Properties

Label 630.2.p.a.307.1
Level $630$
Weight $2$
Character 630.307
Analytic conductor $5.031$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [630,2,Mod(307,630)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(630, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("630.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 630.p (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.03057532734\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 307.1
Root \(0.382683 - 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 630.307
Dual form 630.2.p.a.433.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{2} +1.00000i q^{4} +(-2.23044 + 0.158513i) q^{5} +(-2.14065 + 1.55487i) q^{7} +(0.707107 - 0.707107i) q^{8} +(1.68925 + 1.46508i) q^{10} +2.82843 q^{11} +(-2.83730 - 2.83730i) q^{13} +(2.61313 + 0.414214i) q^{14} -1.00000 q^{16} +(1.53073 - 1.53073i) q^{17} +7.07401 q^{19} +(-0.158513 - 2.23044i) q^{20} +(-2.00000 - 2.00000i) q^{22} +(2.41421 - 2.41421i) q^{23} +(4.94975 - 0.707107i) q^{25} +4.01254i q^{26} +(-1.55487 - 2.14065i) q^{28} -4.82843i q^{29} -3.69552i q^{31} +(0.707107 + 0.707107i) q^{32} -2.16478 q^{34} +(4.52814 - 3.80736i) q^{35} +(5.41421 + 5.41421i) q^{37} +(-5.00208 - 5.00208i) q^{38} +(-1.46508 + 1.68925i) q^{40} -1.53073i q^{41} +(4.00000 - 4.00000i) q^{43} +2.82843i q^{44} -3.41421 q^{46} +(-2.61313 + 2.61313i) q^{47} +(2.16478 - 6.65685i) q^{49} +(-4.00000 - 3.00000i) q^{50} +(2.83730 - 2.83730i) q^{52} +(-0.242641 + 0.242641i) q^{53} +(-6.30864 + 0.448342i) q^{55} +(-0.414214 + 2.61313i) q^{56} +(-3.41421 + 3.41421i) q^{58} +3.82683 q^{59} +10.3212i q^{61} +(-2.61313 + 2.61313i) q^{62} -1.00000i q^{64} +(6.77817 + 5.87868i) q^{65} +(-6.48528 - 6.48528i) q^{67} +(1.53073 + 1.53073i) q^{68} +(-5.89409 - 0.509666i) q^{70} +3.41421 q^{71} +(-4.77791 - 4.77791i) q^{73} -7.65685i q^{74} +7.07401i q^{76} +(-6.05468 + 4.39782i) q^{77} -9.07107i q^{79} +(2.23044 - 0.158513i) q^{80} +(-1.08239 + 1.08239i) q^{82} +(-5.45042 - 5.45042i) q^{83} +(-3.17157 + 3.65685i) q^{85} -5.65685 q^{86} +(2.00000 - 2.00000i) q^{88} +16.9469 q^{89} +(10.4853 + 1.66205i) q^{91} +(2.41421 + 2.41421i) q^{92} +3.69552 q^{94} +(-15.7782 + 1.12132i) q^{95} +(11.0866 - 11.0866i) q^{97} +(-6.23784 + 3.17637i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{7} - 8 q^{16} - 16 q^{22} + 8 q^{23} + 8 q^{28} + 8 q^{35} + 32 q^{37} + 32 q^{43} - 16 q^{46} - 32 q^{50} + 32 q^{53} + 8 q^{56} - 16 q^{58} - 8 q^{65} + 16 q^{67} - 24 q^{70} + 16 q^{71} + 16 q^{77}+ \cdots - 32 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 0.707107i −0.500000 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −2.23044 + 0.158513i −0.997484 + 0.0708890i
\(6\) 0 0
\(7\) −2.14065 + 1.55487i −0.809091 + 0.587684i
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 0 0
\(10\) 1.68925 + 1.46508i 0.534187 + 0.463298i
\(11\) 2.82843 0.852803 0.426401 0.904534i \(-0.359781\pi\)
0.426401 + 0.904534i \(0.359781\pi\)
\(12\) 0 0
\(13\) −2.83730 2.83730i −0.786925 0.786925i 0.194064 0.980989i \(-0.437833\pi\)
−0.980989 + 0.194064i \(0.937833\pi\)
\(14\) 2.61313 + 0.414214i 0.698387 + 0.110703i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 1.53073 1.53073i 0.371257 0.371257i −0.496678 0.867935i \(-0.665447\pi\)
0.867935 + 0.496678i \(0.165447\pi\)
\(18\) 0 0
\(19\) 7.07401 1.62289 0.811445 0.584429i \(-0.198682\pi\)
0.811445 + 0.584429i \(0.198682\pi\)
\(20\) −0.158513 2.23044i −0.0354445 0.498742i
\(21\) 0 0
\(22\) −2.00000 2.00000i −0.426401 0.426401i
\(23\) 2.41421 2.41421i 0.503398 0.503398i −0.409094 0.912492i \(-0.634155\pi\)
0.912492 + 0.409094i \(0.134155\pi\)
\(24\) 0 0
\(25\) 4.94975 0.707107i 0.989949 0.141421i
\(26\) 4.01254i 0.786925i
\(27\) 0 0
\(28\) −1.55487 2.14065i −0.293842 0.404545i
\(29\) 4.82843i 0.896616i −0.893879 0.448308i \(-0.852027\pi\)
0.893879 0.448308i \(-0.147973\pi\)
\(30\) 0 0
\(31\) 3.69552i 0.663735i −0.943326 0.331867i \(-0.892321\pi\)
0.943326 0.331867i \(-0.107679\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) 0 0
\(34\) −2.16478 −0.371257
\(35\) 4.52814 3.80736i 0.765395 0.643561i
\(36\) 0 0
\(37\) 5.41421 + 5.41421i 0.890091 + 0.890091i 0.994531 0.104440i \(-0.0333050\pi\)
−0.104440 + 0.994531i \(0.533305\pi\)
\(38\) −5.00208 5.00208i −0.811445 0.811445i
\(39\) 0 0
\(40\) −1.46508 + 1.68925i −0.231649 + 0.267093i
\(41\) 1.53073i 0.239060i −0.992831 0.119530i \(-0.961861\pi\)
0.992831 0.119530i \(-0.0381388\pi\)
\(42\) 0 0
\(43\) 4.00000 4.00000i 0.609994 0.609994i −0.332950 0.942944i \(-0.608044\pi\)
0.942944 + 0.332950i \(0.108044\pi\)
\(44\) 2.82843i 0.426401i
\(45\) 0 0
\(46\) −3.41421 −0.503398
\(47\) −2.61313 + 2.61313i −0.381164 + 0.381164i −0.871521 0.490358i \(-0.836866\pi\)
0.490358 + 0.871521i \(0.336866\pi\)
\(48\) 0 0
\(49\) 2.16478 6.65685i 0.309255 0.950979i
\(50\) −4.00000 3.00000i −0.565685 0.424264i
\(51\) 0 0
\(52\) 2.83730 2.83730i 0.393462 0.393462i
\(53\) −0.242641 + 0.242641i −0.0333293 + 0.0333293i −0.723575 0.690246i \(-0.757502\pi\)
0.690246 + 0.723575i \(0.257502\pi\)
\(54\) 0 0
\(55\) −6.30864 + 0.448342i −0.850657 + 0.0604544i
\(56\) −0.414214 + 2.61313i −0.0553516 + 0.349194i
\(57\) 0 0
\(58\) −3.41421 + 3.41421i −0.448308 + 0.448308i
\(59\) 3.82683 0.498211 0.249106 0.968476i \(-0.419863\pi\)
0.249106 + 0.968476i \(0.419863\pi\)
\(60\) 0 0
\(61\) 10.3212i 1.32149i 0.750609 + 0.660746i \(0.229760\pi\)
−0.750609 + 0.660746i \(0.770240\pi\)
\(62\) −2.61313 + 2.61313i −0.331867 + 0.331867i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 6.77817 + 5.87868i 0.840729 + 0.729160i
\(66\) 0 0
\(67\) −6.48528 6.48528i −0.792303 0.792303i 0.189565 0.981868i \(-0.439292\pi\)
−0.981868 + 0.189565i \(0.939292\pi\)
\(68\) 1.53073 + 1.53073i 0.185629 + 0.185629i
\(69\) 0 0
\(70\) −5.89409 0.509666i −0.704478 0.0609167i
\(71\) 3.41421 0.405193 0.202596 0.979262i \(-0.435062\pi\)
0.202596 + 0.979262i \(0.435062\pi\)
\(72\) 0 0
\(73\) −4.77791 4.77791i −0.559212 0.559212i 0.369871 0.929083i \(-0.379402\pi\)
−0.929083 + 0.369871i \(0.879402\pi\)
\(74\) 7.65685i 0.890091i
\(75\) 0 0
\(76\) 7.07401i 0.811445i
\(77\) −6.05468 + 4.39782i −0.689995 + 0.501179i
\(78\) 0 0
\(79\) 9.07107i 1.02057i −0.860004 0.510287i \(-0.829539\pi\)
0.860004 0.510287i \(-0.170461\pi\)
\(80\) 2.23044 0.158513i 0.249371 0.0177223i
\(81\) 0 0
\(82\) −1.08239 + 1.08239i −0.119530 + 0.119530i
\(83\) −5.45042 5.45042i −0.598262 0.598262i 0.341588 0.939850i \(-0.389035\pi\)
−0.939850 + 0.341588i \(0.889035\pi\)
\(84\) 0 0
\(85\) −3.17157 + 3.65685i −0.344005 + 0.396642i
\(86\) −5.65685 −0.609994
\(87\) 0 0
\(88\) 2.00000 2.00000i 0.213201 0.213201i
\(89\) 16.9469 1.79636 0.898182 0.439625i \(-0.144889\pi\)
0.898182 + 0.439625i \(0.144889\pi\)
\(90\) 0 0
\(91\) 10.4853 + 1.66205i 1.09916 + 0.174230i
\(92\) 2.41421 + 2.41421i 0.251699 + 0.251699i
\(93\) 0 0
\(94\) 3.69552 0.381164
\(95\) −15.7782 + 1.12132i −1.61881 + 0.115045i
\(96\) 0 0
\(97\) 11.0866 11.0866i 1.12567 1.12567i 0.134796 0.990873i \(-0.456962\pi\)
0.990873 0.134796i \(-0.0430378\pi\)
\(98\) −6.23784 + 3.17637i −0.630117 + 0.320862i
\(99\) 0 0
\(100\) 0.707107 + 4.94975i 0.0707107 + 0.494975i
\(101\) 11.8519i 1.17931i −0.807655 0.589655i \(-0.799264\pi\)
0.807655 0.589655i \(-0.200736\pi\)
\(102\) 0 0
\(103\) −1.97908 1.97908i −0.195004 0.195004i 0.602850 0.797854i \(-0.294032\pi\)
−0.797854 + 0.602850i \(0.794032\pi\)
\(104\) −4.01254 −0.393462
\(105\) 0 0
\(106\) 0.343146 0.0333293
\(107\) −7.65685 7.65685i −0.740216 0.740216i 0.232403 0.972619i \(-0.425341\pi\)
−0.972619 + 0.232403i \(0.925341\pi\)
\(108\) 0 0
\(109\) 16.1421i 1.54614i 0.634323 + 0.773068i \(0.281279\pi\)
−0.634323 + 0.773068i \(0.718721\pi\)
\(110\) 4.77791 + 4.14386i 0.455556 + 0.395102i
\(111\) 0 0
\(112\) 2.14065 1.55487i 0.202273 0.146921i
\(113\) −6.82843 + 6.82843i −0.642364 + 0.642364i −0.951136 0.308772i \(-0.900082\pi\)
0.308772 + 0.951136i \(0.400082\pi\)
\(114\) 0 0
\(115\) −5.00208 + 5.76745i −0.466446 + 0.537817i
\(116\) 4.82843 0.448308
\(117\) 0 0
\(118\) −2.70598 2.70598i −0.249106 0.249106i
\(119\) −0.896683 + 5.65685i −0.0821988 + 0.518563i
\(120\) 0 0
\(121\) −3.00000 −0.272727
\(122\) 7.29818 7.29818i 0.660746 0.660746i
\(123\) 0 0
\(124\) 3.69552 0.331867
\(125\) −10.9280 + 2.36176i −0.977434 + 0.211242i
\(126\) 0 0
\(127\) 6.41421 + 6.41421i 0.569169 + 0.569169i 0.931896 0.362726i \(-0.118154\pi\)
−0.362726 + 0.931896i \(0.618154\pi\)
\(128\) −0.707107 + 0.707107i −0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) −0.636039 8.94975i −0.0557843 0.784945i
\(131\) 16.8925i 1.47590i 0.674855 + 0.737951i \(0.264206\pi\)
−0.674855 + 0.737951i \(0.735794\pi\)
\(132\) 0 0
\(133\) −15.1430 + 10.9991i −1.31306 + 0.953746i
\(134\) 9.17157i 0.792303i
\(135\) 0 0
\(136\) 2.16478i 0.185629i
\(137\) 13.8284 + 13.8284i 1.18144 + 1.18144i 0.979371 + 0.202071i \(0.0647673\pi\)
0.202071 + 0.979371i \(0.435233\pi\)
\(138\) 0 0
\(139\) 5.09494 0.432147 0.216073 0.976377i \(-0.430675\pi\)
0.216073 + 0.976377i \(0.430675\pi\)
\(140\) 3.80736 + 4.52814i 0.321781 + 0.382697i
\(141\) 0 0
\(142\) −2.41421 2.41421i −0.202596 0.202596i
\(143\) −8.02509 8.02509i −0.671091 0.671091i
\(144\) 0 0
\(145\) 0.765367 + 10.7695i 0.0635603 + 0.894361i
\(146\) 6.75699i 0.559212i
\(147\) 0 0
\(148\) −5.41421 + 5.41421i −0.445046 + 0.445046i
\(149\) 5.31371i 0.435316i 0.976025 + 0.217658i \(0.0698417\pi\)
−0.976025 + 0.217658i \(0.930158\pi\)
\(150\) 0 0
\(151\) −3.17157 −0.258099 −0.129049 0.991638i \(-0.541193\pi\)
−0.129049 + 0.991638i \(0.541193\pi\)
\(152\) 5.00208 5.00208i 0.405722 0.405722i
\(153\) 0 0
\(154\) 7.39104 + 1.17157i 0.595587 + 0.0944080i
\(155\) 0.585786 + 8.24264i 0.0470515 + 0.662065i
\(156\) 0 0
\(157\) −1.17525 + 1.17525i −0.0937949 + 0.0937949i −0.752447 0.658652i \(-0.771127\pi\)
0.658652 + 0.752447i \(0.271127\pi\)
\(158\) −6.41421 + 6.41421i −0.510287 + 0.510287i
\(159\) 0 0
\(160\) −1.68925 1.46508i −0.133547 0.115824i
\(161\) −1.41421 + 8.92177i −0.111456 + 0.703134i
\(162\) 0 0
\(163\) 2.34315 2.34315i 0.183529 0.183529i −0.609362 0.792892i \(-0.708575\pi\)
0.792892 + 0.609362i \(0.208575\pi\)
\(164\) 1.53073 0.119530
\(165\) 0 0
\(166\) 7.70806i 0.598262i
\(167\) 11.5349 11.5349i 0.892597 0.892597i −0.102170 0.994767i \(-0.532579\pi\)
0.994767 + 0.102170i \(0.0325785\pi\)
\(168\) 0 0
\(169\) 3.10051i 0.238500i
\(170\) 4.82843 0.343146i 0.370323 0.0263181i
\(171\) 0 0
\(172\) 4.00000 + 4.00000i 0.304997 + 0.304997i
\(173\) 8.56628 + 8.56628i 0.651282 + 0.651282i 0.953302 0.302019i \(-0.0976607\pi\)
−0.302019 + 0.953302i \(0.597661\pi\)
\(174\) 0 0
\(175\) −9.49623 + 9.20986i −0.717848 + 0.696200i
\(176\) −2.82843 −0.213201
\(177\) 0 0
\(178\) −11.9832 11.9832i −0.898182 0.898182i
\(179\) 2.34315i 0.175135i 0.996159 + 0.0875675i \(0.0279093\pi\)
−0.996159 + 0.0875675i \(0.972091\pi\)
\(180\) 0 0
\(181\) 10.1355i 0.753364i −0.926343 0.376682i \(-0.877065\pi\)
0.926343 0.376682i \(-0.122935\pi\)
\(182\) −6.23897 8.58946i −0.462463 0.636693i
\(183\) 0 0
\(184\) 3.41421i 0.251699i
\(185\) −12.9343 11.2179i −0.950950 0.824754i
\(186\) 0 0
\(187\) 4.32957 4.32957i 0.316609 0.316609i
\(188\) −2.61313 2.61313i −0.190582 0.190582i
\(189\) 0 0
\(190\) 11.9497 + 10.3640i 0.866926 + 0.751881i
\(191\) −10.2426 −0.741131 −0.370566 0.928806i \(-0.620836\pi\)
−0.370566 + 0.928806i \(0.620836\pi\)
\(192\) 0 0
\(193\) −0.242641 + 0.242641i −0.0174657 + 0.0174657i −0.715786 0.698320i \(-0.753931\pi\)
0.698320 + 0.715786i \(0.253931\pi\)
\(194\) −15.6788 −1.12567
\(195\) 0 0
\(196\) 6.65685 + 2.16478i 0.475490 + 0.154627i
\(197\) −3.41421 3.41421i −0.243253 0.243253i 0.574942 0.818194i \(-0.305025\pi\)
−0.818194 + 0.574942i \(0.805025\pi\)
\(198\) 0 0
\(199\) 15.9414 1.13006 0.565028 0.825072i \(-0.308866\pi\)
0.565028 + 0.825072i \(0.308866\pi\)
\(200\) 3.00000 4.00000i 0.212132 0.282843i
\(201\) 0 0
\(202\) −8.38057 + 8.38057i −0.589655 + 0.589655i
\(203\) 7.50756 + 10.3360i 0.526927 + 0.725444i
\(204\) 0 0
\(205\) 0.242641 + 3.41421i 0.0169468 + 0.238459i
\(206\) 2.79884i 0.195004i
\(207\) 0 0
\(208\) 2.83730 + 2.83730i 0.196731 + 0.196731i
\(209\) 20.0083 1.38400
\(210\) 0 0
\(211\) −21.6569 −1.49092 −0.745460 0.666551i \(-0.767770\pi\)
−0.745460 + 0.666551i \(0.767770\pi\)
\(212\) −0.242641 0.242641i −0.0166646 0.0166646i
\(213\) 0 0
\(214\) 10.8284i 0.740216i
\(215\) −8.28772 + 9.55582i −0.565218 + 0.651702i
\(216\) 0 0
\(217\) 5.74603 + 7.91082i 0.390066 + 0.537021i
\(218\) 11.4142 11.4142i 0.773068 0.773068i
\(219\) 0 0
\(220\) −0.448342 6.30864i −0.0302272 0.425329i
\(221\) −8.68629 −0.584303
\(222\) 0 0
\(223\) −5.86030 5.86030i −0.392435 0.392435i 0.483120 0.875554i \(-0.339504\pi\)
−0.875554 + 0.483120i \(0.839504\pi\)
\(224\) −2.61313 0.414214i −0.174597 0.0276758i
\(225\) 0 0
\(226\) 9.65685 0.642364
\(227\) −1.94061 + 1.94061i −0.128803 + 0.128803i −0.768569 0.639766i \(-0.779031\pi\)
0.639766 + 0.768569i \(0.279031\pi\)
\(228\) 0 0
\(229\) 7.52235 0.497091 0.248546 0.968620i \(-0.420047\pi\)
0.248546 + 0.968620i \(0.420047\pi\)
\(230\) 7.61521 0.541196i 0.502132 0.0356854i
\(231\) 0 0
\(232\) −3.41421 3.41421i −0.224154 0.224154i
\(233\) −3.00000 + 3.00000i −0.196537 + 0.196537i −0.798513 0.601977i \(-0.794380\pi\)
0.601977 + 0.798513i \(0.294380\pi\)
\(234\) 0 0
\(235\) 5.41421 6.24264i 0.353184 0.407225i
\(236\) 3.82683i 0.249106i
\(237\) 0 0
\(238\) 4.63405 3.36595i 0.300381 0.218182i
\(239\) 10.4853i 0.678236i −0.940744 0.339118i \(-0.889871\pi\)
0.940744 0.339118i \(-0.110129\pi\)
\(240\) 0 0
\(241\) 5.86030i 0.377495i 0.982026 + 0.188748i \(0.0604428\pi\)
−0.982026 + 0.188748i \(0.939557\pi\)
\(242\) 2.12132 + 2.12132i 0.136364 + 0.136364i
\(243\) 0 0
\(244\) −10.3212 −0.660746
\(245\) −3.77323 + 15.1909i −0.241063 + 0.970509i
\(246\) 0 0
\(247\) −20.0711 20.0711i −1.27709 1.27709i
\(248\) −2.61313 2.61313i −0.165934 0.165934i
\(249\) 0 0
\(250\) 9.39731 + 6.05728i 0.594338 + 0.383096i
\(251\) 28.7988i 1.81776i −0.417055 0.908881i \(-0.636938\pi\)
0.417055 0.908881i \(-0.363062\pi\)
\(252\) 0 0
\(253\) 6.82843 6.82843i 0.429300 0.429300i
\(254\) 9.07107i 0.569169i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −3.24718 + 3.24718i −0.202553 + 0.202553i −0.801093 0.598540i \(-0.795748\pi\)
0.598540 + 0.801093i \(0.295748\pi\)
\(258\) 0 0
\(259\) −20.0083 3.17157i −1.24326 0.197072i
\(260\) −5.87868 + 6.77817i −0.364580 + 0.420365i
\(261\) 0 0
\(262\) 11.9448 11.9448i 0.737951 0.737951i
\(263\) 16.5858 16.5858i 1.02272 1.02272i 0.0229877 0.999736i \(-0.492682\pi\)
0.999736 0.0229877i \(-0.00731784\pi\)
\(264\) 0 0
\(265\) 0.502734 0.579658i 0.0308827 0.0356081i
\(266\) 18.4853 + 2.93015i 1.13341 + 0.179659i
\(267\) 0 0
\(268\) 6.48528 6.48528i 0.396152 0.396152i
\(269\) −12.6717 −0.772606 −0.386303 0.922372i \(-0.626248\pi\)
−0.386303 + 0.922372i \(0.626248\pi\)
\(270\) 0 0
\(271\) 13.8854i 0.843477i −0.906717 0.421739i \(-0.861420\pi\)
0.906717 0.421739i \(-0.138580\pi\)
\(272\) −1.53073 + 1.53073i −0.0928144 + 0.0928144i
\(273\) 0 0
\(274\) 19.5563i 1.18144i
\(275\) 14.0000 2.00000i 0.844232 0.120605i
\(276\) 0 0
\(277\) −10.2426 10.2426i −0.615421 0.615421i 0.328933 0.944353i \(-0.393311\pi\)
−0.944353 + 0.328933i \(0.893311\pi\)
\(278\) −3.60266 3.60266i −0.216073 0.216073i
\(279\) 0 0
\(280\) 0.509666 5.89409i 0.0304584 0.352239i
\(281\) −5.65685 −0.337460 −0.168730 0.985662i \(-0.553967\pi\)
−0.168730 + 0.985662i \(0.553967\pi\)
\(282\) 0 0
\(283\) 0.224171 + 0.224171i 0.0133256 + 0.0133256i 0.713738 0.700413i \(-0.247001\pi\)
−0.700413 + 0.713738i \(0.747001\pi\)
\(284\) 3.41421i 0.202596i
\(285\) 0 0
\(286\) 11.3492i 0.671091i
\(287\) 2.38009 + 3.27677i 0.140492 + 0.193422i
\(288\) 0 0
\(289\) 12.3137i 0.724336i
\(290\) 7.07401 8.15640i 0.415400 0.478960i
\(291\) 0 0
\(292\) 4.77791 4.77791i 0.279606 0.279606i
\(293\) 2.07193 + 2.07193i 0.121043 + 0.121043i 0.765034 0.643990i \(-0.222722\pi\)
−0.643990 + 0.765034i \(0.722722\pi\)
\(294\) 0 0
\(295\) −8.53553 + 0.606602i −0.496958 + 0.0353177i
\(296\) 7.65685 0.445046
\(297\) 0 0
\(298\) 3.75736 3.75736i 0.217658 0.217658i
\(299\) −13.6997 −0.792273
\(300\) 0 0
\(301\) −2.34315 + 14.7821i −0.135057 + 0.852024i
\(302\) 2.24264 + 2.24264i 0.129049 + 0.129049i
\(303\) 0 0
\(304\) −7.07401 −0.405722
\(305\) −1.63604 23.0208i −0.0936793 1.31817i
\(306\) 0 0
\(307\) 4.18232 4.18232i 0.238698 0.238698i −0.577613 0.816311i \(-0.696016\pi\)
0.816311 + 0.577613i \(0.196016\pi\)
\(308\) −4.39782 6.05468i −0.250589 0.344997i
\(309\) 0 0
\(310\) 5.41421 6.24264i 0.307507 0.354558i
\(311\) 23.0698i 1.30817i −0.756422 0.654084i \(-0.773054\pi\)
0.756422 0.654084i \(-0.226946\pi\)
\(312\) 0 0
\(313\) 5.86030 + 5.86030i 0.331244 + 0.331244i 0.853059 0.521815i \(-0.174745\pi\)
−0.521815 + 0.853059i \(0.674745\pi\)
\(314\) 1.66205 0.0937949
\(315\) 0 0
\(316\) 9.07107 0.510287
\(317\) −2.10051 2.10051i −0.117976 0.117976i 0.645654 0.763630i \(-0.276585\pi\)
−0.763630 + 0.645654i \(0.776585\pi\)
\(318\) 0 0
\(319\) 13.6569i 0.764637i
\(320\) 0.158513 + 2.23044i 0.00886113 + 0.124686i
\(321\) 0 0
\(322\) 7.30864 5.30864i 0.407295 0.295839i
\(323\) 10.8284 10.8284i 0.602510 0.602510i
\(324\) 0 0
\(325\) −16.0502 12.0376i −0.890303 0.667728i
\(326\) −3.31371 −0.183529
\(327\) 0 0
\(328\) −1.08239 1.08239i −0.0597651 0.0597651i
\(329\) 1.53073 9.65685i 0.0843921 0.532400i
\(330\) 0 0
\(331\) 0.686292 0.0377220 0.0188610 0.999822i \(-0.493996\pi\)
0.0188610 + 0.999822i \(0.493996\pi\)
\(332\) 5.45042 5.45042i 0.299131 0.299131i
\(333\) 0 0
\(334\) −16.3128 −0.892597
\(335\) 15.4930 + 13.4370i 0.846476 + 0.734144i
\(336\) 0 0
\(337\) 12.2426 + 12.2426i 0.666899 + 0.666899i 0.956997 0.290098i \(-0.0936879\pi\)
−0.290098 + 0.956997i \(0.593688\pi\)
\(338\) 2.19239 2.19239i 0.119250 0.119250i
\(339\) 0 0
\(340\) −3.65685 3.17157i −0.198321 0.172003i
\(341\) 10.4525i 0.566035i
\(342\) 0 0
\(343\) 5.71646 + 17.6160i 0.308660 + 0.951172i
\(344\) 5.65685i 0.304997i
\(345\) 0 0
\(346\) 12.1146i 0.651282i
\(347\) −17.3137 17.3137i −0.929449 0.929449i 0.0682216 0.997670i \(-0.478268\pi\)
−0.997670 + 0.0682216i \(0.978268\pi\)
\(348\) 0 0
\(349\) 24.9176 1.33381 0.666903 0.745145i \(-0.267620\pi\)
0.666903 + 0.745145i \(0.267620\pi\)
\(350\) 13.2272 + 0.202493i 0.707024 + 0.0108237i
\(351\) 0 0
\(352\) 2.00000 + 2.00000i 0.106600 + 0.106600i
\(353\) −5.67459 5.67459i −0.302028 0.302028i 0.539779 0.841807i \(-0.318508\pi\)
−0.841807 + 0.539779i \(0.818508\pi\)
\(354\) 0 0
\(355\) −7.61521 + 0.541196i −0.404173 + 0.0287237i
\(356\) 16.9469i 0.898182i
\(357\) 0 0
\(358\) 1.65685 1.65685i 0.0875675 0.0875675i
\(359\) 16.9706i 0.895672i −0.894116 0.447836i \(-0.852195\pi\)
0.894116 0.447836i \(-0.147805\pi\)
\(360\) 0 0
\(361\) 31.0416 1.63377
\(362\) −7.16687 + 7.16687i −0.376682 + 0.376682i
\(363\) 0 0
\(364\) −1.66205 + 10.4853i −0.0871151 + 0.549578i
\(365\) 11.4142 + 9.89949i 0.597447 + 0.518163i
\(366\) 0 0
\(367\) −7.39104 + 7.39104i −0.385809 + 0.385809i −0.873190 0.487381i \(-0.837952\pi\)
0.487381 + 0.873190i \(0.337952\pi\)
\(368\) −2.41421 + 2.41421i −0.125850 + 0.125850i
\(369\) 0 0
\(370\) 1.21371 + 17.0782i 0.0630977 + 0.887852i
\(371\) 0.142136 0.896683i 0.00737931 0.0465535i
\(372\) 0 0
\(373\) −0.928932 + 0.928932i −0.0480983 + 0.0480983i −0.730747 0.682649i \(-0.760828\pi\)
0.682649 + 0.730747i \(0.260828\pi\)
\(374\) −6.12293 −0.316609
\(375\) 0 0
\(376\) 3.69552i 0.190582i
\(377\) −13.6997 + 13.6997i −0.705569 + 0.705569i
\(378\) 0 0
\(379\) 22.1421i 1.13737i −0.822557 0.568683i \(-0.807453\pi\)
0.822557 0.568683i \(-0.192547\pi\)
\(380\) −1.12132 15.7782i −0.0575225 0.809403i
\(381\) 0 0
\(382\) 7.24264 + 7.24264i 0.370566 + 0.370566i
\(383\) 10.9008 + 10.9008i 0.557007 + 0.557007i 0.928454 0.371447i \(-0.121138\pi\)
−0.371447 + 0.928454i \(0.621138\pi\)
\(384\) 0 0
\(385\) 12.8075 10.7688i 0.652731 0.548831i
\(386\) 0.343146 0.0174657
\(387\) 0 0
\(388\) 11.0866 + 11.0866i 0.562835 + 0.562835i
\(389\) 28.1421i 1.42686i 0.700725 + 0.713431i \(0.252860\pi\)
−0.700725 + 0.713431i \(0.747140\pi\)
\(390\) 0 0
\(391\) 7.39104i 0.373781i
\(392\) −3.17637 6.23784i −0.160431 0.315059i
\(393\) 0 0
\(394\) 4.82843i 0.243253i
\(395\) 1.43788 + 20.2325i 0.0723476 + 1.01801i
\(396\) 0 0
\(397\) −15.7716 + 15.7716i −0.791554 + 0.791554i −0.981747 0.190192i \(-0.939089\pi\)
0.190192 + 0.981747i \(0.439089\pi\)
\(398\) −11.2723 11.2723i −0.565028 0.565028i
\(399\) 0 0
\(400\) −4.94975 + 0.707107i −0.247487 + 0.0353553i
\(401\) 28.2426 1.41037 0.705185 0.709023i \(-0.250864\pi\)
0.705185 + 0.709023i \(0.250864\pi\)
\(402\) 0 0
\(403\) −10.4853 + 10.4853i −0.522309 + 0.522309i
\(404\) 11.8519 0.589655
\(405\) 0 0
\(406\) 2.00000 12.6173i 0.0992583 0.626185i
\(407\) 15.3137 + 15.3137i 0.759072 + 0.759072i
\(408\) 0 0
\(409\) −23.3324 −1.15371 −0.576857 0.816845i \(-0.695721\pi\)
−0.576857 + 0.816845i \(0.695721\pi\)
\(410\) 2.24264 2.58579i 0.110756 0.127703i
\(411\) 0 0
\(412\) 1.97908 1.97908i 0.0975020 0.0975020i
\(413\) −8.19192 + 5.95021i −0.403098 + 0.292791i
\(414\) 0 0
\(415\) 13.0208 + 11.2929i 0.639167 + 0.554346i
\(416\) 4.01254i 0.196731i
\(417\) 0 0
\(418\) −14.1480 14.1480i −0.692002 0.692002i
\(419\) −24.2835 −1.18633 −0.593163 0.805082i \(-0.702121\pi\)
−0.593163 + 0.805082i \(0.702121\pi\)
\(420\) 0 0
\(421\) −21.7990 −1.06242 −0.531209 0.847241i \(-0.678262\pi\)
−0.531209 + 0.847241i \(0.678262\pi\)
\(422\) 15.3137 + 15.3137i 0.745460 + 0.745460i
\(423\) 0 0
\(424\) 0.343146i 0.0166646i
\(425\) 6.49435 8.65914i 0.315022 0.420030i
\(426\) 0 0
\(427\) −16.0481 22.0941i −0.776620 1.06921i
\(428\) 7.65685 7.65685i 0.370108 0.370108i
\(429\) 0 0
\(430\) 12.6173 0.896683i 0.608460 0.0432419i
\(431\) 5.65685 0.272481 0.136241 0.990676i \(-0.456498\pi\)
0.136241 + 0.990676i \(0.456498\pi\)
\(432\) 0 0
\(433\) 4.32957 + 4.32957i 0.208066 + 0.208066i 0.803445 0.595379i \(-0.202998\pi\)
−0.595379 + 0.803445i \(0.702998\pi\)
\(434\) 1.53073 9.65685i 0.0734776 0.463544i
\(435\) 0 0
\(436\) −16.1421 −0.773068
\(437\) 17.0782 17.0782i 0.816960 0.816960i
\(438\) 0 0
\(439\) −18.7402 −0.894422 −0.447211 0.894428i \(-0.647583\pi\)
−0.447211 + 0.894428i \(0.647583\pi\)
\(440\) −4.14386 + 4.77791i −0.197551 + 0.227778i
\(441\) 0 0
\(442\) 6.14214 + 6.14214i 0.292152 + 0.292152i
\(443\) −24.1421 + 24.1421i −1.14703 + 1.14703i −0.159893 + 0.987134i \(0.551115\pi\)
−0.987134 + 0.159893i \(0.948885\pi\)
\(444\) 0 0
\(445\) −37.7990 + 2.68629i −1.79184 + 0.127342i
\(446\) 8.28772i 0.392435i
\(447\) 0 0
\(448\) 1.55487 + 2.14065i 0.0734605 + 0.101136i
\(449\) 14.3431i 0.676895i −0.940985 0.338447i \(-0.890098\pi\)
0.940985 0.338447i \(-0.109902\pi\)
\(450\) 0 0
\(451\) 4.32957i 0.203871i
\(452\) −6.82843 6.82843i −0.321182 0.321182i
\(453\) 0 0
\(454\) 2.74444 0.128803
\(455\) −23.6503 2.04506i −1.10874 0.0958737i
\(456\) 0 0
\(457\) 9.65685 + 9.65685i 0.451729 + 0.451729i 0.895928 0.444199i \(-0.146512\pi\)
−0.444199 + 0.895928i \(0.646512\pi\)
\(458\) −5.31911 5.31911i −0.248546 0.248546i
\(459\) 0 0
\(460\) −5.76745 5.00208i −0.268909 0.233223i
\(461\) 11.9288i 0.555582i −0.960642 0.277791i \(-0.910398\pi\)
0.960642 0.277791i \(-0.0896022\pi\)
\(462\) 0 0
\(463\) 20.9706 20.9706i 0.974585 0.974585i −0.0251002 0.999685i \(-0.507990\pi\)
0.999685 + 0.0251002i \(0.00799049\pi\)
\(464\) 4.82843i 0.224154i
\(465\) 0 0
\(466\) 4.24264 0.196537
\(467\) 13.3442 13.3442i 0.617496 0.617496i −0.327393 0.944888i \(-0.606170\pi\)
0.944888 + 0.327393i \(0.106170\pi\)
\(468\) 0 0
\(469\) 23.9665 + 3.79899i 1.10667 + 0.175421i
\(470\) −8.24264 + 0.585786i −0.380205 + 0.0270203i
\(471\) 0 0
\(472\) 2.70598 2.70598i 0.124553 0.124553i
\(473\) 11.3137 11.3137i 0.520205 0.520205i
\(474\) 0 0
\(475\) 35.0146 5.00208i 1.60658 0.229511i
\(476\) −5.65685 0.896683i −0.259281 0.0410994i
\(477\) 0 0
\(478\) −7.41421 + 7.41421i −0.339118 + 0.339118i
\(479\) 4.59220 0.209823 0.104912 0.994482i \(-0.466544\pi\)
0.104912 + 0.994482i \(0.466544\pi\)
\(480\) 0 0
\(481\) 30.7235i 1.40087i
\(482\) 4.14386 4.14386i 0.188748 0.188748i
\(483\) 0 0
\(484\) 3.00000i 0.136364i
\(485\) −22.9706 + 26.4853i −1.04304 + 1.20263i
\(486\) 0 0
\(487\) 20.8995 + 20.8995i 0.947047 + 0.947047i 0.998667 0.0516203i \(-0.0164385\pi\)
−0.0516203 + 0.998667i \(0.516439\pi\)
\(488\) 7.29818 + 7.29818i 0.330373 + 0.330373i
\(489\) 0 0
\(490\) 13.4096 8.07349i 0.605786 0.364723i
\(491\) −30.8284 −1.39127 −0.695634 0.718397i \(-0.744876\pi\)
−0.695634 + 0.718397i \(0.744876\pi\)
\(492\) 0 0
\(493\) −7.39104 7.39104i −0.332876 0.332876i
\(494\) 28.3848i 1.27709i
\(495\) 0 0
\(496\) 3.69552i 0.165934i
\(497\) −7.30864 + 5.30864i −0.327837 + 0.238125i
\(498\) 0 0
\(499\) 24.4853i 1.09611i 0.836442 + 0.548056i \(0.184632\pi\)
−0.836442 + 0.548056i \(0.815368\pi\)
\(500\) −2.36176 10.9280i −0.105621 0.488717i
\(501\) 0 0
\(502\) −20.3638 + 20.3638i −0.908881 + 0.908881i
\(503\) 22.8072 + 22.8072i 1.01692 + 1.01692i 0.999854 + 0.0170666i \(0.00543274\pi\)
0.0170666 + 0.999854i \(0.494567\pi\)
\(504\) 0 0
\(505\) 1.87868 + 26.4350i 0.0836001 + 1.17634i
\(506\) −9.65685 −0.429300
\(507\) 0 0
\(508\) −6.41421 + 6.41421i −0.284585 + 0.284585i
\(509\) −1.66205 −0.0736691 −0.0368345 0.999321i \(-0.511727\pi\)
−0.0368345 + 0.999321i \(0.511727\pi\)
\(510\) 0 0
\(511\) 17.6569 + 2.79884i 0.781093 + 0.123813i
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) 4.59220 0.202553
\(515\) 4.72792 + 4.10051i 0.208337 + 0.180690i
\(516\) 0 0
\(517\) −7.39104 + 7.39104i −0.325057 + 0.325057i
\(518\) 11.9054 + 16.3907i 0.523092 + 0.720164i
\(519\) 0 0
\(520\) 8.94975 0.636039i 0.392472 0.0278922i
\(521\) 36.8464i 1.61427i 0.590367 + 0.807135i \(0.298983\pi\)
−0.590367 + 0.807135i \(0.701017\pi\)
\(522\) 0 0
\(523\) −6.84984 6.84984i −0.299523 0.299523i 0.541304 0.840827i \(-0.317931\pi\)
−0.840827 + 0.541304i \(0.817931\pi\)
\(524\) −16.8925 −0.737951
\(525\) 0 0
\(526\) −23.4558 −1.02272
\(527\) −5.65685 5.65685i −0.246416 0.246416i
\(528\) 0 0
\(529\) 11.3431i 0.493180i
\(530\) −0.765367 + 0.0543929i −0.0332454 + 0.00236268i
\(531\) 0 0
\(532\) −10.9991 15.1430i −0.476873 0.656532i
\(533\) −4.34315 + 4.34315i −0.188123 + 0.188123i
\(534\) 0 0
\(535\) 18.2919 + 15.8645i 0.790827 + 0.685881i
\(536\) −9.17157 −0.396152
\(537\) 0 0
\(538\) 8.96023 + 8.96023i 0.386303 + 0.386303i
\(539\) 6.12293 18.8284i 0.263733 0.810998i
\(540\) 0 0
\(541\) −22.9706 −0.987582 −0.493791 0.869581i \(-0.664389\pi\)
−0.493791 + 0.869581i \(0.664389\pi\)
\(542\) −9.81845 + 9.81845i −0.421739 + 0.421739i
\(543\) 0 0
\(544\) 2.16478 0.0928144
\(545\) −2.55873 36.0041i −0.109604 1.54225i
\(546\) 0 0
\(547\) 14.6274 + 14.6274i 0.625423 + 0.625423i 0.946913 0.321490i \(-0.104184\pi\)
−0.321490 + 0.946913i \(0.604184\pi\)
\(548\) −13.8284 + 13.8284i −0.590721 + 0.590721i
\(549\) 0 0
\(550\) −11.3137 8.48528i −0.482418 0.361814i
\(551\) 34.1563i 1.45511i
\(552\) 0 0
\(553\) 14.1043 + 19.4180i 0.599776 + 0.825737i
\(554\) 14.4853i 0.615421i
\(555\) 0 0
\(556\) 5.09494i 0.216073i
\(557\) 1.27208 + 1.27208i 0.0538997 + 0.0538997i 0.733543 0.679643i \(-0.237865\pi\)
−0.679643 + 0.733543i \(0.737865\pi\)
\(558\) 0 0
\(559\) −22.6984 −0.960039
\(560\) −4.52814 + 3.80736i −0.191349 + 0.160890i
\(561\) 0 0
\(562\) 4.00000 + 4.00000i 0.168730 + 0.168730i
\(563\) 32.0844 + 32.0844i 1.35220 + 1.35220i 0.883200 + 0.468997i \(0.155385\pi\)
0.468997 + 0.883200i \(0.344615\pi\)
\(564\) 0 0
\(565\) 14.1480 16.3128i 0.595212 0.686285i
\(566\) 0.317025i 0.0133256i
\(567\) 0 0
\(568\) 2.41421 2.41421i 0.101298 0.101298i
\(569\) 1.41421i 0.0592869i 0.999561 + 0.0296435i \(0.00943719\pi\)
−0.999561 + 0.0296435i \(0.990563\pi\)
\(570\) 0 0
\(571\) 25.4558 1.06529 0.532647 0.846338i \(-0.321197\pi\)
0.532647 + 0.846338i \(0.321197\pi\)
\(572\) 8.02509 8.02509i 0.335546 0.335546i
\(573\) 0 0
\(574\) 0.634051 4.00000i 0.0264648 0.166957i
\(575\) 10.2426 13.6569i 0.427148 0.569530i
\(576\) 0 0
\(577\) −4.40649 + 4.40649i −0.183445 + 0.183445i −0.792855 0.609410i \(-0.791406\pi\)
0.609410 + 0.792855i \(0.291406\pi\)
\(578\) 8.70711 8.70711i 0.362168 0.362168i
\(579\) 0 0
\(580\) −10.7695 + 0.765367i −0.447180 + 0.0317801i
\(581\) 20.1421 + 3.19278i 0.835637 + 0.132459i
\(582\) 0 0
\(583\) −0.686292 + 0.686292i −0.0284233 + 0.0284233i
\(584\) −6.75699 −0.279606
\(585\) 0 0
\(586\) 2.93015i 0.121043i
\(587\) −5.58174 + 5.58174i −0.230383 + 0.230383i −0.812853 0.582470i \(-0.802087\pi\)
0.582470 + 0.812853i \(0.302087\pi\)
\(588\) 0 0
\(589\) 26.1421i 1.07717i
\(590\) 6.46447 + 5.60660i 0.266138 + 0.230820i
\(591\) 0 0
\(592\) −5.41421 5.41421i −0.222523 0.222523i
\(593\) −18.6633 18.6633i −0.766410 0.766410i 0.211063 0.977473i \(-0.432308\pi\)
−0.977473 + 0.211063i \(0.932308\pi\)
\(594\) 0 0
\(595\) 1.10332 12.7594i 0.0452316 0.523085i
\(596\) −5.31371 −0.217658
\(597\) 0 0
\(598\) 9.68714 + 9.68714i 0.396136 + 0.396136i
\(599\) 46.5269i 1.90104i 0.310666 + 0.950519i \(0.399448\pi\)
−0.310666 + 0.950519i \(0.600552\pi\)
\(600\) 0 0
\(601\) 19.1116i 0.779580i −0.920904 0.389790i \(-0.872548\pi\)
0.920904 0.389790i \(-0.127452\pi\)
\(602\) 12.1094 8.79565i 0.493541 0.358484i
\(603\) 0 0
\(604\) 3.17157i 0.129049i
\(605\) 6.69133 0.475538i 0.272041 0.0193334i
\(606\) 0 0
\(607\) −0.262632 + 0.262632i −0.0106599 + 0.0106599i −0.712417 0.701757i \(-0.752399\pi\)
0.701757 + 0.712417i \(0.252399\pi\)
\(608\) 5.00208 + 5.00208i 0.202861 + 0.202861i
\(609\) 0 0
\(610\) −15.1213 + 17.4350i −0.612244 + 0.705924i
\(611\) 14.8284 0.599894
\(612\) 0 0
\(613\) 0.100505 0.100505i 0.00405936 0.00405936i −0.705074 0.709134i \(-0.749086\pi\)
0.709134 + 0.705074i \(0.249086\pi\)
\(614\) −5.91470 −0.238698
\(615\) 0 0
\(616\) −1.17157 + 7.39104i −0.0472040 + 0.297793i
\(617\) 11.5147 + 11.5147i 0.463565 + 0.463565i 0.899822 0.436257i \(-0.143696\pi\)
−0.436257 + 0.899822i \(0.643696\pi\)
\(618\) 0 0
\(619\) −34.9217 −1.40362 −0.701811 0.712363i \(-0.747625\pi\)
−0.701811 + 0.712363i \(0.747625\pi\)
\(620\) −8.24264 + 0.585786i −0.331032 + 0.0235257i
\(621\) 0 0
\(622\) −16.3128 + 16.3128i −0.654084 + 0.654084i
\(623\) −36.2773 + 26.3501i −1.45342 + 1.05569i
\(624\) 0 0
\(625\) 24.0000 7.00000i 0.960000 0.280000i
\(626\) 8.28772i 0.331244i
\(627\) 0 0
\(628\) −1.17525 1.17525i −0.0468975 0.0468975i
\(629\) 16.5754 0.660906
\(630\) 0 0
\(631\) −29.3553 −1.16862 −0.584309 0.811531i \(-0.698634\pi\)
−0.584309 + 0.811531i \(0.698634\pi\)
\(632\) −6.41421 6.41421i −0.255144 0.255144i
\(633\) 0 0
\(634\) 2.97056i 0.117976i
\(635\) −15.3233 13.2898i −0.608085 0.527390i
\(636\) 0 0
\(637\) −25.0296 + 12.7453i −0.991709 + 0.504989i
\(638\) −9.65685 + 9.65685i −0.382319 + 0.382319i
\(639\) 0 0
\(640\) 1.46508 1.68925i 0.0579122 0.0667733i
\(641\) −5.21320 −0.205909 −0.102955 0.994686i \(-0.532830\pi\)
−0.102955 + 0.994686i \(0.532830\pi\)
\(642\) 0 0
\(643\) 27.0439 + 27.0439i 1.06651 + 1.06651i 0.997625 + 0.0688814i \(0.0219430\pi\)
0.0688814 + 0.997625i \(0.478057\pi\)
\(644\) −8.92177 1.41421i −0.351567 0.0557278i
\(645\) 0 0
\(646\) −15.3137 −0.602510
\(647\) −20.7193 + 20.7193i −0.814560 + 0.814560i −0.985314 0.170754i \(-0.945380\pi\)
0.170754 + 0.985314i \(0.445380\pi\)
\(648\) 0 0
\(649\) 10.8239 0.424876
\(650\) 2.83730 + 19.8611i 0.111288 + 0.779016i
\(651\) 0 0
\(652\) 2.34315 + 2.34315i 0.0917647 + 0.0917647i
\(653\) 16.7279 16.7279i 0.654614 0.654614i −0.299486 0.954101i \(-0.596815\pi\)
0.954101 + 0.299486i \(0.0968153\pi\)
\(654\) 0 0
\(655\) −2.67767 37.6777i −0.104625 1.47219i
\(656\) 1.53073i 0.0597651i
\(657\) 0 0
\(658\) −7.91082 + 5.74603i −0.308396 + 0.224004i
\(659\) 18.3431i 0.714548i 0.934000 + 0.357274i \(0.116294\pi\)
−0.934000 + 0.357274i \(0.883706\pi\)
\(660\) 0 0
\(661\) 0.208239i 0.00809958i 0.999992 + 0.00404979i \(0.00128909\pi\)
−0.999992 + 0.00404979i \(0.998711\pi\)
\(662\) −0.485281 0.485281i −0.0188610 0.0188610i
\(663\) 0 0
\(664\) −7.70806 −0.299131
\(665\) 32.0321 26.9333i 1.24215 1.04443i
\(666\) 0 0
\(667\) −11.6569 11.6569i −0.451355 0.451355i
\(668\) 11.5349 + 11.5349i 0.446299 + 0.446299i
\(669\) 0 0
\(670\) −1.45381 20.4567i −0.0561656 0.790310i
\(671\) 29.1927i 1.12697i
\(672\) 0 0
\(673\) 16.7990 16.7990i 0.647553 0.647553i −0.304848 0.952401i \(-0.598606\pi\)
0.952401 + 0.304848i \(0.0986055\pi\)
\(674\) 17.3137i 0.666899i
\(675\) 0 0
\(676\) −3.10051 −0.119250
\(677\) −30.7394 + 30.7394i −1.18141 + 1.18141i −0.202032 + 0.979379i \(0.564754\pi\)
−0.979379 + 0.202032i \(0.935246\pi\)
\(678\) 0 0
\(679\) −6.49435 + 40.9706i −0.249230 + 1.57231i
\(680\) 0.343146 + 4.82843i 0.0131590 + 0.185162i
\(681\) 0 0
\(682\) −7.39104 + 7.39104i −0.283017 + 0.283017i
\(683\) 2.68629 2.68629i 0.102788 0.102788i −0.653843 0.756631i \(-0.726844\pi\)
0.756631 + 0.653843i \(0.226844\pi\)
\(684\) 0 0
\(685\) −33.0355 28.6515i −1.26222 1.09472i
\(686\) 8.41421 16.4985i 0.321256 0.629916i
\(687\) 0 0
\(688\) −4.00000 + 4.00000i −0.152499 + 0.152499i
\(689\) 1.37689 0.0524552
\(690\) 0 0
\(691\) 12.5629i 0.477915i 0.971030 + 0.238958i \(0.0768057\pi\)
−0.971030 + 0.238958i \(0.923194\pi\)
\(692\) −8.56628 + 8.56628i −0.325641 + 0.325641i
\(693\) 0 0
\(694\) 24.4853i 0.929449i
\(695\) −11.3640 + 0.807612i −0.431060 + 0.0306345i
\(696\) 0 0
\(697\) −2.34315 2.34315i −0.0887530 0.0887530i
\(698\) −17.6194 17.6194i −0.666903 0.666903i
\(699\) 0 0
\(700\) −9.20986 9.49623i −0.348100 0.358924i
\(701\) −49.1127 −1.85496 −0.927481 0.373872i \(-0.878030\pi\)
−0.927481 + 0.373872i \(0.878030\pi\)
\(702\) 0 0
\(703\) 38.3002 + 38.3002i 1.44452 + 1.44452i
\(704\) 2.82843i 0.106600i
\(705\) 0 0
\(706\) 8.02509i 0.302028i
\(707\) 18.4281 + 25.3708i 0.693062 + 0.954169i
\(708\) 0 0
\(709\) 18.6863i 0.701778i −0.936417 0.350889i \(-0.885879\pi\)
0.936417 0.350889i \(-0.114121\pi\)
\(710\) 5.76745 + 5.00208i 0.216448 + 0.187725i
\(711\) 0 0
\(712\) 11.9832 11.9832i 0.449091 0.449091i
\(713\) −8.92177 8.92177i −0.334123 0.334123i
\(714\) 0 0
\(715\) 19.1716 + 16.6274i 0.716976 + 0.621830i
\(716\) −2.34315 −0.0875675
\(717\) 0 0
\(718\) −12.0000 + 12.0000i −0.447836 + 0.447836i
\(719\) −9.44703 −0.352315 −0.176157 0.984362i \(-0.556367\pi\)
−0.176157 + 0.984362i \(0.556367\pi\)
\(720\) 0 0
\(721\) 7.31371 + 1.15932i 0.272377 + 0.0431752i
\(722\) −21.9497 21.9497i −0.816885 0.816885i
\(723\) 0 0
\(724\) 10.1355 0.376682
\(725\) −3.41421 23.8995i −0.126801 0.887605i
\(726\) 0 0
\(727\) 18.6633 18.6633i 0.692183 0.692183i −0.270528 0.962712i \(-0.587198\pi\)
0.962712 + 0.270528i \(0.0871984\pi\)
\(728\) 8.58946 6.23897i 0.318347 0.231231i
\(729\) 0 0
\(730\) −1.07107 15.0711i −0.0396420 0.557805i
\(731\) 12.2459i 0.452930i
\(732\) 0 0
\(733\) 12.3387 + 12.3387i 0.455741 + 0.455741i 0.897255 0.441513i \(-0.145558\pi\)
−0.441513 + 0.897255i \(0.645558\pi\)
\(734\) 10.4525 0.385809
\(735\) 0 0
\(736\) 3.41421 0.125850
\(737\) −18.3431 18.3431i −0.675678 0.675678i
\(738\) 0 0
\(739\) 1.65685i 0.0609484i 0.999536 + 0.0304742i \(0.00970174\pi\)
−0.999536 + 0.0304742i \(0.990298\pi\)
\(740\) 11.2179 12.9343i 0.412377 0.475475i
\(741\) 0 0
\(742\) −0.734556 + 0.533546i −0.0269664 + 0.0195871i
\(743\) 21.0416 21.0416i 0.771943 0.771943i −0.206503 0.978446i \(-0.566208\pi\)
0.978446 + 0.206503i \(0.0662084\pi\)
\(744\) 0 0
\(745\) −0.842290 11.8519i −0.0308591 0.434221i
\(746\) 1.31371 0.0480983
\(747\) 0 0
\(748\) 4.32957 + 4.32957i 0.158305 + 0.158305i
\(749\) 28.2960 + 4.48528i 1.03391 + 0.163889i
\(750\) 0 0
\(751\) 14.4853 0.528575 0.264288 0.964444i \(-0.414863\pi\)
0.264288 + 0.964444i \(0.414863\pi\)
\(752\) 2.61313 2.61313i 0.0952909 0.0952909i
\(753\) 0 0
\(754\) 19.3743 0.705569
\(755\) 7.07401 0.502734i 0.257450 0.0182964i
\(756\) 0 0
\(757\) −11.8995 11.8995i −0.432494 0.432494i 0.456982 0.889476i \(-0.348931\pi\)
−0.889476 + 0.456982i \(0.848931\pi\)
\(758\) −15.6569 + 15.6569i −0.568683 + 0.568683i
\(759\) 0 0
\(760\) −10.3640 + 11.9497i −0.375940 + 0.433463i
\(761\) 32.3630i 1.17316i 0.809892 + 0.586579i \(0.199525\pi\)
−0.809892 + 0.586579i \(0.800475\pi\)
\(762\) 0 0
\(763\) −25.0989 34.5547i −0.908640 1.25096i
\(764\) 10.2426i 0.370566i
\(765\) 0 0
\(766\) 15.4161i 0.557007i
\(767\) −10.8579 10.8579i −0.392055 0.392055i
\(768\) 0 0
\(769\) −20.2710 −0.730989 −0.365495 0.930813i \(-0.619100\pi\)
−0.365495 + 0.930813i \(0.619100\pi\)
\(770\) −16.6710 1.44155i −0.600781 0.0519500i
\(771\) 0 0
\(772\) −0.242641 0.242641i −0.00873283 0.00873283i
\(773\) −1.49227 1.49227i −0.0536733 0.0536733i 0.679761 0.733434i \(-0.262084\pi\)
−0.733434 + 0.679761i \(0.762084\pi\)
\(774\) 0 0
\(775\) −2.61313 18.2919i −0.0938663 0.657064i
\(776\) 15.6788i 0.562835i
\(777\) 0 0
\(778\) 19.8995 19.8995i 0.713431 0.713431i
\(779\) 10.8284i 0.387969i
\(780\) 0 0
\(781\) 9.65685 0.345549
\(782\) −5.22625 + 5.22625i −0.186890 + 0.186890i
\(783\) 0 0
\(784\) −2.16478 + 6.65685i −0.0773137 + 0.237745i
\(785\) 2.43503 2.80761i 0.0869099 0.100208i
\(786\) 0 0
\(787\) −3.97408 + 3.97408i −0.141661 + 0.141661i −0.774381 0.632720i \(-0.781938\pi\)
0.632720 + 0.774381i \(0.281938\pi\)
\(788\) 3.41421 3.41421i 0.121626 0.121626i
\(789\) 0 0
\(790\) 13.2898 15.3233i 0.472830 0.545177i
\(791\) 4.00000 25.2346i 0.142224 0.897238i
\(792\) 0 0
\(793\) 29.2843 29.2843i 1.03991 1.03991i
\(794\) 22.3044 0.791554
\(795\) 0 0
\(796\) 15.9414i 0.565028i
\(797\) 11.4964 11.4964i 0.407225 0.407225i −0.473545 0.880770i \(-0.657026\pi\)
0.880770 + 0.473545i \(0.157026\pi\)
\(798\) 0 0
\(799\) 8.00000i 0.283020i
\(800\) 4.00000 + 3.00000i 0.141421 + 0.106066i
\(801\) 0 0
\(802\) −19.9706 19.9706i −0.705185 0.705185i
\(803\) −13.5140 13.5140i −0.476898 0.476898i
\(804\) 0 0
\(805\) 1.74011 20.1237i 0.0613308 0.709266i
\(806\) 14.8284 0.522309
\(807\) 0 0
\(808\) −8.38057 8.38057i −0.294828 0.294828i
\(809\) 14.1005i 0.495747i −0.968792 0.247874i \(-0.920268\pi\)
0.968792 0.247874i \(-0.0797318\pi\)
\(810\) 0 0
\(811\) 7.18280i 0.252222i 0.992016 + 0.126111i \(0.0402496\pi\)
−0.992016 + 0.126111i \(0.959750\pi\)
\(812\) −10.3360 + 7.50756i −0.362722 + 0.263464i
\(813\) 0 0
\(814\) 21.6569i 0.759072i
\(815\) −4.85483 + 5.59767i −0.170057 + 0.196078i
\(816\) 0 0
\(817\) 28.2960 28.2960i 0.989953 0.989953i
\(818\) 16.4985 + 16.4985i 0.576857 + 0.576857i
\(819\) 0 0
\(820\) −3.41421 + 0.242641i −0.119230 + 0.00847338i
\(821\) 17.5147 0.611268 0.305634 0.952149i \(-0.401132\pi\)
0.305634 + 0.952149i \(0.401132\pi\)
\(822\) 0 0
\(823\) −13.6569 + 13.6569i −0.476048 + 0.476048i −0.903865 0.427817i \(-0.859283\pi\)
0.427817 + 0.903865i \(0.359283\pi\)
\(824\) −2.79884 −0.0975020
\(825\) 0 0
\(826\) 10.0000 + 1.58513i 0.347945 + 0.0551536i
\(827\) 24.4853 + 24.4853i 0.851437 + 0.851437i 0.990310 0.138873i \(-0.0443481\pi\)
−0.138873 + 0.990310i \(0.544348\pi\)
\(828\) 0 0
\(829\) 30.7009 1.06629 0.533144 0.846025i \(-0.321011\pi\)
0.533144 + 0.846025i \(0.321011\pi\)
\(830\) −1.22183 17.1924i −0.0424102 0.596757i
\(831\) 0 0
\(832\) −2.83730 + 2.83730i −0.0983656 + 0.0983656i
\(833\) −6.87616 13.5036i −0.238245 0.467871i
\(834\) 0 0
\(835\) −23.8995 + 27.5563i −0.827076 + 0.953627i
\(836\) 20.0083i 0.692002i
\(837\) 0 0
\(838\) 17.1710 + 17.1710i 0.593163 + 0.593163i
\(839\) 12.8799 0.444664 0.222332 0.974971i \(-0.428633\pi\)
0.222332 + 0.974971i \(0.428633\pi\)
\(840\) 0 0
\(841\) 5.68629 0.196079
\(842\) 15.4142 + 15.4142i 0.531209 + 0.531209i
\(843\) 0 0
\(844\) 21.6569i 0.745460i
\(845\) −0.491469 6.91550i −0.0169071 0.237900i
\(846\) 0 0
\(847\) 6.42196 4.66460i 0.220661 0.160277i
\(848\) 0.242641 0.242641i 0.00833232 0.00833232i
\(849\) 0 0
\(850\) −10.7151 + 1.53073i −0.367526 + 0.0525037i
\(851\) 26.1421 0.896141
\(852\) 0 0
\(853\) 16.4826 + 16.4826i 0.564353 + 0.564353i 0.930541 0.366188i \(-0.119337\pi\)
−0.366188 + 0.930541i \(0.619337\pi\)
\(854\) −4.27518 + 26.9706i −0.146294 + 0.922914i
\(855\) 0 0
\(856\) −10.8284 −0.370108
\(857\) −35.0530 + 35.0530i −1.19739 + 1.19739i −0.222443 + 0.974946i \(0.571403\pi\)
−0.974946 + 0.222443i \(0.928597\pi\)
\(858\) 0 0
\(859\) −45.9313 −1.56716 −0.783579 0.621293i \(-0.786608\pi\)
−0.783579 + 0.621293i \(0.786608\pi\)
\(860\) −9.55582 8.28772i −0.325851 0.282609i
\(861\) 0 0
\(862\) −4.00000 4.00000i −0.136241 0.136241i
\(863\) 33.5563 33.5563i 1.14227 1.14227i 0.154238 0.988034i \(-0.450708\pi\)
0.988034 0.154238i \(-0.0492921\pi\)
\(864\) 0 0
\(865\) −20.4645 17.7487i −0.695813 0.603475i
\(866\) 6.12293i 0.208066i
\(867\) 0 0
\(868\) −7.91082 + 5.74603i −0.268511 + 0.195033i
\(869\) 25.6569i 0.870349i
\(870\) 0 0
\(871\) 36.8013i 1.24697i
\(872\) 11.4142 + 11.4142i 0.386534 + 0.386534i
\(873\) 0 0
\(874\) −24.1522 −0.816960
\(875\) 19.7209 22.0473i 0.666689 0.745336i
\(876\) 0 0
\(877\) 9.55635 + 9.55635i 0.322695 + 0.322695i 0.849800 0.527105i \(-0.176723\pi\)
−0.527105 + 0.849800i \(0.676723\pi\)
\(878\) 13.2513 + 13.2513i 0.447211 + 0.447211i
\(879\) 0 0
\(880\) 6.30864 0.448342i 0.212664 0.0151136i
\(881\) 11.7206i 0.394877i 0.980315 + 0.197439i \(0.0632623\pi\)
−0.980315 + 0.197439i \(0.936738\pi\)
\(882\) 0 0
\(883\) −23.1716 + 23.1716i −0.779786 + 0.779786i −0.979794 0.200009i \(-0.935903\pi\)
0.200009 + 0.979794i \(0.435903\pi\)
\(884\) 8.68629i 0.292152i
\(885\) 0 0
\(886\) 34.1421 1.14703
\(887\) 41.6243 41.6243i 1.39761 1.39761i 0.590760 0.806847i \(-0.298828\pi\)
0.806847 0.590760i \(-0.201172\pi\)
\(888\) 0 0
\(889\) −23.7038 3.75736i −0.795001 0.126018i
\(890\) 28.6274 + 24.8284i 0.959593 + 0.832251i
\(891\) 0 0
\(892\) 5.86030 5.86030i 0.196217 0.196217i
\(893\) −18.4853 + 18.4853i −0.618586 + 0.618586i
\(894\) 0 0
\(895\) −0.371418 5.22625i −0.0124151 0.174694i
\(896\) 0.414214 2.61313i 0.0138379 0.0872984i
\(897\) 0 0
\(898\) −10.1421 + 10.1421i −0.338447 + 0.338447i
\(899\) −17.8435 −0.595115
\(900\) 0 0
\(901\) 0.742837i 0.0247475i
\(902\) −3.06147 + 3.06147i −0.101936 + 0.101936i
\(903\) 0 0
\(904\) 9.65685i 0.321182i
\(905\) 1.60660 + 22.6066i 0.0534052 + 0.751469i
\(906\) 0 0
\(907\) 16.8284 + 16.8284i 0.558779 + 0.558779i 0.928960 0.370181i \(-0.120704\pi\)
−0.370181 + 0.928960i \(0.620704\pi\)
\(908\) −1.94061 1.94061i −0.0644015 0.0644015i
\(909\) 0 0
\(910\) 15.2772 + 18.1693i 0.506434 + 0.602308i
\(911\) −0.142136 −0.00470916 −0.00235458 0.999997i \(-0.500749\pi\)
−0.00235458 + 0.999997i \(0.500749\pi\)
\(912\) 0 0
\(913\) −15.4161 15.4161i −0.510199 0.510199i
\(914\) 13.6569i 0.451729i
\(915\) 0 0
\(916\) 7.52235i 0.248546i
\(917\) −26.2655 36.1609i −0.867364 1.19414i
\(918\) 0 0
\(919\) 28.3848i 0.936327i −0.883642 0.468164i \(-0.844916\pi\)
0.883642 0.468164i \(-0.155084\pi\)
\(920\) 0.541196 + 7.61521i 0.0178427 + 0.251066i
\(921\) 0 0
\(922\) −8.43497 + 8.43497i −0.277791 + 0.277791i
\(923\) −9.68714 9.68714i −0.318856 0.318856i
\(924\) 0 0
\(925\) 30.6274 + 22.9706i 1.00702 + 0.755267i
\(926\) −29.6569 −0.974585
\(927\) 0 0
\(928\) 3.41421 3.41421i 0.112077 0.112077i
\(929\) 13.7766 0.451996 0.225998 0.974128i \(-0.427436\pi\)
0.225998 + 0.974128i \(0.427436\pi\)
\(930\) 0 0
\(931\) 15.3137 47.0907i 0.501887 1.54333i
\(932\) −3.00000 3.00000i −0.0982683 0.0982683i
\(933\) 0 0
\(934\) −18.8715 −0.617496
\(935\) −8.97056 + 10.3431i −0.293369 + 0.338257i
\(936\) 0 0
\(937\) −35.5014 + 35.5014i −1.15978 + 1.15978i −0.175256 + 0.984523i \(0.556075\pi\)
−0.984523 + 0.175256i \(0.943925\pi\)
\(938\) −14.2606 19.6331i −0.465624 0.641045i
\(939\) 0 0
\(940\) 6.24264 + 5.41421i 0.203612 + 0.176592i
\(941\) 37.7975i 1.23216i 0.787683 + 0.616081i \(0.211281\pi\)
−0.787683 + 0.616081i \(0.788719\pi\)
\(942\) 0 0
\(943\) −3.69552 3.69552i −0.120343 0.120343i
\(944\) −3.82683 −0.124553
\(945\) 0 0
\(946\) −16.0000 −0.520205
\(947\) 10.9706 + 10.9706i 0.356495 + 0.356495i 0.862519 0.506024i \(-0.168885\pi\)
−0.506024 + 0.862519i \(0.668885\pi\)
\(948\) 0 0
\(949\) 27.1127i 0.880115i
\(950\) −28.2960 21.2220i −0.918045 0.688534i
\(951\) 0 0
\(952\) 3.36595 + 4.63405i 0.109091 + 0.150190i
\(953\) 5.14214 5.14214i 0.166570 0.166570i −0.618900 0.785470i \(-0.712421\pi\)
0.785470 + 0.618900i \(0.212421\pi\)
\(954\) 0 0
\(955\) 22.8456 1.62359i 0.739267 0.0525381i
\(956\) 10.4853 0.339118
\(957\) 0 0
\(958\) −3.24718 3.24718i −0.104912 0.104912i
\(959\) −51.1032 8.10051i −1.65021 0.261579i
\(960\) 0 0
\(961\) 17.3431 0.559456
\(962\) −21.7248 + 21.7248i −0.700435 + 0.700435i
\(963\) 0 0
\(964\) −5.86030 −0.188748
\(965\) 0.502734 0.579658i 0.0161836 0.0186598i
\(966\) 0 0
\(967\) 40.2132 + 40.2132i 1.29317 + 1.29317i 0.932816 + 0.360354i \(0.117344\pi\)
0.360354 + 0.932816i \(0.382656\pi\)
\(968\) −2.12132 + 2.12132i −0.0681818 + 0.0681818i
\(969\) 0 0
\(970\) 34.9706 2.48528i 1.12284 0.0797976i
\(971\) 33.6536i 1.08000i −0.841666 0.539998i \(-0.818425\pi\)
0.841666 0.539998i \(-0.181575\pi\)
\(972\) 0 0
\(973\) −10.9065 + 7.92194i −0.349646 + 0.253966i
\(974\) 29.5563i 0.947047i
\(975\) 0 0
\(976\) 10.3212i 0.330373i
\(977\) 20.1716 + 20.1716i 0.645346 + 0.645346i 0.951865 0.306519i \(-0.0991642\pi\)
−0.306519 + 0.951865i \(0.599164\pi\)
\(978\) 0 0
\(979\) 47.9329 1.53194
\(980\) −15.1909 3.77323i −0.485255 0.120531i
\(981\) 0 0
\(982\) 21.7990 + 21.7990i 0.695634 + 0.695634i
\(983\) 11.9063 + 11.9063i 0.379752 + 0.379752i 0.871013 0.491260i \(-0.163464\pi\)
−0.491260 + 0.871013i \(0.663464\pi\)
\(984\) 0 0
\(985\) 8.15640 + 7.07401i 0.259885 + 0.225397i
\(986\) 10.4525i 0.332876i
\(987\) 0 0
\(988\) 20.0711 20.0711i 0.638546 0.638546i
\(989\) 19.3137i 0.614140i
\(990\) 0 0
\(991\) −35.4142 −1.12497 −0.562485 0.826808i \(-0.690155\pi\)
−0.562485 + 0.826808i \(0.690155\pi\)
\(992\) 2.61313 2.61313i 0.0829668 0.0829668i
\(993\) 0 0
\(994\) 8.92177 + 1.41421i 0.282981 + 0.0448561i
\(995\) −35.5563 + 2.52691i −1.12721 + 0.0801085i
\(996\) 0 0
\(997\) −38.0760 + 38.0760i −1.20588 + 1.20588i −0.233531 + 0.972349i \(0.575028\pi\)
−0.972349 + 0.233531i \(0.924972\pi\)
\(998\) 17.3137 17.3137i 0.548056 0.548056i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.2.p.a.307.1 8
3.2 odd 2 70.2.g.a.27.3 yes 8
5.3 odd 4 inner 630.2.p.a.433.2 8
7.6 odd 2 inner 630.2.p.a.307.2 8
12.11 even 2 560.2.bj.c.97.3 8
15.2 even 4 350.2.g.a.293.1 8
15.8 even 4 70.2.g.a.13.4 yes 8
15.14 odd 2 350.2.g.a.307.2 8
21.2 odd 6 490.2.l.a.227.4 16
21.5 even 6 490.2.l.a.227.3 16
21.11 odd 6 490.2.l.a.117.1 16
21.17 even 6 490.2.l.a.117.2 16
21.20 even 2 70.2.g.a.27.4 yes 8
35.13 even 4 inner 630.2.p.a.433.1 8
60.23 odd 4 560.2.bj.c.433.2 8
84.83 odd 2 560.2.bj.c.97.2 8
105.23 even 12 490.2.l.a.423.2 16
105.38 odd 12 490.2.l.a.313.4 16
105.53 even 12 490.2.l.a.313.3 16
105.62 odd 4 350.2.g.a.293.2 8
105.68 odd 12 490.2.l.a.423.1 16
105.83 odd 4 70.2.g.a.13.3 8
105.104 even 2 350.2.g.a.307.1 8
420.83 even 4 560.2.bj.c.433.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.2.g.a.13.3 8 105.83 odd 4
70.2.g.a.13.4 yes 8 15.8 even 4
70.2.g.a.27.3 yes 8 3.2 odd 2
70.2.g.a.27.4 yes 8 21.20 even 2
350.2.g.a.293.1 8 15.2 even 4
350.2.g.a.293.2 8 105.62 odd 4
350.2.g.a.307.1 8 105.104 even 2
350.2.g.a.307.2 8 15.14 odd 2
490.2.l.a.117.1 16 21.11 odd 6
490.2.l.a.117.2 16 21.17 even 6
490.2.l.a.227.3 16 21.5 even 6
490.2.l.a.227.4 16 21.2 odd 6
490.2.l.a.313.3 16 105.53 even 12
490.2.l.a.313.4 16 105.38 odd 12
490.2.l.a.423.1 16 105.68 odd 12
490.2.l.a.423.2 16 105.23 even 12
560.2.bj.c.97.2 8 84.83 odd 2
560.2.bj.c.97.3 8 12.11 even 2
560.2.bj.c.433.2 8 60.23 odd 4
560.2.bj.c.433.3 8 420.83 even 4
630.2.p.a.307.1 8 1.1 even 1 trivial
630.2.p.a.307.2 8 7.6 odd 2 inner
630.2.p.a.433.1 8 35.13 even 4 inner
630.2.p.a.433.2 8 5.3 odd 4 inner