473\) 35.4008 + 35.4008i 1.62773 + 1.62773i
\(474\) 0 0
\(475\) −0.614857 9.23654i −0.0282116 0.423802i
\(476\) 9.20406 + 2.84530i 0.421867 + 0.130414i
\(477\) 0 0
\(478\) −5.22208 5.22208i −0.238853 0.238853i
\(479\) −1.17157 −0.0535305 −0.0267653 0.999642i \(-0.508521\pi\)
−0.0267653 + 0.999642i \(0.508521\pi\)
\(480\) 0 0
\(481\) 3.92460i 0.178947i
\(482\) −3.14250 3.14250i −0.143137 0.143137i
\(483\) 0 0
\(484\) 21.8934i 0.995154i
\(485\) 0.0376981 0.00125335i 0.00171178 5.69118e-5i
\(486\) 0 0
\(487\) 5.67741 5.67741i 0.257268 0.257268i −0.566674 0.823942i \(-0.691770\pi\)
0.823942 + 0.566674i \(0.191770\pi\)
\(488\) 6.03248 6.03248i 0.273078 0.273078i
\(489\) 0 0
\(490\) −13.2082 8.39905i −0.596685 0.379430i
\(491\) 21.3462 0.963340 0.481670 0.876353i \(-0.340030\pi\)
0.481670 + 0.876353i \(0.340030\pi\)
\(492\) 0 0
\(493\) −8.94921 + 8.94921i −0.403052 + 0.403052i
\(494\) 8.93933i 0.402200i
\(495\) 0 0
\(496\) 0.469666i 0.0210886i
\(497\) 6.33948 + 12.0128i 0.284364 + 0.538848i
\(498\) 0 0
\(499\) 33.4411i 1.49703i 0.663118 + 0.748515i \(0.269233\pi\)
−0.663118 + 0.748515i \(0.730767\pi\)
\(500\) 7.07950 8.65336i 0.316605 0.386990i
\(501\) 0 0
\(502\) 9.99847 + 9.99847i 0.446254 + 0.446254i
\(503\) 9.00089 9.00089i 0.401330 0.401330i −0.477372 0.878701i \(-0.658410\pi\)
0.878701 + 0.477372i \(0.158410\pi\)
\(504\) 0 0
\(505\) 10.2065 + 9.54964i 0.454182 + 0.424953i
\(506\) −52.4749 −2.33279
\(507\) 0 0
\(508\) 13.3802 + 13.3802i 0.593651 + 0.593651i
\(509\) 24.7938 1.09896 0.549482 0.835506i \(-0.314825\pi\)
0.549482 + 0.835506i \(0.314825\pi\)
\(510\) 0 0
\(511\) −27.8893 8.62157i −1.23375 0.381396i
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) 0 0
\(514\) 9.43846 0.416312
\(515\) 0.143389 + 4.31282i 0.00631847 + 0.190046i
\(516\) 0 0
\(517\) 22.0888 + 22.0888i 0.971465 + 0.971465i
\(518\) −1.90191 + 1.00369i −0.0835651 + 0.0440995i
\(519\) 0 0
\(520\) 7.37652 7.88388i 0.323482 0.345731i
\(521\) 36.4871i 1.59853i −0.600981 0.799263i \(-0.705223\pi\)
0.600981 0.799263i \(-0.294777\pi\)
\(522\) 0 0
\(523\) −22.9887 + 22.9887i −1.00522 + 1.00522i −0.00523871 + 0.999986i \(0.501668\pi\)
−0.999986 + 0.00523871i \(0.998332\pi\)
\(524\) 11.5646 0.505201
\(525\) 0 0
\(526\) −3.12563 −0.136284
\(527\) −1.20927 + 1.20927i −0.0526767 + 0.0526767i
\(528\) 0 0
\(529\) 60.7132i 2.63970i
\(530\) −4.00000 + 4.27512i −0.173749 + 0.185700i
\(531\) 0 0
\(532\) −4.33210 + 2.28617i −0.187821 + 0.0991179i
\(533\) −3.54595 3.54595i −0.153592 0.153592i
\(534\) 0 0
\(535\) −1.18719 35.7080i −0.0513266 1.54379i
\(536\) 6.32106 0.273028
\(537\) 0 0
\(538\) 11.4807 11.4807i 0.494968 0.494968i
\(539\) −22.6565 + 33.1430i −0.975884 + 1.42757i
\(540\) 0 0
\(541\) −17.9896 −0.773432 −0.386716 0.922199i \(-0.626391\pi\)
−0.386716 + 0.922199i \(0.626391\pi\)
\(542\) 21.3434 + 21.3434i 0.916777 + 0.916777i
\(543\) 0 0
\(544\) 3.64124 0.156117
\(545\) 3.12347 + 2.92246i 0.133795 + 0.125185i
\(546\) 0 0
\(547\) 22.6044 22.6044i 0.966496 0.966496i −0.0329611 0.999457i \(-0.510494\pi\)
0.999457 + 0.0329611i \(0.0104937\pi\)
\(548\) −8.03248 8.03248i −0.343131 0.343131i
\(549\) 0 0
\(550\) −21.5793 18.8857i −0.920145 0.805287i
\(551\) 6.43502i 0.274141i
\(552\) 0 0
\(553\) 9.74390 5.14212i 0.414353 0.218665i
\(554\) 17.4862i 0.742916i
\(555\) 0 0
\(556\) 7.02297i 0.297840i
\(557\) −11.1240 + 11.1240i −0.471339 + 0.471339i −0.902348 0.431009i \(-0.858158\pi\)
0.431009 + 0.902348i \(0.358158\pi\)
\(558\) 0 0
\(559\) 42.1482 1.78268
\(560\) −5.70711 1.55850i −0.241169 0.0658588i
\(561\) 0 0
\(562\) 15.6360 15.6360i 0.659566 0.659566i
\(563\) −29.1274 + 29.1274i −1.22757 + 1.22757i −0.262695 + 0.964879i \(0.584611\pi\)
−0.964879 + 0.262695i \(0.915389\pi\)
\(564\) 0 0
\(565\) −7.50825 + 0.249628i −0.315874 + 0.0105019i
\(566\) 21.0962i 0.886738i
\(567\) 0 0
\(568\) 3.63020 + 3.63020i 0.152320 + 0.152320i
\(569\) 8.70532i 0.364946i 0.983211 + 0.182473i \(0.0584102\pi\)
−0.983211 + 0.182473i \(0.941590\pi\)
\(570\) 0 0
\(571\) −35.9454 −1.50427 −0.752134 0.659010i \(-0.770975\pi\)
−0.752134 + 0.659010i \(0.770975\pi\)
\(572\) −19.5815 19.5815i −0.818742 0.818742i
\(573\) 0 0
\(574\) −0.811559 + 2.62526i −0.0338738 + 0.109576i
\(575\) −30.1283 + 34.4255i −1.25644 + 1.43564i
\(576\) 0 0
\(577\) −22.5860 22.5860i −0.940269 0.940269i 0.0580452 0.998314i \(-0.481513\pi\)
−0.998314 + 0.0580452i \(0.981513\pi\)
\(578\) −2.64555 2.64555i −0.110041 0.110041i
\(579\) 0 0
\(580\) 5.31002 5.67525i 0.220487 0.235652i
\(581\) 6.33793 + 1.95928i 0.262942 + 0.0812845i
\(582\) 0 0
\(583\) 10.6183 + 10.6183i 0.439764 + 0.439764i
\(584\) −11.0334 −0.456564
\(585\) 0 0
\(586\) 16.4016i 0.677546i
\(587\) 25.9727 + 25.9727i 1.07201 + 1.07201i 0.997198 + 0.0748104i \(0.0238351\pi\)
0.0748104 + 0.997198i \(0.476165\pi\)
\(588\) 0 0
\(589\) 0.869539i 0.0358287i
\(590\) 0.990486 + 29.7916i 0.0407777 + 1.22650i
\(591\) 0 0
\(592\) −0.574745 + 0.574745i −0.0236219 + 0.0236219i
\(593\) −24.4656 + 24.4656i −1.00468 + 1.00468i −0.00469328 + 0.999989i \(0.501494\pi\)
−0.999989 + 0.00469328i \(0.998506\pi\)
\(594\) 0 0
\(595\) −10.6816 18.7071i −0.437903 0.766916i
\(596\) 1.88388 0.0771667
\(597\) 0 0
\(598\) −31.2383 + 31.2383i −1.27743 + 1.27743i
\(599\) 6.72576i 0.274807i 0.990515 + 0.137404i \(0.0438757\pi\)
−0.990515 + 0.137404i \(0.956124\pi\)
\(600\) 0 0
\(601\) 44.3830i 1.81042i −0.424965 0.905210i \(-0.639714\pi\)
0.424965 0.905210i \(-0.360286\pi\)
\(602\) −10.7791 20.4255i −0.439322 0.832481i
\(603\) 0 0
\(604\) 3.28248i 0.133562i
\(605\) −33.4471 + 35.7476i −1.35982 + 1.45335i
\(606\) 0 0
\(607\) 7.20378 + 7.20378i 0.292393 + 0.292393i 0.838025 0.545632i \(-0.183710\pi\)
−0.545632 + 0.838025i \(0.683710\pi\)
\(608\) −1.30913 + 1.30913i −0.0530924 + 0.0530924i
\(609\) 0 0
\(610\) −19.0659 + 0.633885i −0.771954 + 0.0256653i
\(611\) 26.2990 1.06394
\(612\) 0 0
\(613\) 21.6324 + 21.6324i 0.873723 + 0.873723i 0.992876 0.119153i \(-0.0380180\pi\)
−0.119153 + 0.992876i \(0.538018\pi\)
\(614\) 17.5594 0.708639
\(615\) 0 0
\(616\) −4.48159 + 14.4972i −0.180569 + 0.584109i
\(617\) −29.8652 + 29.8652i −1.20233 + 1.20233i −0.228871 + 0.973457i \(0.573504\pi\)
−0.973457 + 0.228871i \(0.926496\pi\)
\(618\) 0 0
\(619\) 12.6963 0.510308 0.255154 0.966900i \(-0.417874\pi\)
0.255154 + 0.966900i \(0.417874\pi\)
\(620\) 0.717522 0.766874i 0.0288164 0.0307984i
\(621\) 0 0
\(622\) 6.93933 + 6.93933i 0.278242 + 0.278242i
\(623\) 11.2686 + 21.3532i 0.451468 + 0.855497i
\(624\) 0 0
\(625\) −24.7794 + 3.31371i −0.991177 + 0.132548i
\(626\) 19.0334i 0.760726i
\(627\) 0 0
\(628\) −7.57106 + 7.57106i −0.302118 + 0.302118i
\(629\) −2.95964 −0.118009
\(630\) 0 0
\(631\) 36.4650 1.45165 0.725824 0.687881i \(-0.241459\pi\)
0.725824 + 0.687881i \(0.241459\pi\)
\(632\) 2.94455 2.94455i 0.117128 0.117128i
\(633\) 0 0
\(634\) 11.3284i 0.449909i
\(635\) −1.40597 42.2886i −0.0557943 1.67817i
\(636\) 0 0
\(637\) 6.24264 + 33.2175i 0.247342 + 1.31612i
\(638\) −14.0958 14.0958i −0.558058 0.558058i
\(639\) 0 0
\(640\) −2.23483 + 0.0743018i −0.0883395 + 0.00293704i
\(641\) 0.862164 0.0340534 0.0170267 0.999855i \(-0.494580\pi\)
0.0170267 + 0.999855i \(0.494580\pi\)
\(642\) 0 0
\(643\) −8.58057 + 8.58057i −0.338385 + 0.338385i −0.855759 0.517374i \(-0.826909\pi\)
0.517374 + 0.855759i \(0.326909\pi\)
\(644\) 23.1274 + 7.14949i 0.911347 + 0.281729i
\(645\) 0 0
\(646\) −6.74138 −0.265236
\(647\) 1.35623 + 1.35623i 0.0533191 + 0.0533191i 0.733264 0.679945i \(-0.237996\pi\)
−0.679945 + 0.733264i \(0.737996\pi\)
\(648\) 0 0
\(649\) 76.4545 3.00110
\(650\) −24.0888 + 1.60354i −0.944841 + 0.0628961i
\(651\) 0 0
\(652\) −10.3367 + 10.3367i −0.404816 + 0.404816i
\(653\) 15.8873 + 15.8873i 0.621718 + 0.621718i 0.945971 0.324253i \(-0.105113\pi\)
−0.324253 + 0.945971i \(0.605113\pi\)
\(654\) 0 0
\(655\) −18.8827 17.6675i −0.737809 0.690327i
\(656\) 1.03858i 0.0405499i
\(657\) 0 0
\(658\) −6.72576 12.7448i −0.262198 0.496844i
\(659\) 25.8315i 1.00625i −0.864213 0.503126i \(-0.832183\pi\)
0.864213 0.503126i \(-0.167817\pi\)
\(660\) 0 0
\(661\) 30.7383i 1.19558i 0.801652 + 0.597791i \(0.203955\pi\)
−0.801652 + 0.597791i \(0.796045\pi\)
\(662\) −9.68071 + 9.68071i −0.376251 + 0.376251i
\(663\) 0 0
\(664\) 2.50736 0.0973046
\(665\) 10.5661 + 2.88541i 0.409736 + 0.111891i
\(666\) 0 0
\(667\) −22.4871 + 22.4871i −0.870702 + 0.870702i
\(668\) −9.85140 + 9.85140i −0.381162 + 0.381162i
\(669\) 0 0
\(670\) −10.3211 9.65685i −0.398737 0.373077i
\(671\) 48.9289i 1.88888i
\(672\) 0 0
\(673\) −4.05024 4.05024i −0.156125 0.156125i 0.624722 0.780847i \(-0.285212\pi\)
−0.780847 + 0.624722i \(0.785212\pi\)
\(674\) 6.32232i 0.243527i
\(675\) 0 0
\(676\) −10.3137 −0.396681
\(677\) −2.32222 2.32222i −0.0892503 0.0892503i 0.661072 0.750322i \(-0.270102\pi\)
−0.750322 + 0.661072i \(0.770102\pi\)
\(678\) 0 0
\(679\) −0.0131811 + 0.0426387i −0.000505845 + 0.00163632i
\(680\) −5.94543 5.56282i −0.227997 0.213324i
\(681\) 0 0
\(682\) −1.90471 1.90471i −0.0729351 0.0729351i
\(683\) 13.2028 + 13.2028i 0.505191 + 0.505191i 0.913047 0.407855i \(-0.133723\pi\)
−0.407855 + 0.913047i \(0.633723\pi\)
\(684\) 0 0
\(685\) 0.844042 + 25.3869i 0.0322492 + 0.969984i
\(686\) 14.5011 11.5204i 0.553653 0.439850i
\(687\) 0 0
\(688\) −6.17246 6.17246i −0.235323 0.235323i
\(689\) 12.6421 0.481627
\(690\) 0 0
\(691\) 49.4659i 1.88177i −0.338726 0.940885i \(-0.609996\pi\)
0.338726 0.940885i \(-0.390004\pi\)
\(692\) −8.83947 8.83947i −0.336026 0.336026i
\(693\) 0 0
\(694\) 18.2579i 0.693059i
\(695\) 10.7292 11.4671i 0.406981 0.434973i
\(696\) 0 0
\(697\) −2.67409 + 2.67409i −0.101288 + 0.101288i
\(698\) −9.61217 + 9.61217i −0.363826 + 0.363826i
\(699\) 0 0
\(700\) 6.93763 + 11.2636i 0.262218 + 0.425725i
\(701\) −31.2773 −1.18133 −0.590663 0.806918i \(-0.701134\pi\)
−0.590663 + 0.806918i \(0.701134\pi\)
\(702\) 0 0
\(703\) 1.06408 1.06408i 0.0401326 0.0401326i
\(704\) 5.73528i 0.216156i
\(705\) 0 0
\(706\) 24.6118i 0.926277i
\(707\) −14.6265 + 7.71880i −0.550087 + 0.290295i
\(708\) 0 0
\(709\) 42.4051i 1.59256i −0.604931 0.796278i \(-0.706799\pi\)
0.604931 0.796278i \(-0.293201\pi\)
\(710\) −0.381456 11.4734i −0.0143158 0.430587i
\(711\) 0 0
\(712\) 6.45280 + 6.45280i 0.241829 + 0.241829i
\(713\) −3.03858 + 3.03858i −0.113796 + 0.113796i
\(714\) 0 0
\(715\) 2.05759 + 61.8878i 0.0769496 + 2.31447i
\(716\) 7.68934 0.287364
\(717\) 0 0
\(718\) 4.96599 + 4.96599i 0.185329 + 0.185329i
\(719\) 31.0675 1.15862 0.579311 0.815107i \(-0.303322\pi\)
0.579311 + 0.815107i \(0.303322\pi\)
\(720\) 0 0
\(721\) −4.87805 1.50798i −0.181668 0.0561600i
\(722\) −11.0113 + 11.0113i −0.409798 + 0.409798i
\(723\) 0 0
\(724\) 10.7071 0.397926
\(725\) −17.3405 + 1.15432i −0.644008 + 0.0428703i
\(726\) 0 0
\(727\) −6.60937 6.60937i −0.245128 0.245128i 0.573840 0.818968i \(-0.305453\pi\)
−0.818968 + 0.573840i \(0.805453\pi\)
\(728\) 5.96230 + 11.2981i 0.220978 + 0.418735i
\(729\) 0 0
\(730\) 18.0153 + 16.8560i 0.666778 + 0.623867i
\(731\) 31.7850i 1.17561i
\(732\) 0 0
\(733\) −3.30331 + 3.30331i −0.122010 + 0.122010i −0.765476 0.643465i \(-0.777496\pi\)
0.643465 + 0.765476i \(0.277496\pi\)
\(734\) 32.6131 1.20377
\(735\) 0 0
\(736\) 9.14949 0.337255
\(737\) −25.6348 + 25.6348i −0.944269 + 0.944269i
\(738\) 0 0
\(739\) 8.70709i 0.320296i 0.987093 + 0.160148i \(0.0511971\pi\)
−0.987093 + 0.160148i \(0.948803\pi\)
\(740\) 1.81650 0.0603934i 0.0667758 0.00222011i
\(741\) 0 0
\(742\) −3.23313 6.12652i −0.118692 0.224912i
\(743\) −33.9264 33.9264i −1.24464 1.24464i −0.958056 0.286582i \(-0.907481\pi\)
−0.286582 0.958056i \(-0.592519\pi\)
\(744\) 0 0
\(745\) −3.07601 2.87805i −0.112696 0.105444i
\(746\) −11.3753 −0.416478
\(747\) 0 0
\(748\) −14.7669 + 14.7669i −0.539930 + 0.539930i
\(749\) 40.3878 + 12.4853i 1.47574 + 0.456202i
\(750\) 0 0
\(751\) 40.1365 1.46460 0.732301 0.680981i \(-0.238446\pi\)
0.732301 + 0.680981i \(0.238446\pi\)
\(752\) −3.85140 3.85140i −0.140446 0.140446i
\(753\) 0 0
\(754\) −16.7825 −0.611182
\(755\) −5.01473 + 5.35965i −0.182505 + 0.195058i
\(756\) 0 0
\(757\) 7.01659 7.01659i 0.255022 0.255022i −0.568004 0.823026i \(-0.692284\pi\)
0.823026 + 0.568004i \(0.192284\pi\)
\(758\) −8.08705 8.08705i −0.293735 0.293735i
\(759\) 0 0
\(760\) 4.13756 0.137562i 0.150085 0.00498990i
\(761\) 35.9693i 1.30388i −0.758269 0.651942i \(-0.773954\pi\)
0.758269 0.651942i \(-0.226046\pi\)
\(762\) 0 0
\(763\) −4.47613 + 2.36217i −0.162047 + 0.0855164i
\(764\) 4.91206i 0.177712i
\(765\) 0 0
\(766\) 8.08705i 0.292197i
\(767\) 45.5134 45.5134i 1.64339 1.64339i
\(768\) 0 0
\(769\) −29.0018 −1.04583 −0.522916 0.852384i \(-0.675156\pi\)
−0.522916 + 0.852384i \(0.675156\pi\)
\(770\) 29.4653 16.8245i 1.06186 0.606312i
\(771\) 0 0
\(772\) 16.4706 16.4706i 0.592788 0.592788i
\(773\) −33.1042 + 33.1042i −1.19067 + 1.19067i −0.213796 + 0.976878i \(0.568583\pi\)
−0.976878 + 0.213796i \(0.931417\pi\)
\(774\) 0 0
\(775\) −2.34315 + 0.155978i −0.0841683 + 0.00560290i
\(776\) 0.0168684i 0.000605541i
\(777\) 0 0
\(778\) −22.9209 22.9209i −0.821755 0.821755i
\(779\) 1.92283i 0.0688926i
\(780\) 0 0
\(781\) −29.4442 −1.05360
\(782\) 23.5576 + 23.5576i 0.842418 + 0.842418i
\(783\) 0 0
\(784\) 3.95037 5.77880i 0.141085 0.206386i
\(785\) 23.9286 0.795556i 0.854047 0.0283946i
\(786\) 0 0
\(787\) −0.532861 0.532861i −0.0189944 0.0189944i 0.697546 0.716540i \(-0.254275\pi\)
−0.716540 + 0.697546i \(0.754275\pi\)
\(788\) −5.13387 5.13387i −0.182887 0.182887i
\(789\) 0 0
\(790\) −9.30633 + 0.309409i −0.331105 + 0.0110083i
\(791\) 2.62526 8.49227i 0.0933434 0.301950i
\(792\) 0 0
\(793\) 29.1274 + 29.1274i 1.03434 + 1.03434i
\(794\) −36.2071 −1.28494
\(795\) 0 0
\(796\) 8.63388i 0.306020i
\(797\) −22.6961 22.6961i −0.803935 0.803935i 0.179773 0.983708i \(-0.442464\pi\)
−0.983708 + 0.179773i \(0.942464\pi\)
\(798\) 0 0
\(799\) 19.8327i 0.701631i
\(800\) 3.76256 + 3.29289i 0.133027 + 0.116421i
\(801\) 0 0
\(802\) 9.09315 9.09315i 0.321090 0.321090i
\(803\) 44.7453 44.7453i 1.57903 1.57903i
\(804\) 0 0
\(805\) −26.8401 47.0061i −0.945989 1.65675i
\(806\) −2.26775 −0.0798781
\(807\) 0 0
\(808\) −4.42004 + 4.42004i −0.155496 + 0.155496i
\(809\) 16.6404i 0.585044i −0.956259 0.292522i \(-0.905506\pi\)
0.956259 0.292522i \(-0.0944944\pi\)
\(810\) 0 0
\(811\) 13.7933i 0.484347i 0.970233 + 0.242173i \(0.0778603\pi\)
−0.970233 + 0.242173i \(0.922140\pi\)
\(812\) 4.29199 + 8.13299i 0.150619 + 0.285412i
\(813\) 0 0
\(814\) 4.66170i 0.163393i
\(815\) 32.6694 1.08616i 1.14436 0.0380467i
\(816\) 0 0
\(817\) 11.4277 + 11.4277i 0.399804 + 0.399804i
\(818\) 5.42983 5.42983i 0.189850 0.189850i
\(819\) 0 0
\(820\) 1.58667 1.69581i 0.0554090 0.0592201i
\(821\) 25.2001 0.879489 0.439745 0.898123i \(-0.355069\pi\)
0.439745 + 0.898123i \(0.355069\pi\)
\(822\) 0 0
\(823\) 4.45075 + 4.45075i 0.155143 + 0.155143i 0.780411 0.625267i \(-0.215010\pi\)
−0.625267 + 0.780411i \(0.715010\pi\)
\(824\) −1.92982 −0.0672284
\(825\) 0 0
\(826\) −33.6961 10.4166i −1.17244 0.362441i
\(827\) 21.7665 21.7665i 0.756896 0.756896i −0.218861 0.975756i \(-0.570234\pi\)
0.975756 + 0.218861i \(0.0702340\pi\)
\(828\) 0 0
\(829\) −30.3787 −1.05509 −0.527547 0.849526i \(-0.676888\pi\)
−0.527547 + 0.849526i \(0.676888\pi\)
\(830\) −4.09404 3.83057i −0.142106 0.132961i
\(831\) 0 0
\(832\) 3.41421 + 3.41421i 0.118367 + 0.118367i
\(833\) 25.0501 4.70773i 0.867936 0.163113i
\(834\) 0 0
\(835\) 31.1356 1.03517i 1.07749 0.0358236i
\(836\) 10.6183i 0.367241i
\(837\) 0 0
\(838\) 10.7858 10.7858i 0.372589 0.372589i
\(839\) −16.1464 −0.557436 −0.278718 0.960373i \(-0.589910\pi\)
−0.278718 + 0.960373i \(0.589910\pi\)
\(840\) 0 0
\(841\) 16.9190 0.583415
\(842\) 11.6859 11.6859i 0.402724 0.402724i
\(843\) 0 0
\(844\) 7.73402i 0.266216i
\(845\) 16.8403 + 15.7565i 0.579323 + 0.542041i
\(846\) 0 0
\(847\) −27.0347 51.2286i −0.928923 1.76024i
\(848\) −1.85140 1.85140i −0.0635772 0.0635772i
\(849\) 0 0
\(850\) 1.20927 + 18.1660i 0.0414777 + 0.623088i
\(851\) −7.43682 −0.254931
\(852\) 0 0
\(853\) −26.8216 + 26.8216i −0.918353 + 0.918353i −0.996910 0.0785565i \(-0.974969\pi\)
0.0785565 + 0.996910i \(0.474969\pi\)
\(854\) 6.66637 21.5646i 0.228118 0.737925i
\(855\) 0 0
\(856\) 15.9779 0.546114
\(857\) −18.6709 18.6709i −0.637787 0.637787i 0.312222 0.950009i \(-0.398927\pi\)
−0.950009 + 0.312222i \(0.898927\pi\)
\(858\) 0 0
\(859\) −8.11664 −0.276936 −0.138468 0.990367i \(-0.544218\pi\)
−0.138468 + 0.990367i \(0.544218\pi\)
\(860\) 0.648593 + 19.5083i 0.0221169 + 0.665226i
\(861\) 0 0
\(862\) −5.11118 + 5.11118i −0.174087 + 0.174087i
\(863\) −6.62651 6.62651i −0.225569 0.225569i 0.585270 0.810839i \(-0.300989\pi\)
−0.810839 + 0.585270i \(0.800989\pi\)
\(864\) 0 0
\(865\) 0.928839 + 27.9374i 0.0315815 + 0.949901i
\(866\) 18.5144i 0.629143i
\(867\) 0 0
\(868\) 0.579960 + 1.09898i 0.0196851 + 0.0373017i
\(869\) 23.8829i 0.810173i
\(870\) 0 0
\(871\) 30.5208i 1.03416i
\(872\) −1.35266 + 1.35266i −0.0458068 + 0.0458068i
\(873\) 0 0
\(874\) −16.9393 −0.572981
\(875\) 5.87995 28.9901i 0.198779 0.980044i
\(876\) 0 0
\(877\) −27.9123 + 27.9123i −0.942532 + 0.942532i −0.998436 0.0559044i \(-0.982196\pi\)
0.0559044 + 0.998436i \(0.482196\pi\)
\(878\) −17.6094 + 17.6094i −0.594287 + 0.594287i
\(879\) 0 0
\(880\) 8.76193 9.36459i 0.295365 0.315680i
\(881\) 34.6317i 1.16677i −0.812195 0.583386i \(-0.801728\pi\)
0.812195 0.583386i \(-0.198272\pi\)
\(882\) 0 0
\(883\) 5.61001 + 5.61001i 0.188792 + 0.188792i 0.795174 0.606382i \(-0.207380\pi\)
−0.606382 + 0.795174i \(0.707380\pi\)
\(884\) 17.5815i 0.591328i
\(885\) 0 0
\(886\) −17.3695 −0.583541
\(887\) −24.0494 24.0494i −0.807498 0.807498i 0.176756 0.984255i \(-0.443440\pi\)
−0.984255 + 0.176756i \(0.943440\pi\)
\(888\) 0 0
\(889\) 47.8308 + 14.7862i 1.60419 + 0.495912i
\(890\) −0.678051 20.3943i −0.0227283 0.683617i
\(891\) 0 0
\(892\) −8.63883 8.63883i −0.289249 0.289249i
\(893\) 7.13046 + 7.13046i 0.238612 + 0.238612i
\(894\) 0 0
\(895\) −12.5552 11.7472i −0.419674 0.392666i
\(896\) 0.781409 2.52773i 0.0261050 0.0844454i
\(897\) 0 0
\(898\) −3.20406 3.20406i −0.106921 0.106921i
\(899\) −1.63245 −0.0544453
\(900\) 0 0
\(901\) 9.53375i 0.317615i
\(902\) −4.21193 4.21193i −0.140242 0.140242i
\(903\) 0 0
\(904\) 3.35965i 0.111740i
\(905\) −17.4826 16.3575i −0.581141 0.543742i
\(906\) 0 0
\(907\) 34.2153 34.2153i 1.13610 1.13610i 0.146959 0.989143i \(-0.453051\pi\)
0.989143 0.146959i \(-0.0469486\pi\)
\(908\) 4.08705 4.08705i 0.135634 0.135634i
\(909\) 0 0
\(910\) 7.52512 27.5563i 0.249455 0.913484i
\(911\) −56.4059 −1.86881 −0.934406 0.356210i \(-0.884069\pi\)
−0.934406 + 0.356210i \(0.884069\pi\)
\(912\) 0 0
\(913\) −10.1685 + 10.1685i −0.336528 + 0.336528i
\(914\) 7.55635i 0.249942i
\(915\) 0 0
\(916\) 9.31371i 0.307734i
\(917\) 27.0601 14.2803i 0.893604 0.471578i
\(918\) 0 0
\(919\) 37.1036i 1.22393i −0.790884 0.611967i \(-0.790379\pi\)
0.790884 0.611967i \(-0.209621\pi\)
\(920\) −14.9393 13.9779i −0.492535 0.460838i
\(921\) 0 0
\(922\) 9.12195 + 9.12195i 0.300415 + 0.300415i
\(923\) −17.5281 + 17.5281i −0.576946 + 0.576946i
\(924\) 0 0
\(925\) −3.05825 2.67650i −0.100555 0.0880029i
\(926\) 16.8930 0.555139
\(927\) 0 0
\(928\) 2.45774 + 2.45774i 0.0806792 + 0.0806792i
\(929\) −0.164219 −0.00538784 −0.00269392 0.999996i \(-0.500858\pi\)
−0.00269392 + 0.999996i \(0.500858\pi\)
\(930\) 0 0
\(931\) −7.31371 + 10.6989i −0.239697 + 0.350641i
\(932\) 5.22791 5.22791i 0.171246 0.171246i
\(933\) 0 0
\(934\) 35.5256 1.16243
\(935\) 46.6712 1.55168i 1.52631 0.0507454i
\(936\) 0 0
\(937\) 25.1804 + 25.1804i 0.822609 + 0.822609i 0.986482 0.163872i \(-0.0523985\pi\)
−0.163872 + 0.986482i \(0.552398\pi\)
\(938\) 14.7907 7.80546i 0.482934 0.254857i
\(939\) 0 0
\(940\) 0.404699 + 12.1725i 0.0131998 + 0.397022i
\(941\) 46.5762i 1.51834i 0.650892 + 0.759171i \(0.274395\pi\)
−0.650892 + 0.759171i \(0.725605\pi\)
\(942\) 0 0
\(943\) −6.71929 + 6.71929i −0.218810 + 0.218810i
\(944\) −13.3306 −0.433873
\(945\) 0 0
\(946\) 50.0642 1.62773
\(947\) −15.2362 + 15.2362i −0.495108 + 0.495108i −0.909911 0.414803i \(-0.863851\pi\)
0.414803 + 0.909911i \(0.363851\pi\)
\(948\) 0 0
\(949\) 53.2738i 1.72934i
\(950\) −6.96599 6.09645i −0.226007 0.197795i
\(951\) 0 0
\(952\) 8.52018 4.49632i 0.276141 0.145727i
\(953\) 2.21318 + 2.21318i 0.0716920 + 0.0716920i 0.742044 0.670352i \(-0.233857\pi\)
−0.670352 + 0.742044i \(0.733857\pi\)
\(954\) 0 0
\(955\) −7.50429 + 8.02044i −0.242833 + 0.259535i
\(956\) −7.38514 −0.238853
\(957\) 0 0
\(958\) −0.828427 + 0.828427i −0.0267653 + 0.0267653i
\(959\) −28.7141 8.87653i −0.927226 0.286638i
\(960\) 0 0
\(961\) 30.7794 0.992884
\(962\) −2.77511 2.77511i −0.0894733 0.0894733i
\(963\) 0 0
\(964\) −4.44417 −0.143137
\(965\) −52.0557 + 1.73070i −1.67573 + 0.0557133i
\(966\) 0 0
\(967\) 4.58606 4.58606i 0.147478 0.147478i −0.629513 0.776990i \(-0.716745\pi\)
0.776990 + 0.629513i \(0.216745\pi\)
\(968\) −15.4810 15.4810i −0.497577 0.497577i
\(969\) 0 0
\(970\) 0.0257703 0.0275428i 0.000827435 0.000884347i
\(971\) 37.1737i 1.19296i 0.802627 + 0.596481i \(0.203435\pi\)
−0.802627 + 0.596481i \(0.796565\pi\)
\(972\) 0 0
\(973\) 8.67220 + 16.4331i 0.278018 + 0.526822i
\(974\) 8.02907i 0.257268i
\(975\) 0 0
\(976\) 8.53122i 0.273078i
\(977\) 42.4680 42.4680i 1.35867 1.35867i 0.483114 0.875557i \(-0.339506\pi\)
0.875557 0.483114i \(-0.160494\pi\)
\(978\) 0 0
\(979\) −52.3380 −1.67273
\(980\) −15.2786 + 3.40056i −0.488058 + 0.108627i
\(981\) 0 0
\(982\) 15.0940 15.0940i 0.481670 0.481670i
\(983\) −31.8722 + 31.8722i −1.01657 + 1.01657i −0.0167048 + 0.999860i \(0.505318\pi\)
−0.999860 + 0.0167048i \(0.994682\pi\)
\(984\) 0 0
\(985\) 0.539460 + 16.2258i 0.0171886 + 0.516996i
\(986\) 12.6561i 0.403052i
\(987\) 0 0
\(988\) −6.32106 6.32106i −0.201100 0.201100i
\(989\) 79.8675i 2.53964i
\(990\) 0 0
\(991\) 12.2660 0.389642 0.194821 0.980839i \(-0.437587\pi\)
0.194821 + 0.980839i \(0.437587\pi\)
\(992\) 0.332104 + 0.332104i 0.0105443 + 0.0105443i
\(993\) 0 0
\(994\) 12.9770 + 4.01165i 0.411606 + 0.127242i
\(995\) 13.1902 14.0975i 0.418158 0.446919i
\(996\) 0 0
\(997\) 18.0221 + 18.0221i 0.570764 + 0.570764i 0.932342 0.361578i \(-0.117762\pi\)
−0.361578 + 0.932342i \(0.617762\pi\)
\(998\) 23.6464 + 23.6464i 0.748515 + 0.748515i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.2.p.c.433.3 8
3.2 odd 2 210.2.m.b.13.2 yes 8
5.2 odd 4 630.2.p.b.307.4 8
7.6 odd 2 630.2.p.b.433.4 8
12.11 even 2 1680.2.cz.a.433.2 8
15.2 even 4 210.2.m.a.97.1 yes 8
15.8 even 4 1050.2.m.b.307.3 8
15.14 odd 2 1050.2.m.a.643.4 8
21.20 even 2 210.2.m.a.13.1 8
35.27 even 4 inner 630.2.p.c.307.3 8
60.47 odd 4 1680.2.cz.b.97.3 8
84.83 odd 2 1680.2.cz.b.433.3 8
105.62 odd 4 210.2.m.b.97.2 yes 8
105.83 odd 4 1050.2.m.a.307.4 8
105.104 even 2 1050.2.m.b.643.3 8
420.167 even 4 1680.2.cz.a.97.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
210.2.m.a.13.1 8 21.20 even 2
210.2.m.a.97.1 yes 8 15.2 even 4
210.2.m.b.13.2 yes 8 3.2 odd 2
210.2.m.b.97.2 yes 8 105.62 odd 4
630.2.p.b.307.4 8 5.2 odd 4
630.2.p.b.433.4 8 7.6 odd 2
630.2.p.c.307.3 8 35.27 even 4 inner
630.2.p.c.433.3 8 1.1 even 1 trivial
1050.2.m.a.307.4 8 105.83 odd 4
1050.2.m.a.643.4 8 15.14 odd 2
1050.2.m.b.307.3 8 15.8 even 4
1050.2.m.b.643.3 8 105.104 even 2
1680.2.cz.a.97.2 8 420.167 even 4
1680.2.cz.a.433.2 8 12.11 even 2
1680.2.cz.b.97.3 8 60.47 odd 4
1680.2.cz.b.433.3 8 84.83 odd 2