L(s) = 1 | + (0.707 − 0.707i)2-s − 1.00i·4-s + (−1.52 + 1.63i)5-s + (−1.23 − 2.33i)7-s + (−0.707 − 0.707i)8-s + (0.0743 + 2.23i)10-s + 5.73·11-s + (3.41 − 3.41i)13-s + (−2.52 − 0.781i)14-s − 1.00·16-s + (−2.57 − 2.57i)17-s + 1.85·19-s + (1.63 + 1.52i)20-s + (4.05 − 4.05i)22-s + (−6.46 − 6.46i)23-s + ⋯ |
L(s) = 1 | + (0.499 − 0.499i)2-s − 0.500i·4-s + (−0.683 + 0.730i)5-s + (−0.466 − 0.884i)7-s + (−0.250 − 0.250i)8-s + (0.0234 + 0.706i)10-s + 1.72·11-s + (0.946 − 0.946i)13-s + (−0.675 − 0.208i)14-s − 0.250·16-s + (−0.624 − 0.624i)17-s + 0.424·19-s + (0.365 + 0.341i)20-s + (0.864 − 0.864i)22-s + (−1.34 − 1.34i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0347 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0347 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.14803 - 1.18864i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.14803 - 1.18864i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 + 0.707i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (1.52 - 1.63i)T \) |
| 7 | \( 1 + (1.23 + 2.33i)T \) |
good | 11 | \( 1 - 5.73T + 11T^{2} \) |
| 13 | \( 1 + (-3.41 + 3.41i)T - 13iT^{2} \) |
| 17 | \( 1 + (2.57 + 2.57i)T + 17iT^{2} \) |
| 19 | \( 1 - 1.85T + 19T^{2} \) |
| 23 | \( 1 + (6.46 + 6.46i)T + 23iT^{2} \) |
| 29 | \( 1 + 3.47iT - 29T^{2} \) |
| 31 | \( 1 + 0.469iT - 31T^{2} \) |
| 37 | \( 1 + (-0.574 + 0.574i)T - 37iT^{2} \) |
| 41 | \( 1 + 1.03iT - 41T^{2} \) |
| 43 | \( 1 + (-6.17 - 6.17i)T + 43iT^{2} \) |
| 47 | \( 1 + (-3.85 - 3.85i)T + 47iT^{2} \) |
| 53 | \( 1 + (-1.85 - 1.85i)T + 53iT^{2} \) |
| 59 | \( 1 - 13.3T + 59T^{2} \) |
| 61 | \( 1 - 8.53iT - 61T^{2} \) |
| 67 | \( 1 + (4.46 - 4.46i)T - 67iT^{2} \) |
| 71 | \( 1 + 5.13T + 71T^{2} \) |
| 73 | \( 1 + (-7.80 + 7.80i)T - 73iT^{2} \) |
| 79 | \( 1 - 4.16iT - 79T^{2} \) |
| 83 | \( 1 + (1.77 - 1.77i)T - 83iT^{2} \) |
| 89 | \( 1 + 9.12T + 89T^{2} \) |
| 97 | \( 1 + (0.0119 + 0.0119i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.53742873579485408972057328318, −9.785447183377840324655206935322, −8.699754814727703626873186308188, −7.58512363550126800448295745594, −6.62504547886819012651689510628, −6.04083313617350312969240907022, −4.22770498119929956341995241052, −3.88174229477348259726616740533, −2.73061556599519458384176666158, −0.840559680775090187968352606714,
1.69419999305939079951124337237, 3.68515771865377441957743017960, 4.07249899712044638069370938166, 5.45738186284096887059011957673, 6.28051585974583154912154601194, 7.08296819801289243922816960667, 8.351369093507204863550647069680, 8.931359899236795706820022480661, 9.553376370413129797369192447441, 11.24397322041015359823808375947