Properties

Label 70.2.g.a.13.4
Level $70$
Weight $2$
Character 70.13
Analytic conductor $0.559$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [70,2,Mod(13,70)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(70, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("70.13"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 70 = 2 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 70.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.558952814149\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 13.4
Root \(0.923880 + 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 70.13
Dual form 70.2.g.a.27.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} +(0.541196 - 0.541196i) q^{3} -1.00000i q^{4} +(-2.23044 - 0.158513i) q^{5} -0.765367i q^{6} +(1.55487 + 2.14065i) q^{7} +(-0.707107 - 0.707107i) q^{8} +2.41421i q^{9} +(-1.68925 + 1.46508i) q^{10} -2.82843 q^{11} +(-0.541196 - 0.541196i) q^{12} +(2.83730 - 2.83730i) q^{13} +(2.61313 + 0.414214i) q^{14} +(-1.29289 + 1.12132i) q^{15} -1.00000 q^{16} +(1.53073 + 1.53073i) q^{17} +(1.70711 + 1.70711i) q^{18} -7.07401 q^{19} +(-0.158513 + 2.23044i) q^{20} +(2.00000 + 0.317025i) q^{21} +(-2.00000 + 2.00000i) q^{22} +(-2.41421 - 2.41421i) q^{23} -0.765367 q^{24} +(4.94975 + 0.707107i) q^{25} -4.01254i q^{26} +(2.93015 + 2.93015i) q^{27} +(2.14065 - 1.55487i) q^{28} -4.82843i q^{29} +(-0.121320 + 1.70711i) q^{30} -3.69552i q^{31} +(-0.707107 + 0.707107i) q^{32} +(-1.53073 + 1.53073i) q^{33} +2.16478 q^{34} +(-3.12872 - 5.02107i) q^{35} +2.41421 q^{36} +(5.41421 - 5.41421i) q^{37} +(-5.00208 + 5.00208i) q^{38} -3.07107i q^{39} +(1.46508 + 1.68925i) q^{40} +1.53073i q^{41} +(1.63838 - 1.19004i) q^{42} +(4.00000 + 4.00000i) q^{43} +2.82843i q^{44} +(0.382683 - 5.38476i) q^{45} -3.41421 q^{46} +(-2.61313 - 2.61313i) q^{47} +(-0.541196 + 0.541196i) q^{48} +(-2.16478 + 6.65685i) q^{49} +(4.00000 - 3.00000i) q^{50} +1.65685 q^{51} +(-2.83730 - 2.83730i) q^{52} +(0.242641 + 0.242641i) q^{53} +4.14386 q^{54} +(6.30864 + 0.448342i) q^{55} +(0.414214 - 2.61313i) q^{56} +(-3.82843 + 3.82843i) q^{57} +(-3.41421 - 3.41421i) q^{58} +3.82683 q^{59} +(1.12132 + 1.29289i) q^{60} +10.3212i q^{61} +(-2.61313 - 2.61313i) q^{62} +(-5.16799 + 3.75378i) q^{63} +1.00000i q^{64} +(-6.77817 + 5.87868i) q^{65} +2.16478i q^{66} +(-6.48528 + 6.48528i) q^{67} +(1.53073 - 1.53073i) q^{68} -2.61313 q^{69} +(-5.76277 - 1.33809i) q^{70} -3.41421 q^{71} +(1.70711 - 1.70711i) q^{72} +(4.77791 - 4.77791i) q^{73} -7.65685i q^{74} +(3.06147 - 2.29610i) q^{75} +7.07401i q^{76} +(-4.39782 - 6.05468i) q^{77} +(-2.17157 - 2.17157i) q^{78} +9.07107i q^{79} +(2.23044 + 0.158513i) q^{80} -4.07107 q^{81} +(1.08239 + 1.08239i) q^{82} +(-5.45042 + 5.45042i) q^{83} +(0.317025 - 2.00000i) q^{84} +(-3.17157 - 3.65685i) q^{85} +5.65685 q^{86} +(-2.61313 - 2.61313i) q^{87} +(2.00000 + 2.00000i) q^{88} +16.9469 q^{89} +(-3.53701 - 4.07820i) q^{90} +(10.4853 + 1.66205i) q^{91} +(-2.41421 + 2.41421i) q^{92} +(-2.00000 - 2.00000i) q^{93} -3.69552 q^{94} +(15.7782 + 1.12132i) q^{95} +0.765367i q^{96} +(-11.0866 - 11.0866i) q^{97} +(3.17637 + 6.23784i) q^{98} -6.82843i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{7} - 16 q^{15} - 8 q^{16} + 8 q^{18} + 16 q^{21} - 16 q^{22} - 8 q^{23} + 8 q^{28} + 16 q^{30} - 8 q^{35} + 8 q^{36} + 32 q^{37} + 32 q^{43} - 16 q^{46} + 32 q^{50} - 32 q^{51} - 32 q^{53} - 8 q^{56}+ \cdots + 32 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/70\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(57\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.500000 0.500000i
\(3\) 0.541196 0.541196i 0.312460 0.312460i −0.533402 0.845862i \(-0.679087\pi\)
0.845862 + 0.533402i \(0.179087\pi\)
\(4\) 1.00000i 0.500000i
\(5\) −2.23044 0.158513i −0.997484 0.0708890i
\(6\) 0.765367i 0.312460i
\(7\) 1.55487 + 2.14065i 0.587684 + 0.809091i
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 2.41421i 0.804738i
\(10\) −1.68925 + 1.46508i −0.534187 + 0.463298i
\(11\) −2.82843 −0.852803 −0.426401 0.904534i \(-0.640219\pi\)
−0.426401 + 0.904534i \(0.640219\pi\)
\(12\) −0.541196 0.541196i −0.156230 0.156230i
\(13\) 2.83730 2.83730i 0.786925 0.786925i −0.194064 0.980989i \(-0.562167\pi\)
0.980989 + 0.194064i \(0.0621670\pi\)
\(14\) 2.61313 + 0.414214i 0.698387 + 0.110703i
\(15\) −1.29289 + 1.12132i −0.333824 + 0.289524i
\(16\) −1.00000 −0.250000
\(17\) 1.53073 + 1.53073i 0.371257 + 0.371257i 0.867935 0.496678i \(-0.165447\pi\)
−0.496678 + 0.867935i \(0.665447\pi\)
\(18\) 1.70711 + 1.70711i 0.402369 + 0.402369i
\(19\) −7.07401 −1.62289 −0.811445 0.584429i \(-0.801318\pi\)
−0.811445 + 0.584429i \(0.801318\pi\)
\(20\) −0.158513 + 2.23044i −0.0354445 + 0.498742i
\(21\) 2.00000 + 0.317025i 0.436436 + 0.0691806i
\(22\) −2.00000 + 2.00000i −0.426401 + 0.426401i
\(23\) −2.41421 2.41421i −0.503398 0.503398i 0.409094 0.912492i \(-0.365845\pi\)
−0.912492 + 0.409094i \(0.865845\pi\)
\(24\) −0.765367 −0.156230
\(25\) 4.94975 + 0.707107i 0.989949 + 0.141421i
\(26\) 4.01254i 0.786925i
\(27\) 2.93015 + 2.93015i 0.563908 + 0.563908i
\(28\) 2.14065 1.55487i 0.404545 0.293842i
\(29\) 4.82843i 0.896616i −0.893879 0.448308i \(-0.852027\pi\)
0.893879 0.448308i \(-0.147973\pi\)
\(30\) −0.121320 + 1.70711i −0.0221500 + 0.311674i
\(31\) 3.69552i 0.663735i −0.943326 0.331867i \(-0.892321\pi\)
0.943326 0.331867i \(-0.107679\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) −1.53073 + 1.53073i −0.266467 + 0.266467i
\(34\) 2.16478 0.371257
\(35\) −3.12872 5.02107i −0.528850 0.848715i
\(36\) 2.41421 0.402369
\(37\) 5.41421 5.41421i 0.890091 0.890091i −0.104440 0.994531i \(-0.533305\pi\)
0.994531 + 0.104440i \(0.0333050\pi\)
\(38\) −5.00208 + 5.00208i −0.811445 + 0.811445i
\(39\) 3.07107i 0.491764i
\(40\) 1.46508 + 1.68925i 0.231649 + 0.267093i
\(41\) 1.53073i 0.239060i 0.992831 + 0.119530i \(0.0381388\pi\)
−0.992831 + 0.119530i \(0.961861\pi\)
\(42\) 1.63838 1.19004i 0.252808 0.183628i
\(43\) 4.00000 + 4.00000i 0.609994 + 0.609994i 0.942944 0.332950i \(-0.108044\pi\)
−0.332950 + 0.942944i \(0.608044\pi\)
\(44\) 2.82843i 0.426401i
\(45\) 0.382683 5.38476i 0.0570471 0.802713i
\(46\) −3.41421 −0.503398
\(47\) −2.61313 2.61313i −0.381164 0.381164i 0.490358 0.871521i \(-0.336866\pi\)
−0.871521 + 0.490358i \(0.836866\pi\)
\(48\) −0.541196 + 0.541196i −0.0781149 + 0.0781149i
\(49\) −2.16478 + 6.65685i −0.309255 + 0.950979i
\(50\) 4.00000 3.00000i 0.565685 0.424264i
\(51\) 1.65685 0.232006
\(52\) −2.83730 2.83730i −0.393462 0.393462i
\(53\) 0.242641 + 0.242641i 0.0333293 + 0.0333293i 0.723575 0.690246i \(-0.242498\pi\)
−0.690246 + 0.723575i \(0.742498\pi\)
\(54\) 4.14386 0.563908
\(55\) 6.30864 + 0.448342i 0.850657 + 0.0604544i
\(56\) 0.414214 2.61313i 0.0553516 0.349194i
\(57\) −3.82843 + 3.82843i −0.507088 + 0.507088i
\(58\) −3.41421 3.41421i −0.448308 0.448308i
\(59\) 3.82683 0.498211 0.249106 0.968476i \(-0.419863\pi\)
0.249106 + 0.968476i \(0.419863\pi\)
\(60\) 1.12132 + 1.29289i 0.144762 + 0.166912i
\(61\) 10.3212i 1.32149i 0.750609 + 0.660746i \(0.229760\pi\)
−0.750609 + 0.660746i \(0.770240\pi\)
\(62\) −2.61313 2.61313i −0.331867 0.331867i
\(63\) −5.16799 + 3.75378i −0.651106 + 0.472932i
\(64\) 1.00000i 0.125000i
\(65\) −6.77817 + 5.87868i −0.840729 + 0.729160i
\(66\) 2.16478i 0.266467i
\(67\) −6.48528 + 6.48528i −0.792303 + 0.792303i −0.981868 0.189565i \(-0.939292\pi\)
0.189565 + 0.981868i \(0.439292\pi\)
\(68\) 1.53073 1.53073i 0.185629 0.185629i
\(69\) −2.61313 −0.314583
\(70\) −5.76277 1.33809i −0.688783 0.159933i
\(71\) −3.41421 −0.405193 −0.202596 0.979262i \(-0.564938\pi\)
−0.202596 + 0.979262i \(0.564938\pi\)
\(72\) 1.70711 1.70711i 0.201184 0.201184i
\(73\) 4.77791 4.77791i 0.559212 0.559212i −0.369871 0.929083i \(-0.620598\pi\)
0.929083 + 0.369871i \(0.120598\pi\)
\(74\) 7.65685i 0.890091i
\(75\) 3.06147 2.29610i 0.353508 0.265131i
\(76\) 7.07401i 0.811445i
\(77\) −4.39782 6.05468i −0.501179 0.689995i
\(78\) −2.17157 2.17157i −0.245882 0.245882i
\(79\) 9.07107i 1.02057i 0.860004 + 0.510287i \(0.170461\pi\)
−0.860004 + 0.510287i \(0.829539\pi\)
\(80\) 2.23044 + 0.158513i 0.249371 + 0.0177223i
\(81\) −4.07107 −0.452341
\(82\) 1.08239 + 1.08239i 0.119530 + 0.119530i
\(83\) −5.45042 + 5.45042i −0.598262 + 0.598262i −0.939850 0.341588i \(-0.889035\pi\)
0.341588 + 0.939850i \(0.389035\pi\)
\(84\) 0.317025 2.00000i 0.0345903 0.218218i
\(85\) −3.17157 3.65685i −0.344005 0.396642i
\(86\) 5.65685 0.609994
\(87\) −2.61313 2.61313i −0.280157 0.280157i
\(88\) 2.00000 + 2.00000i 0.213201 + 0.213201i
\(89\) 16.9469 1.79636 0.898182 0.439625i \(-0.144889\pi\)
0.898182 + 0.439625i \(0.144889\pi\)
\(90\) −3.53701 4.07820i −0.372833 0.429880i
\(91\) 10.4853 + 1.66205i 1.09916 + 0.174230i
\(92\) −2.41421 + 2.41421i −0.251699 + 0.251699i
\(93\) −2.00000 2.00000i −0.207390 0.207390i
\(94\) −3.69552 −0.381164
\(95\) 15.7782 + 1.12132i 1.61881 + 0.115045i
\(96\) 0.765367i 0.0781149i
\(97\) −11.0866 11.0866i −1.12567 1.12567i −0.990873 0.134796i \(-0.956962\pi\)
−0.134796 0.990873i \(-0.543038\pi\)
\(98\) 3.17637 + 6.23784i 0.320862 + 0.630117i
\(99\) 6.82843i 0.686283i
\(100\) 0.707107 4.94975i 0.0707107 0.494975i
\(101\) 11.8519i 1.17931i 0.807655 + 0.589655i \(0.200736\pi\)
−0.807655 + 0.589655i \(0.799264\pi\)
\(102\) 1.17157 1.17157i 0.116003 0.116003i
\(103\) 1.97908 1.97908i 0.195004 0.195004i −0.602850 0.797854i \(-0.705968\pi\)
0.797854 + 0.602850i \(0.205968\pi\)
\(104\) −4.01254 −0.393462
\(105\) −4.41063 1.02413i −0.430434 0.0999451i
\(106\) 0.343146 0.0333293
\(107\) 7.65685 7.65685i 0.740216 0.740216i −0.232403 0.972619i \(-0.574659\pi\)
0.972619 + 0.232403i \(0.0746590\pi\)
\(108\) 2.93015 2.93015i 0.281954 0.281954i
\(109\) 16.1421i 1.54614i −0.634323 0.773068i \(-0.718721\pi\)
0.634323 0.773068i \(-0.281279\pi\)
\(110\) 4.77791 4.14386i 0.455556 0.395102i
\(111\) 5.86030i 0.556235i
\(112\) −1.55487 2.14065i −0.146921 0.202273i
\(113\) 6.82843 + 6.82843i 0.642364 + 0.642364i 0.951136 0.308772i \(-0.0999179\pi\)
−0.308772 + 0.951136i \(0.599918\pi\)
\(114\) 5.41421i 0.507088i
\(115\) 5.00208 + 5.76745i 0.466446 + 0.537817i
\(116\) −4.82843 −0.448308
\(117\) 6.84984 + 6.84984i 0.633268 + 0.633268i
\(118\) 2.70598 2.70598i 0.249106 0.249106i
\(119\) −0.896683 + 5.65685i −0.0821988 + 0.518563i
\(120\) 1.70711 + 0.121320i 0.155837 + 0.0110750i
\(121\) −3.00000 −0.272727
\(122\) 7.29818 + 7.29818i 0.660746 + 0.660746i
\(123\) 0.828427 + 0.828427i 0.0746968 + 0.0746968i
\(124\) −3.69552 −0.331867
\(125\) −10.9280 2.36176i −0.977434 0.211242i
\(126\) −1.00000 + 6.30864i −0.0890871 + 0.562019i
\(127\) 6.41421 6.41421i 0.569169 0.569169i −0.362726 0.931896i \(-0.618154\pi\)
0.931896 + 0.362726i \(0.118154\pi\)
\(128\) 0.707107 + 0.707107i 0.0625000 + 0.0625000i
\(129\) 4.32957 0.381197
\(130\) −0.636039 + 8.94975i −0.0557843 + 0.784945i
\(131\) 16.8925i 1.47590i −0.674855 0.737951i \(-0.735794\pi\)
0.674855 0.737951i \(-0.264206\pi\)
\(132\) 1.53073 + 1.53073i 0.133233 + 0.133233i
\(133\) −10.9991 15.1430i −0.953746 1.31306i
\(134\) 9.17157i 0.792303i
\(135\) −6.07107 7.00000i −0.522514 0.602464i
\(136\) 2.16478i 0.185629i
\(137\) −13.8284 + 13.8284i −1.18144 + 1.18144i −0.202071 + 0.979371i \(0.564767\pi\)
−0.979371 + 0.202071i \(0.935233\pi\)
\(138\) −1.84776 + 1.84776i −0.157292 + 0.157292i
\(139\) −5.09494 −0.432147 −0.216073 0.976377i \(-0.569325\pi\)
−0.216073 + 0.976377i \(0.569325\pi\)
\(140\) −5.02107 + 3.12872i −0.424358 + 0.264425i
\(141\) −2.82843 −0.238197
\(142\) −2.41421 + 2.41421i −0.202596 + 0.202596i
\(143\) −8.02509 + 8.02509i −0.671091 + 0.671091i
\(144\) 2.41421i 0.201184i
\(145\) −0.765367 + 10.7695i −0.0635603 + 0.894361i
\(146\) 6.75699i 0.559212i
\(147\) 2.43109 + 4.77424i 0.200513 + 0.393772i
\(148\) −5.41421 5.41421i −0.445046 0.445046i
\(149\) 5.31371i 0.435316i 0.976025 + 0.217658i \(0.0698417\pi\)
−0.976025 + 0.217658i \(0.930158\pi\)
\(150\) 0.541196 3.78837i 0.0441885 0.309319i
\(151\) −3.17157 −0.258099 −0.129049 0.991638i \(-0.541193\pi\)
−0.129049 + 0.991638i \(0.541193\pi\)
\(152\) 5.00208 + 5.00208i 0.405722 + 0.405722i
\(153\) −3.69552 + 3.69552i −0.298765 + 0.298765i
\(154\) −7.39104 1.17157i −0.595587 0.0944080i
\(155\) −0.585786 + 8.24264i −0.0470515 + 0.662065i
\(156\) −3.07107 −0.245882
\(157\) 1.17525 + 1.17525i 0.0937949 + 0.0937949i 0.752447 0.658652i \(-0.228873\pi\)
−0.658652 + 0.752447i \(0.728873\pi\)
\(158\) 6.41421 + 6.41421i 0.510287 + 0.510287i
\(159\) 0.262632 0.0208281
\(160\) 1.68925 1.46508i 0.133547 0.115824i
\(161\) 1.41421 8.92177i 0.111456 0.703134i
\(162\) −2.87868 + 2.87868i −0.226170 + 0.226170i
\(163\) 2.34315 + 2.34315i 0.183529 + 0.183529i 0.792892 0.609362i \(-0.208575\pi\)
−0.609362 + 0.792892i \(0.708575\pi\)
\(164\) 1.53073 0.119530
\(165\) 3.65685 3.17157i 0.284686 0.246907i
\(166\) 7.70806i 0.598262i
\(167\) 11.5349 + 11.5349i 0.892597 + 0.892597i 0.994767 0.102170i \(-0.0325785\pi\)
−0.102170 + 0.994767i \(0.532579\pi\)
\(168\) −1.19004 1.63838i −0.0918138 0.126404i
\(169\) 3.10051i 0.238500i
\(170\) −4.82843 0.343146i −0.370323 0.0263181i
\(171\) 17.0782i 1.30600i
\(172\) 4.00000 4.00000i 0.304997 0.304997i
\(173\) 8.56628 8.56628i 0.651282 0.651282i −0.302019 0.953302i \(-0.597661\pi\)
0.953302 + 0.302019i \(0.0976607\pi\)
\(174\) −3.69552 −0.280157
\(175\) 6.18252 + 11.6951i 0.467355 + 0.884070i
\(176\) 2.82843 0.213201
\(177\) 2.07107 2.07107i 0.155671 0.155671i
\(178\) 11.9832 11.9832i 0.898182 0.898182i
\(179\) 2.34315i 0.175135i 0.996159 + 0.0875675i \(0.0279093\pi\)
−0.996159 + 0.0875675i \(0.972091\pi\)
\(180\) −5.38476 0.382683i −0.401357 0.0285235i
\(181\) 10.1355i 0.753364i −0.926343 0.376682i \(-0.877065\pi\)
0.926343 0.376682i \(-0.122935\pi\)
\(182\) 8.58946 6.23897i 0.636693 0.462463i
\(183\) 5.58579 + 5.58579i 0.412913 + 0.412913i
\(184\) 3.41421i 0.251699i
\(185\) −12.9343 + 11.2179i −0.950950 + 0.824754i
\(186\) −2.82843 −0.207390
\(187\) −4.32957 4.32957i −0.316609 0.316609i
\(188\) −2.61313 + 2.61313i −0.190582 + 0.190582i
\(189\) −1.71644 + 10.8284i −0.124853 + 0.787652i
\(190\) 11.9497 10.3640i 0.866926 0.751881i
\(191\) 10.2426 0.741131 0.370566 0.928806i \(-0.379164\pi\)
0.370566 + 0.928806i \(0.379164\pi\)
\(192\) 0.541196 + 0.541196i 0.0390575 + 0.0390575i
\(193\) −0.242641 0.242641i −0.0174657 0.0174657i 0.698320 0.715786i \(-0.253931\pi\)
−0.715786 + 0.698320i \(0.753931\pi\)
\(194\) −15.6788 −1.12567
\(195\) −0.486803 + 6.84984i −0.0348607 + 0.490527i
\(196\) 6.65685 + 2.16478i 0.475490 + 0.154627i
\(197\) 3.41421 3.41421i 0.243253 0.243253i −0.574942 0.818194i \(-0.694975\pi\)
0.818194 + 0.574942i \(0.194975\pi\)
\(198\) −4.82843 4.82843i −0.343141 0.343141i
\(199\) −15.9414 −1.13006 −0.565028 0.825072i \(-0.691134\pi\)
−0.565028 + 0.825072i \(0.691134\pi\)
\(200\) −3.00000 4.00000i −0.212132 0.282843i
\(201\) 7.01962i 0.495126i
\(202\) 8.38057 + 8.38057i 0.589655 + 0.589655i
\(203\) 10.3360 7.50756i 0.725444 0.526927i
\(204\) 1.65685i 0.116003i
\(205\) 0.242641 3.41421i 0.0169468 0.238459i
\(206\) 2.79884i 0.195004i
\(207\) 5.82843 5.82843i 0.405104 0.405104i
\(208\) −2.83730 + 2.83730i −0.196731 + 0.196731i
\(209\) 20.0083 1.38400
\(210\) −3.84296 + 2.39462i −0.265189 + 0.165244i
\(211\) −21.6569 −1.49092 −0.745460 0.666551i \(-0.767770\pi\)
−0.745460 + 0.666551i \(0.767770\pi\)
\(212\) 0.242641 0.242641i 0.0166646 0.0166646i
\(213\) −1.84776 + 1.84776i −0.126606 + 0.126606i
\(214\) 10.8284i 0.740216i
\(215\) −8.28772 9.55582i −0.565218 0.651702i
\(216\) 4.14386i 0.281954i
\(217\) 7.91082 5.74603i 0.537021 0.390066i
\(218\) −11.4142 11.4142i −0.773068 0.773068i
\(219\) 5.17157i 0.349463i
\(220\) 0.448342 6.30864i 0.0302272 0.425329i
\(221\) 8.68629 0.584303
\(222\) −4.14386 4.14386i −0.278118 0.278118i
\(223\) 5.86030 5.86030i 0.392435 0.392435i −0.483120 0.875554i \(-0.660496\pi\)
0.875554 + 0.483120i \(0.160496\pi\)
\(224\) −2.61313 0.414214i −0.174597 0.0276758i
\(225\) −1.70711 + 11.9497i −0.113807 + 0.796650i
\(226\) 9.65685 0.642364
\(227\) −1.94061 1.94061i −0.128803 0.128803i 0.639766 0.768569i \(-0.279031\pi\)
−0.768569 + 0.639766i \(0.779031\pi\)
\(228\) 3.82843 + 3.82843i 0.253544 + 0.253544i
\(229\) −7.52235 −0.497091 −0.248546 0.968620i \(-0.579953\pi\)
−0.248546 + 0.968620i \(0.579953\pi\)
\(230\) 7.61521 + 0.541196i 0.502132 + 0.0356854i
\(231\) −5.65685 0.896683i −0.372194 0.0589974i
\(232\) −3.41421 + 3.41421i −0.224154 + 0.224154i
\(233\) 3.00000 + 3.00000i 0.196537 + 0.196537i 0.798513 0.601977i \(-0.205620\pi\)
−0.601977 + 0.798513i \(0.705620\pi\)
\(234\) 9.68714 0.633268
\(235\) 5.41421 + 6.24264i 0.353184 + 0.407225i
\(236\) 3.82683i 0.249106i
\(237\) 4.90923 + 4.90923i 0.318889 + 0.318889i
\(238\) 3.36595 + 4.63405i 0.218182 + 0.300381i
\(239\) 10.4853i 0.678236i −0.940744 0.339118i \(-0.889871\pi\)
0.940744 0.339118i \(-0.110129\pi\)
\(240\) 1.29289 1.12132i 0.0834559 0.0723809i
\(241\) 5.86030i 0.377495i 0.982026 + 0.188748i \(0.0604428\pi\)
−0.982026 + 0.188748i \(0.939557\pi\)
\(242\) −2.12132 + 2.12132i −0.136364 + 0.136364i
\(243\) −10.9937 + 10.9937i −0.705246 + 0.705246i
\(244\) 10.3212 0.660746
\(245\) 5.88362 14.5046i 0.375891 0.926664i
\(246\) 1.17157 0.0746968
\(247\) −20.0711 + 20.0711i −1.27709 + 1.27709i
\(248\) −2.61313 + 2.61313i −0.165934 + 0.165934i
\(249\) 5.89949i 0.373865i
\(250\) −9.39731 + 6.05728i −0.594338 + 0.383096i
\(251\) 28.7988i 1.81776i 0.417055 + 0.908881i \(0.363062\pi\)
−0.417055 + 0.908881i \(0.636938\pi\)
\(252\) 3.75378 + 5.16799i 0.236466 + 0.325553i
\(253\) 6.82843 + 6.82843i 0.429300 + 0.429300i
\(254\) 9.07107i 0.569169i
\(255\) −3.69552 0.262632i −0.231422 0.0164467i
\(256\) 1.00000 0.0625000
\(257\) −3.24718 3.24718i −0.202553 0.202553i 0.598540 0.801093i \(-0.295748\pi\)
−0.801093 + 0.598540i \(0.795748\pi\)
\(258\) 3.06147 3.06147i 0.190599 0.190599i
\(259\) 20.0083 + 3.17157i 1.24326 + 0.197072i
\(260\) 5.87868 + 6.77817i 0.364580 + 0.420365i
\(261\) 11.6569 0.721541
\(262\) −11.9448 11.9448i −0.737951 0.737951i
\(263\) −16.5858 16.5858i −1.02272 1.02272i −0.999736 0.0229877i \(-0.992682\pi\)
−0.0229877 0.999736i \(-0.507318\pi\)
\(264\) 2.16478 0.133233
\(265\) −0.502734 0.579658i −0.0308827 0.0356081i
\(266\) −18.4853 2.93015i −1.13341 0.179659i
\(267\) 9.17157 9.17157i 0.561291 0.561291i
\(268\) 6.48528 + 6.48528i 0.396152 + 0.396152i
\(269\) −12.6717 −0.772606 −0.386303 0.922372i \(-0.626248\pi\)
−0.386303 + 0.922372i \(0.626248\pi\)
\(270\) −9.24264 0.656854i −0.562489 0.0399749i
\(271\) 13.8854i 0.843477i −0.906717 0.421739i \(-0.861420\pi\)
0.906717 0.421739i \(-0.138580\pi\)
\(272\) −1.53073 1.53073i −0.0928144 0.0928144i
\(273\) 6.57409 4.77510i 0.397882 0.289002i
\(274\) 19.5563i 1.18144i
\(275\) −14.0000 2.00000i −0.844232 0.120605i
\(276\) 2.61313i 0.157292i
\(277\) −10.2426 + 10.2426i −0.615421 + 0.615421i −0.944353 0.328933i \(-0.893311\pi\)
0.328933 + 0.944353i \(0.393311\pi\)
\(278\) −3.60266 + 3.60266i −0.216073 + 0.216073i
\(279\) 8.92177 0.534132
\(280\) −1.33809 + 5.76277i −0.0799664 + 0.344391i
\(281\) 5.65685 0.337460 0.168730 0.985662i \(-0.446033\pi\)
0.168730 + 0.985662i \(0.446033\pi\)
\(282\) −2.00000 + 2.00000i −0.119098 + 0.119098i
\(283\) −0.224171 + 0.224171i −0.0133256 + 0.0133256i −0.713738 0.700413i \(-0.752999\pi\)
0.700413 + 0.713738i \(0.252999\pi\)
\(284\) 3.41421i 0.202596i
\(285\) 9.14594 7.93223i 0.541759 0.469865i
\(286\) 11.3492i 0.671091i
\(287\) −3.27677 + 2.38009i −0.193422 + 0.140492i
\(288\) −1.70711 1.70711i −0.100592 0.100592i
\(289\) 12.3137i 0.724336i
\(290\) 7.07401 + 8.15640i 0.415400 + 0.478960i
\(291\) −12.0000 −0.703452
\(292\) −4.77791 4.77791i −0.279606 0.279606i
\(293\) 2.07193 2.07193i 0.121043 0.121043i −0.643990 0.765034i \(-0.722722\pi\)
0.765034 + 0.643990i \(0.222722\pi\)
\(294\) 5.09494 + 1.65685i 0.297143 + 0.0966297i
\(295\) −8.53553 0.606602i −0.496958 0.0353177i
\(296\) −7.65685 −0.445046
\(297\) −8.28772 8.28772i −0.480902 0.480902i
\(298\) 3.75736 + 3.75736i 0.217658 + 0.217658i
\(299\) −13.6997 −0.792273
\(300\) −2.29610 3.06147i −0.132565 0.176754i
\(301\) −2.34315 + 14.7821i −0.135057 + 0.852024i
\(302\) −2.24264 + 2.24264i −0.129049 + 0.129049i
\(303\) 6.41421 + 6.41421i 0.368487 + 0.368487i
\(304\) 7.07401 0.405722
\(305\) 1.63604 23.0208i 0.0936793 1.31817i
\(306\) 5.22625i 0.298765i
\(307\) −4.18232 4.18232i −0.238698 0.238698i 0.577613 0.816311i \(-0.303984\pi\)
−0.816311 + 0.577613i \(0.803984\pi\)
\(308\) −6.05468 + 4.39782i −0.344997 + 0.250589i
\(309\) 2.14214i 0.121862i
\(310\) 5.41421 + 6.24264i 0.307507 + 0.354558i
\(311\) 23.0698i 1.30817i 0.756422 + 0.654084i \(0.226946\pi\)
−0.756422 + 0.654084i \(0.773054\pi\)
\(312\) −2.17157 + 2.17157i −0.122941 + 0.122941i
\(313\) −5.86030 + 5.86030i −0.331244 + 0.331244i −0.853059 0.521815i \(-0.825255\pi\)
0.521815 + 0.853059i \(0.325255\pi\)
\(314\) 1.66205 0.0937949
\(315\) 12.1219 7.55339i 0.682993 0.425586i
\(316\) 9.07107 0.510287
\(317\) 2.10051 2.10051i 0.117976 0.117976i −0.645654 0.763630i \(-0.723415\pi\)
0.763630 + 0.645654i \(0.223415\pi\)
\(318\) 0.185709 0.185709i 0.0104141 0.0104141i
\(319\) 13.6569i 0.764637i
\(320\) 0.158513 2.23044i 0.00886113 0.124686i
\(321\) 8.28772i 0.462575i
\(322\) −5.30864 7.30864i −0.295839 0.407295i
\(323\) −10.8284 10.8284i −0.602510 0.602510i
\(324\) 4.07107i 0.226170i
\(325\) 16.0502 12.0376i 0.890303 0.667728i
\(326\) 3.31371 0.183529
\(327\) −8.73606 8.73606i −0.483105 0.483105i
\(328\) 1.08239 1.08239i 0.0597651 0.0597651i
\(329\) 1.53073 9.65685i 0.0843921 0.532400i
\(330\) 0.343146 4.82843i 0.0188896 0.265796i
\(331\) 0.686292 0.0377220 0.0188610 0.999822i \(-0.493996\pi\)
0.0188610 + 0.999822i \(0.493996\pi\)
\(332\) 5.45042 + 5.45042i 0.299131 + 0.299131i
\(333\) 13.0711 + 13.0711i 0.716290 + 0.716290i
\(334\) 16.3128 0.892597
\(335\) 15.4930 13.4370i 0.846476 0.734144i
\(336\) −2.00000 0.317025i −0.109109 0.0172951i
\(337\) 12.2426 12.2426i 0.666899 0.666899i −0.290098 0.956997i \(-0.593688\pi\)
0.956997 + 0.290098i \(0.0936879\pi\)
\(338\) −2.19239 2.19239i −0.119250 0.119250i
\(339\) 7.39104 0.401426
\(340\) −3.65685 + 3.17157i −0.198321 + 0.172003i
\(341\) 10.4525i 0.566035i
\(342\) −12.0761 12.0761i −0.653000 0.653000i
\(343\) −17.6160 + 5.71646i −0.951172 + 0.308660i
\(344\) 5.65685i 0.304997i
\(345\) 5.82843 + 0.414214i 0.313792 + 0.0223005i
\(346\) 12.1146i 0.651282i
\(347\) 17.3137 17.3137i 0.929449 0.929449i −0.0682216 0.997670i \(-0.521732\pi\)
0.997670 + 0.0682216i \(0.0217325\pi\)
\(348\) −2.61313 + 2.61313i −0.140078 + 0.140078i
\(349\) −24.9176 −1.33381 −0.666903 0.745145i \(-0.732380\pi\)
−0.666903 + 0.745145i \(0.732380\pi\)
\(350\) 12.6414 + 3.89801i 0.675712 + 0.208357i
\(351\) 16.6274 0.887506
\(352\) 2.00000 2.00000i 0.106600 0.106600i
\(353\) −5.67459 + 5.67459i −0.302028 + 0.302028i −0.841807 0.539779i \(-0.818508\pi\)
0.539779 + 0.841807i \(0.318508\pi\)
\(354\) 2.92893i 0.155671i
\(355\) 7.61521 + 0.541196i 0.404173 + 0.0287237i
\(356\) 16.9469i 0.898182i
\(357\) 2.57619 + 3.54675i 0.136346 + 0.187714i
\(358\) 1.65685 + 1.65685i 0.0875675 + 0.0875675i
\(359\) 16.9706i 0.895672i −0.894116 0.447836i \(-0.852195\pi\)
0.894116 0.447836i \(-0.147805\pi\)
\(360\) −4.07820 + 3.53701i −0.214940 + 0.186417i
\(361\) 31.0416 1.63377
\(362\) −7.16687 7.16687i −0.376682 0.376682i
\(363\) −1.62359 + 1.62359i −0.0852163 + 0.0852163i
\(364\) 1.66205 10.4853i 0.0871151 0.549578i
\(365\) −11.4142 + 9.89949i −0.597447 + 0.518163i
\(366\) 7.89949 0.412913
\(367\) 7.39104 + 7.39104i 0.385809 + 0.385809i 0.873190 0.487381i \(-0.162048\pi\)
−0.487381 + 0.873190i \(0.662048\pi\)
\(368\) 2.41421 + 2.41421i 0.125850 + 0.125850i
\(369\) −3.69552 −0.192381
\(370\) −1.21371 + 17.0782i −0.0630977 + 0.887852i
\(371\) −0.142136 + 0.896683i −0.00737931 + 0.0465535i
\(372\) −2.00000 + 2.00000i −0.103695 + 0.103695i
\(373\) −0.928932 0.928932i −0.0480983 0.0480983i 0.682649 0.730747i \(-0.260828\pi\)
−0.730747 + 0.682649i \(0.760828\pi\)
\(374\) −6.12293 −0.316609
\(375\) −7.19239 + 4.63604i −0.371413 + 0.239404i
\(376\) 3.69552i 0.190582i
\(377\) −13.6997 13.6997i −0.705569 0.705569i
\(378\) 6.44315 + 8.87056i 0.331400 + 0.456253i
\(379\) 22.1421i 1.13737i 0.822557 + 0.568683i \(0.192547\pi\)
−0.822557 + 0.568683i \(0.807453\pi\)
\(380\) 1.12132 15.7782i 0.0575225 0.809403i
\(381\) 6.94269i 0.355685i
\(382\) 7.24264 7.24264i 0.370566 0.370566i
\(383\) 10.9008 10.9008i 0.557007 0.557007i −0.371447 0.928454i \(-0.621138\pi\)
0.928454 + 0.371447i \(0.121138\pi\)
\(384\) 0.765367 0.0390575
\(385\) 8.84935 + 14.2017i 0.451005 + 0.723787i
\(386\) −0.343146 −0.0174657
\(387\) −9.65685 + 9.65685i −0.490885 + 0.490885i
\(388\) −11.0866 + 11.0866i −0.562835 + 0.562835i
\(389\) 28.1421i 1.42686i 0.700725 + 0.713431i \(0.252860\pi\)
−0.700725 + 0.713431i \(0.747140\pi\)
\(390\) 4.49935 + 5.18779i 0.227833 + 0.262694i
\(391\) 7.39104i 0.373781i
\(392\) 6.23784 3.17637i 0.315059 0.160431i
\(393\) −9.14214 9.14214i −0.461160 0.461160i
\(394\) 4.82843i 0.243253i
\(395\) 1.43788 20.2325i 0.0723476 1.01801i
\(396\) −6.82843 −0.343141
\(397\) 15.7716 + 15.7716i 0.791554 + 0.791554i 0.981747 0.190192i \(-0.0609112\pi\)
−0.190192 + 0.981747i \(0.560911\pi\)
\(398\) −11.2723 + 11.2723i −0.565028 + 0.565028i
\(399\) −14.1480 2.24264i −0.708287 0.112272i
\(400\) −4.94975 0.707107i −0.247487 0.0353553i
\(401\) −28.2426 −1.41037 −0.705185 0.709023i \(-0.749136\pi\)
−0.705185 + 0.709023i \(0.749136\pi\)
\(402\) 4.96362 + 4.96362i 0.247563 + 0.247563i
\(403\) −10.4853 10.4853i −0.522309 0.522309i
\(404\) 11.8519 0.589655
\(405\) 9.08028 + 0.645316i 0.451203 + 0.0320660i
\(406\) 2.00000 12.6173i 0.0992583 0.626185i
\(407\) −15.3137 + 15.3137i −0.759072 + 0.759072i
\(408\) −1.17157 1.17157i −0.0580015 0.0580015i
\(409\) 23.3324 1.15371 0.576857 0.816845i \(-0.304279\pi\)
0.576857 + 0.816845i \(0.304279\pi\)
\(410\) −2.24264 2.58579i −0.110756 0.127703i
\(411\) 14.9678i 0.738306i
\(412\) −1.97908 1.97908i −0.0975020 0.0975020i
\(413\) 5.95021 + 8.19192i 0.292791 + 0.403098i
\(414\) 8.24264i 0.405104i
\(415\) 13.0208 11.2929i 0.639167 0.554346i
\(416\) 4.01254i 0.196731i
\(417\) −2.75736 + 2.75736i −0.135028 + 0.135028i
\(418\) 14.1480 14.1480i 0.692002 0.692002i
\(419\) −24.2835 −1.18633 −0.593163 0.805082i \(-0.702121\pi\)
−0.593163 + 0.805082i \(0.702121\pi\)
\(420\) −1.02413 + 4.41063i −0.0499725 + 0.215217i
\(421\) −21.7990 −1.06242 −0.531209 0.847241i \(-0.678262\pi\)
−0.531209 + 0.847241i \(0.678262\pi\)
\(422\) −15.3137 + 15.3137i −0.745460 + 0.745460i
\(423\) 6.30864 6.30864i 0.306737 0.306737i
\(424\) 0.343146i 0.0166646i
\(425\) 6.49435 + 8.65914i 0.315022 + 0.420030i
\(426\) 2.61313i 0.126606i
\(427\) −22.0941 + 16.0481i −1.06921 + 0.776620i
\(428\) −7.65685 7.65685i −0.370108 0.370108i
\(429\) 8.68629i 0.419378i
\(430\) −12.6173 0.896683i −0.608460 0.0432419i
\(431\) −5.65685 −0.272481 −0.136241 0.990676i \(-0.543502\pi\)
−0.136241 + 0.990676i \(0.543502\pi\)
\(432\) −2.93015 2.93015i −0.140977 0.140977i
\(433\) −4.32957 + 4.32957i −0.208066 + 0.208066i −0.803445 0.595379i \(-0.797002\pi\)
0.595379 + 0.803445i \(0.297002\pi\)
\(434\) 1.53073 9.65685i 0.0734776 0.463544i
\(435\) 5.41421 + 6.24264i 0.259592 + 0.299312i
\(436\) −16.1421 −0.773068
\(437\) 17.0782 + 17.0782i 0.816960 + 0.816960i
\(438\) −3.65685 3.65685i −0.174731 0.174731i
\(439\) 18.7402 0.894422 0.447211 0.894428i \(-0.352417\pi\)
0.447211 + 0.894428i \(0.352417\pi\)
\(440\) −4.14386 4.77791i −0.197551 0.227778i
\(441\) −16.0711 5.22625i −0.765289 0.248869i
\(442\) 6.14214 6.14214i 0.292152 0.292152i
\(443\) 24.1421 + 24.1421i 1.14703 + 1.14703i 0.987134 + 0.159893i \(0.0511150\pi\)
0.159893 + 0.987134i \(0.448885\pi\)
\(444\) −5.86030 −0.278118
\(445\) −37.7990 2.68629i −1.79184 0.127342i
\(446\) 8.28772i 0.392435i
\(447\) 2.87576 + 2.87576i 0.136019 + 0.136019i
\(448\) −2.14065 + 1.55487i −0.101136 + 0.0734605i
\(449\) 14.3431i 0.676895i −0.940985 0.338447i \(-0.890098\pi\)
0.940985 0.338447i \(-0.109902\pi\)
\(450\) 7.24264 + 9.65685i 0.341421 + 0.455228i
\(451\) 4.32957i 0.203871i
\(452\) 6.82843 6.82843i 0.321182 0.321182i
\(453\) −1.71644 + 1.71644i −0.0806455 + 0.0806455i
\(454\) −2.74444 −0.128803
\(455\) −23.1234 5.36916i −1.08404 0.251710i
\(456\) 5.41421 0.253544
\(457\) 9.65685 9.65685i 0.451729 0.451729i −0.444199 0.895928i \(-0.646512\pi\)
0.895928 + 0.444199i \(0.146512\pi\)
\(458\) −5.31911 + 5.31911i −0.248546 + 0.248546i
\(459\) 8.97056i 0.418710i
\(460\) 5.76745 5.00208i 0.268909 0.233223i
\(461\) 11.9288i 0.555582i 0.960642 + 0.277791i \(0.0896022\pi\)
−0.960642 + 0.277791i \(0.910398\pi\)
\(462\) −4.63405 + 3.36595i −0.215596 + 0.156598i
\(463\) 20.9706 + 20.9706i 0.974585 + 0.974585i 0.999685 0.0251002i \(-0.00799049\pi\)
−0.0251002 + 0.999685i \(0.507990\pi\)
\(464\) 4.82843i 0.224154i
\(465\) 4.14386 + 4.77791i 0.192167 + 0.221570i
\(466\) 4.24264 0.196537
\(467\) 13.3442 + 13.3442i 0.617496 + 0.617496i 0.944888 0.327393i \(-0.106170\pi\)
−0.327393 + 0.944888i \(0.606170\pi\)
\(468\) 6.84984 6.84984i 0.316634 0.316634i
\(469\) −23.9665 3.79899i −1.10667 0.175421i
\(470\) 8.24264 + 0.585786i 0.380205 + 0.0270203i
\(471\) 1.27208 0.0586143
\(472\) −2.70598 2.70598i −0.124553 0.124553i
\(473\) −11.3137 11.3137i −0.520205 0.520205i
\(474\) 6.94269 0.318889
\(475\) −35.0146 5.00208i −1.60658 0.229511i
\(476\) 5.65685 + 0.896683i 0.259281 + 0.0410994i
\(477\) −0.585786 + 0.585786i −0.0268213 + 0.0268213i
\(478\) −7.41421 7.41421i −0.339118 0.339118i
\(479\) 4.59220 0.209823 0.104912 0.994482i \(-0.466544\pi\)
0.104912 + 0.994482i \(0.466544\pi\)
\(480\) 0.121320 1.70711i 0.00553749 0.0779184i
\(481\) 30.7235i 1.40087i
\(482\) 4.14386 + 4.14386i 0.188748 + 0.188748i
\(483\) −4.06306 5.59379i −0.184876 0.254526i
\(484\) 3.00000i 0.136364i
\(485\) 22.9706 + 26.4853i 1.04304 + 1.20263i
\(486\) 15.5474i 0.705246i
\(487\) 20.8995 20.8995i 0.947047 0.947047i −0.0516203 0.998667i \(-0.516439\pi\)
0.998667 + 0.0516203i \(0.0164385\pi\)
\(488\) 7.29818 7.29818i 0.330373 0.330373i
\(489\) 2.53620 0.114691
\(490\) −6.09594 14.4166i −0.275387 0.651277i
\(491\) 30.8284 1.39127 0.695634 0.718397i \(-0.255124\pi\)
0.695634 + 0.718397i \(0.255124\pi\)
\(492\) 0.828427 0.828427i 0.0373484 0.0373484i
\(493\) 7.39104 7.39104i 0.332876 0.332876i
\(494\) 28.3848i 1.27709i
\(495\) −1.08239 + 15.2304i −0.0486499 + 0.684556i
\(496\) 3.69552i 0.165934i
\(497\) −5.30864 7.30864i −0.238125 0.327837i
\(498\) 4.17157 + 4.17157i 0.186933 + 0.186933i
\(499\) 24.4853i 1.09611i −0.836442 0.548056i \(-0.815368\pi\)
0.836442 0.548056i \(-0.184632\pi\)
\(500\) −2.36176 + 10.9280i −0.105621 + 0.488717i
\(501\) 12.4853 0.557801
\(502\) 20.3638 + 20.3638i 0.908881 + 0.908881i
\(503\) 22.8072 22.8072i 1.01692 1.01692i 0.0170666 0.999854i \(-0.494567\pi\)
0.999854 0.0170666i \(-0.00543274\pi\)
\(504\) 6.30864 + 1.00000i 0.281009 + 0.0445435i
\(505\) 1.87868 26.4350i 0.0836001 1.17634i
\(506\) 9.65685 0.429300
\(507\) −1.67798 1.67798i −0.0745218 0.0745218i
\(508\) −6.41421 6.41421i −0.284585 0.284585i
\(509\) −1.66205 −0.0736691 −0.0368345 0.999321i \(-0.511727\pi\)
−0.0368345 + 0.999321i \(0.511727\pi\)
\(510\) −2.79884 + 2.42742i −0.123935 + 0.107488i
\(511\) 17.6569 + 2.79884i 0.781093 + 0.123813i
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) −20.7279 20.7279i −0.915160 0.915160i
\(514\) −4.59220 −0.202553
\(515\) −4.72792 + 4.10051i −0.208337 + 0.180690i
\(516\) 4.32957i 0.190599i
\(517\) 7.39104 + 7.39104i 0.325057 + 0.325057i
\(518\) 16.3907 11.9054i 0.720164 0.523092i
\(519\) 9.27208i 0.406999i
\(520\) 8.94975 + 0.636039i 0.392472 + 0.0278922i
\(521\) 36.8464i 1.61427i −0.590367 0.807135i \(-0.701017\pi\)
0.590367 0.807135i \(-0.298983\pi\)
\(522\) 8.24264 8.24264i 0.360771 0.360771i
\(523\) 6.84984 6.84984i 0.299523 0.299523i −0.541304 0.840827i \(-0.682069\pi\)
0.840827 + 0.541304i \(0.182069\pi\)
\(524\) −16.8925 −0.737951
\(525\) 9.67532 + 2.98341i 0.422266 + 0.130207i
\(526\) −23.4558 −1.02272
\(527\) 5.65685 5.65685i 0.246416 0.246416i
\(528\) 1.53073 1.53073i 0.0666166 0.0666166i
\(529\) 11.3431i 0.493180i
\(530\) −0.765367 0.0543929i −0.0332454 0.00236268i
\(531\) 9.23880i 0.400930i
\(532\) −15.1430 + 10.9991i −0.656532 + 0.476873i
\(533\) 4.34315 + 4.34315i 0.188123 + 0.188123i
\(534\) 12.9706i 0.561291i
\(535\) −18.2919 + 15.8645i −0.790827 + 0.685881i
\(536\) 9.17157 0.396152
\(537\) 1.26810 + 1.26810i 0.0547226 + 0.0547226i
\(538\) −8.96023 + 8.96023i −0.386303 + 0.386303i
\(539\) 6.12293 18.8284i 0.263733 0.810998i
\(540\) −7.00000 + 6.07107i −0.301232 + 0.261257i
\(541\) −22.9706 −0.987582 −0.493791 0.869581i \(-0.664389\pi\)
−0.493791 + 0.869581i \(0.664389\pi\)
\(542\) −9.81845 9.81845i −0.421739 0.421739i
\(543\) −5.48528 5.48528i −0.235396 0.235396i
\(544\) −2.16478 −0.0928144
\(545\) −2.55873 + 36.0041i −0.109604 + 1.54225i
\(546\) 1.27208 8.02509i 0.0544399 0.343442i
\(547\) 14.6274 14.6274i 0.625423 0.625423i −0.321490 0.946913i \(-0.604184\pi\)
0.946913 + 0.321490i \(0.104184\pi\)
\(548\) 13.8284 + 13.8284i 0.590721 + 0.590721i
\(549\) −24.9176 −1.06346
\(550\) −11.3137 + 8.48528i −0.482418 + 0.361814i
\(551\) 34.1563i 1.45511i
\(552\) 1.84776 + 1.84776i 0.0786458 + 0.0786458i
\(553\) −19.4180 + 14.1043i −0.825737 + 0.599776i
\(554\) 14.4853i 0.615421i
\(555\) −0.928932 + 13.0711i −0.0394310 + 0.554836i
\(556\) 5.09494i 0.216073i
\(557\) −1.27208 + 1.27208i −0.0538997 + 0.0538997i −0.733543 0.679643i \(-0.762135\pi\)
0.679643 + 0.733543i \(0.262135\pi\)
\(558\) 6.30864 6.30864i 0.267066 0.267066i
\(559\) 22.6984 0.960039
\(560\) 3.12872 + 5.02107i 0.132212 + 0.212179i
\(561\) −4.68629 −0.197855
\(562\) 4.00000 4.00000i 0.168730 0.168730i
\(563\) 32.0844 32.0844i 1.35220 1.35220i 0.468997 0.883200i \(-0.344615\pi\)
0.883200 0.468997i \(-0.155385\pi\)
\(564\) 2.82843i 0.119098i
\(565\) −14.1480 16.3128i −0.595212 0.686285i
\(566\) 0.317025i 0.0133256i
\(567\) −6.32996 8.71474i −0.265834 0.365985i
\(568\) 2.41421 + 2.41421i 0.101298 + 0.101298i
\(569\) 1.41421i 0.0592869i 0.999561 + 0.0296435i \(0.00943719\pi\)
−0.999561 + 0.0296435i \(0.990563\pi\)
\(570\) 0.858221 12.0761i 0.0359469 0.505812i
\(571\) 25.4558 1.06529 0.532647 0.846338i \(-0.321197\pi\)
0.532647 + 0.846338i \(0.321197\pi\)
\(572\) 8.02509 + 8.02509i 0.335546 + 0.335546i
\(573\) 5.54328 5.54328i 0.231574 0.231574i
\(574\) −0.634051 + 4.00000i −0.0264648 + 0.166957i
\(575\) −10.2426 13.6569i −0.427148 0.569530i
\(576\) −2.41421 −0.100592
\(577\) 4.40649 + 4.40649i 0.183445 + 0.183445i 0.792855 0.609410i \(-0.208594\pi\)
−0.609410 + 0.792855i \(0.708594\pi\)
\(578\) −8.70711 8.70711i −0.362168 0.362168i
\(579\) −0.262632 −0.0109146
\(580\) 10.7695 + 0.765367i 0.447180 + 0.0317801i
\(581\) −20.1421 3.19278i −0.835637 0.132459i
\(582\) −8.48528 + 8.48528i −0.351726 + 0.351726i
\(583\) −0.686292 0.686292i −0.0284233 0.0284233i
\(584\) −6.75699 −0.279606
\(585\) −14.1924 16.3640i −0.586783 0.676567i
\(586\) 2.93015i 0.121043i
\(587\) −5.58174 5.58174i −0.230383 0.230383i 0.582470 0.812853i \(-0.302087\pi\)
−0.812853 + 0.582470i \(0.802087\pi\)
\(588\) 4.77424 2.43109i 0.196886 0.100256i
\(589\) 26.1421i 1.07717i
\(590\) −6.46447 + 5.60660i −0.266138 + 0.230820i
\(591\) 3.69552i 0.152013i
\(592\) −5.41421 + 5.41421i −0.222523 + 0.222523i
\(593\) −18.6633 + 18.6633i −0.766410 + 0.766410i −0.977473 0.211063i \(-0.932308\pi\)
0.211063 + 0.977473i \(0.432308\pi\)
\(594\) −11.7206 −0.480902
\(595\) 2.89668 12.4752i 0.118752 0.511431i
\(596\) 5.31371 0.217658
\(597\) −8.62742 + 8.62742i −0.353097 + 0.353097i
\(598\) −9.68714 + 9.68714i −0.396136 + 0.396136i
\(599\) 46.5269i 1.90104i 0.310666 + 0.950519i \(0.399448\pi\)
−0.310666 + 0.950519i \(0.600552\pi\)
\(600\) −3.78837 0.541196i −0.154660 0.0220942i
\(601\) 19.1116i 0.779580i −0.920904 0.389790i \(-0.872548\pi\)
0.920904 0.389790i \(-0.127452\pi\)
\(602\) 8.79565 + 12.1094i 0.358484 + 0.493541i
\(603\) −15.6569 15.6569i −0.637596 0.637596i
\(604\) 3.17157i 0.129049i
\(605\) 6.69133 + 0.475538i 0.272041 + 0.0193334i
\(606\) 9.07107 0.368487
\(607\) 0.262632 + 0.262632i 0.0106599 + 0.0106599i 0.712417 0.701757i \(-0.247601\pi\)
−0.701757 + 0.712417i \(0.747601\pi\)
\(608\) 5.00208 5.00208i 0.202861 0.202861i
\(609\) 1.53073 9.65685i 0.0620285 0.391315i
\(610\) −15.1213 17.4350i −0.612244 0.705924i
\(611\) −14.8284 −0.599894
\(612\) 3.69552 + 3.69552i 0.149382 + 0.149382i
\(613\) 0.100505 + 0.100505i 0.00405936 + 0.00405936i 0.709134 0.705074i \(-0.249086\pi\)
−0.705074 + 0.709134i \(0.749086\pi\)
\(614\) −5.91470 −0.238698
\(615\) −1.71644 1.97908i −0.0692137 0.0798040i
\(616\) −1.17157 + 7.39104i −0.0472040 + 0.297793i
\(617\) −11.5147 + 11.5147i −0.463565 + 0.463565i −0.899822 0.436257i \(-0.856304\pi\)
0.436257 + 0.899822i \(0.356304\pi\)
\(618\) −1.51472 1.51472i −0.0609309 0.0609309i
\(619\) 34.9217 1.40362 0.701811 0.712363i \(-0.252375\pi\)
0.701811 + 0.712363i \(0.252375\pi\)
\(620\) 8.24264 + 0.585786i 0.331032 + 0.0235257i
\(621\) 14.1480i 0.567741i
\(622\) 16.3128 + 16.3128i 0.654084 + 0.654084i
\(623\) 26.3501 + 36.2773i 1.05569 + 1.45342i
\(624\) 3.07107i 0.122941i
\(625\) 24.0000 + 7.00000i 0.960000 + 0.280000i
\(626\) 8.28772i 0.331244i
\(627\) 10.8284 10.8284i 0.432446 0.432446i
\(628\) 1.17525 1.17525i 0.0468975 0.0468975i
\(629\) 16.5754 0.660906
\(630\) 3.23044 13.9126i 0.128704 0.554289i
\(631\) −29.3553 −1.16862 −0.584309 0.811531i \(-0.698634\pi\)
−0.584309 + 0.811531i \(0.698634\pi\)
\(632\) 6.41421 6.41421i 0.255144 0.255144i
\(633\) −11.7206 + 11.7206i −0.465852 + 0.465852i
\(634\) 2.97056i 0.117976i
\(635\) −15.3233 + 13.2898i −0.608085 + 0.527390i
\(636\) 0.262632i 0.0104141i
\(637\) 12.7453 + 25.0296i 0.504989 + 0.991709i
\(638\) 9.65685 + 9.65685i 0.382319 + 0.382319i
\(639\) 8.24264i 0.326074i
\(640\) −1.46508 1.68925i −0.0579122 0.0667733i
\(641\) 5.21320 0.205909 0.102955 0.994686i \(-0.467170\pi\)
0.102955 + 0.994686i \(0.467170\pi\)
\(642\) −5.86030 5.86030i −0.231288 0.231288i
\(643\) −27.0439 + 27.0439i −1.06651 + 1.06651i −0.0688814 + 0.997625i \(0.521943\pi\)
−0.997625 + 0.0688814i \(0.978057\pi\)
\(644\) −8.92177 1.41421i −0.351567 0.0557278i
\(645\) −9.65685 0.686292i −0.380238 0.0270227i
\(646\) −15.3137 −0.602510
\(647\) −20.7193 20.7193i −0.814560 0.814560i 0.170754 0.985314i \(-0.445380\pi\)
−0.985314 + 0.170754i \(0.945380\pi\)
\(648\) 2.87868 + 2.87868i 0.113085 + 0.113085i
\(649\) −10.8239 −0.424876
\(650\) 2.83730 19.8611i 0.111288 0.779016i
\(651\) 1.17157 7.39104i 0.0459176 0.289678i
\(652\) 2.34315 2.34315i 0.0917647 0.0917647i
\(653\) −16.7279 16.7279i −0.654614 0.654614i 0.299486 0.954101i \(-0.403185\pi\)
−0.954101 + 0.299486i \(0.903185\pi\)
\(654\) −12.3547 −0.483105
\(655\) −2.67767 + 37.6777i −0.104625 + 1.47219i
\(656\) 1.53073i 0.0597651i
\(657\) 11.5349 + 11.5349i 0.450019 + 0.450019i
\(658\) −5.74603 7.91082i −0.224004 0.308396i
\(659\) 18.3431i 0.714548i 0.934000 + 0.357274i \(0.116294\pi\)
−0.934000 + 0.357274i \(0.883706\pi\)
\(660\) −3.17157 3.65685i −0.123453 0.142343i
\(661\) 0.208239i 0.00809958i 0.999992 + 0.00404979i \(0.00128909\pi\)
−0.999992 + 0.00404979i \(0.998711\pi\)
\(662\) 0.485281 0.485281i 0.0188610 0.0188610i
\(663\) 4.70099 4.70099i 0.182571 0.182571i
\(664\) 7.70806 0.299131
\(665\) 22.1326 + 35.5191i 0.858265 + 1.37737i
\(666\) 18.4853 0.716290
\(667\) −11.6569 + 11.6569i −0.451355 + 0.451355i
\(668\) 11.5349 11.5349i 0.446299 0.446299i
\(669\) 6.34315i 0.245240i
\(670\) 1.45381 20.4567i 0.0561656 0.790310i
\(671\) 29.1927i 1.12697i
\(672\) −1.63838 + 1.19004i −0.0632020 + 0.0459069i
\(673\) 16.7990 + 16.7990i 0.647553 + 0.647553i 0.952401 0.304848i \(-0.0986055\pi\)
−0.304848 + 0.952401i \(0.598606\pi\)
\(674\) 17.3137i 0.666899i
\(675\) 12.4316 + 16.5754i 0.478492 + 0.637989i
\(676\) −3.10051 −0.119250
\(677\) −30.7394 30.7394i −1.18141 1.18141i −0.979379 0.202032i \(-0.935246\pi\)
−0.202032 0.979379i \(-0.564754\pi\)
\(678\) 5.22625 5.22625i 0.200713 0.200713i
\(679\) 6.49435 40.9706i 0.249230 1.57231i
\(680\) −0.343146 + 4.82843i −0.0131590 + 0.185162i
\(681\) −2.10051 −0.0804915
\(682\) 7.39104 + 7.39104i 0.283017 + 0.283017i
\(683\) −2.68629 2.68629i −0.102788 0.102788i 0.653843 0.756631i \(-0.273156\pi\)
−0.756631 + 0.653843i \(0.773156\pi\)
\(684\) −17.0782 −0.653000
\(685\) 33.0355 28.6515i 1.26222 1.09472i
\(686\) −8.41421 + 16.4985i −0.321256 + 0.629916i
\(687\) −4.07107 + 4.07107i −0.155321 + 0.155321i
\(688\) −4.00000 4.00000i −0.152499 0.152499i
\(689\) 1.37689 0.0524552
\(690\) 4.41421 3.82843i 0.168046 0.145746i
\(691\) 12.5629i 0.477915i 0.971030 + 0.238958i \(0.0768057\pi\)
−0.971030 + 0.238958i \(0.923194\pi\)
\(692\) −8.56628 8.56628i −0.325641 0.325641i
\(693\) 14.6173 10.6173i 0.555265 0.403317i
\(694\) 24.4853i 0.929449i
\(695\) 11.3640 + 0.807612i 0.431060 + 0.0306345i
\(696\) 3.69552i 0.140078i
\(697\) −2.34315 + 2.34315i −0.0887530 + 0.0887530i
\(698\) −17.6194 + 17.6194i −0.666903 + 0.666903i
\(699\) 3.24718 0.122819
\(700\) 11.6951 6.18252i 0.442035 0.233677i
\(701\) 49.1127 1.85496 0.927481 0.373872i \(-0.121970\pi\)
0.927481 + 0.373872i \(0.121970\pi\)
\(702\) 11.7574 11.7574i 0.443753 0.443753i
\(703\) −38.3002 + 38.3002i −1.44452 + 1.44452i
\(704\) 2.82843i 0.106600i
\(705\) 6.30864 + 0.448342i 0.237597 + 0.0168855i
\(706\) 8.02509i 0.302028i
\(707\) −25.3708 + 18.4281i −0.954169 + 0.693062i
\(708\) −2.07107 2.07107i −0.0778355 0.0778355i
\(709\) 18.6863i 0.701778i 0.936417 + 0.350889i \(0.114121\pi\)
−0.936417 + 0.350889i \(0.885879\pi\)
\(710\) 5.76745 5.00208i 0.216448 0.187725i
\(711\) −21.8995 −0.821295
\(712\) −11.9832 11.9832i −0.449091 0.449091i
\(713\) −8.92177 + 8.92177i −0.334123 + 0.334123i
\(714\) 4.32957 + 0.686292i 0.162030 + 0.0256838i
\(715\) 19.1716 16.6274i 0.716976 0.621830i
\(716\) 2.34315 0.0875675
\(717\) −5.67459 5.67459i −0.211922 0.211922i
\(718\) −12.0000 12.0000i −0.447836 0.447836i
\(719\) −9.44703 −0.352315 −0.176157 0.984362i \(-0.556367\pi\)
−0.176157 + 0.984362i \(0.556367\pi\)
\(720\) −0.382683 + 5.38476i −0.0142618 + 0.200678i
\(721\) 7.31371 + 1.15932i 0.272377 + 0.0431752i
\(722\) 21.9497 21.9497i 0.816885 0.816885i
\(723\) 3.17157 + 3.17157i 0.117952 + 0.117952i
\(724\) −10.1355 −0.376682
\(725\) 3.41421 23.8995i 0.126801 0.887605i
\(726\) 2.29610i 0.0852163i
\(727\) −18.6633 18.6633i −0.692183 0.692183i 0.270528 0.962712i \(-0.412802\pi\)
−0.962712 + 0.270528i \(0.912802\pi\)
\(728\) −6.23897 8.58946i −0.231231 0.318347i
\(729\) 0.313708i 0.0116188i
\(730\) −1.07107 + 15.0711i −0.0396420 + 0.557805i
\(731\) 12.2459i 0.452930i
\(732\) 5.58579 5.58579i 0.206457 0.206457i
\(733\) −12.3387 + 12.3387i −0.455741 + 0.455741i −0.897255 0.441513i \(-0.854442\pi\)
0.441513 + 0.897255i \(0.354442\pi\)
\(734\) 10.4525 0.385809
\(735\) −4.66563 11.0340i −0.172094 0.406996i
\(736\) 3.41421 0.125850
\(737\) 18.3431 18.3431i 0.675678 0.675678i
\(738\) −2.61313 + 2.61313i −0.0961905 + 0.0961905i
\(739\) 1.65685i 0.0609484i −0.999536 0.0304742i \(-0.990298\pi\)
0.999536 0.0304742i \(-0.00970174\pi\)
\(740\) 11.2179 + 12.9343i 0.412377 + 0.475475i
\(741\) 21.7248i 0.798079i
\(742\) 0.533546 + 0.734556i 0.0195871 + 0.0269664i
\(743\) −21.0416 21.0416i −0.771943 0.771943i 0.206503 0.978446i \(-0.433792\pi\)
−0.978446 + 0.206503i \(0.933792\pi\)
\(744\) 2.82843i 0.103695i
\(745\) 0.842290 11.8519i 0.0308591 0.434221i
\(746\) −1.31371 −0.0480983
\(747\) −13.1585 13.1585i −0.481444 0.481444i
\(748\) −4.32957 + 4.32957i −0.158305 + 0.158305i
\(749\) 28.2960 + 4.48528i 1.03391 + 0.163889i
\(750\) −1.80761 + 8.36396i −0.0660047 + 0.305409i
\(751\) 14.4853 0.528575 0.264288 0.964444i \(-0.414863\pi\)
0.264288 + 0.964444i \(0.414863\pi\)
\(752\) 2.61313 + 2.61313i 0.0952909 + 0.0952909i
\(753\) 15.5858 + 15.5858i 0.567978 + 0.567978i
\(754\) −19.3743 −0.705569
\(755\) 7.07401 + 0.502734i 0.257450 + 0.0182964i
\(756\) 10.8284 + 1.71644i 0.393826 + 0.0624264i
\(757\) −11.8995 + 11.8995i −0.432494 + 0.432494i −0.889476 0.456982i \(-0.848931\pi\)
0.456982 + 0.889476i \(0.348931\pi\)
\(758\) 15.6569 + 15.6569i 0.568683 + 0.568683i
\(759\) 7.39104 0.268278
\(760\) −10.3640 11.9497i −0.375940 0.433463i
\(761\) 32.3630i 1.17316i −0.809892 0.586579i \(-0.800475\pi\)
0.809892 0.586579i \(-0.199525\pi\)
\(762\) −4.90923 4.90923i −0.177843 0.177843i
\(763\) 34.5547 25.0989i 1.25096 0.908640i
\(764\) 10.2426i 0.370566i
\(765\) 8.82843 7.65685i 0.319192 0.276834i
\(766\) 15.4161i 0.557007i
\(767\) 10.8579 10.8579i 0.392055 0.392055i
\(768\) 0.541196 0.541196i 0.0195287 0.0195287i
\(769\) 20.2710 0.730989 0.365495 0.930813i \(-0.380900\pi\)
0.365495 + 0.930813i \(0.380900\pi\)
\(770\) 16.2996 + 3.78470i 0.587396 + 0.136391i
\(771\) −3.51472 −0.126579
\(772\) −0.242641 + 0.242641i −0.00873283 + 0.00873283i
\(773\) −1.49227 + 1.49227i −0.0536733 + 0.0536733i −0.733434 0.679761i \(-0.762084\pi\)
0.679761 + 0.733434i \(0.262084\pi\)
\(774\) 13.6569i 0.490885i
\(775\) 2.61313 18.2919i 0.0938663 0.657064i
\(776\) 15.6788i 0.562835i
\(777\) 12.5449 9.11198i 0.450045 0.326891i
\(778\) 19.8995 + 19.8995i 0.713431 + 0.713431i
\(779\) 10.8284i 0.387969i
\(780\) 6.84984 + 0.486803i 0.245264 + 0.0174303i
\(781\) 9.65685 0.345549
\(782\) −5.22625 5.22625i −0.186890 0.186890i
\(783\) 14.1480 14.1480i 0.505609 0.505609i
\(784\) 2.16478 6.65685i 0.0773137 0.237745i
\(785\) −2.43503 2.80761i −0.0869099 0.100208i
\(786\) −12.9289 −0.461160
\(787\) 3.97408 + 3.97408i 0.141661 + 0.141661i 0.774381 0.632720i \(-0.218062\pi\)
−0.632720 + 0.774381i \(0.718062\pi\)
\(788\) −3.41421 3.41421i −0.121626 0.121626i
\(789\) −17.9523 −0.639120
\(790\) −13.2898 15.3233i −0.472830 0.545177i
\(791\) −4.00000 + 25.2346i −0.142224 + 0.897238i
\(792\) −4.82843 + 4.82843i −0.171571 + 0.171571i
\(793\) 29.2843 + 29.2843i 1.03991 + 1.03991i
\(794\) 22.3044 0.791554
\(795\) −0.585786 0.0416306i −0.0207757 0.00147648i
\(796\) 15.9414i 0.565028i
\(797\) 11.4964 + 11.4964i 0.407225 + 0.407225i 0.880770 0.473545i \(-0.157026\pi\)
−0.473545 + 0.880770i \(0.657026\pi\)
\(798\) −11.5899 + 8.41838i −0.410280 + 0.298007i
\(799\) 8.00000i 0.283020i
\(800\) −4.00000 + 3.00000i −0.141421 + 0.106066i
\(801\) 40.9133i 1.44560i
\(802\) −19.9706 + 19.9706i −0.705185 + 0.705185i
\(803\) −13.5140 + 13.5140i −0.476898 + 0.476898i
\(804\) 7.01962 0.247563
\(805\) −4.56854 + 19.6753i −0.161020 + 0.693464i
\(806\) −14.8284 −0.522309
\(807\) −6.85786 + 6.85786i −0.241408 + 0.241408i
\(808\) 8.38057 8.38057i 0.294828 0.294828i
\(809\) 14.1005i 0.495747i −0.968792 0.247874i \(-0.920268\pi\)
0.968792 0.247874i \(-0.0797318\pi\)
\(810\) 6.87704 5.96442i 0.241634 0.209568i
\(811\) 7.18280i 0.252222i 0.992016 + 0.126111i \(0.0402496\pi\)
−0.992016 + 0.126111i \(0.959750\pi\)
\(812\) −7.50756 10.3360i −0.263464 0.362722i
\(813\) −7.51472 7.51472i −0.263553 0.263553i
\(814\) 21.6569i 0.759072i
\(815\) −4.85483 5.59767i −0.170057 0.196078i
\(816\) −1.65685 −0.0580015
\(817\) −28.2960 28.2960i −0.989953 0.989953i
\(818\) 16.4985 16.4985i 0.576857 0.576857i
\(819\) −4.01254 + 25.3137i −0.140210 + 0.884533i
\(820\) −3.41421 0.242641i −0.119230 0.00847338i
\(821\) −17.5147 −0.611268 −0.305634 0.952149i \(-0.598868\pi\)
−0.305634 + 0.952149i \(0.598868\pi\)
\(822\) 10.5838 + 10.5838i 0.369153 + 0.369153i
\(823\) −13.6569 13.6569i −0.476048 0.476048i 0.427817 0.903865i \(-0.359283\pi\)
−0.903865 + 0.427817i \(0.859283\pi\)
\(824\) −2.79884 −0.0975020
\(825\) −8.65914 + 6.49435i −0.301472 + 0.226104i
\(826\) 10.0000 + 1.58513i 0.347945 + 0.0551536i
\(827\) −24.4853 + 24.4853i −0.851437 + 0.851437i −0.990310 0.138873i \(-0.955652\pi\)
0.138873 + 0.990310i \(0.455652\pi\)
\(828\) −5.82843 5.82843i −0.202552 0.202552i
\(829\) −30.7009 −1.06629 −0.533144 0.846025i \(-0.678989\pi\)
−0.533144 + 0.846025i \(0.678989\pi\)
\(830\) 1.22183 17.1924i 0.0424102 0.596757i
\(831\) 11.0866i 0.384588i
\(832\) 2.83730 + 2.83730i 0.0983656 + 0.0983656i
\(833\) −13.5036 + 6.87616i −0.467871 + 0.238245i
\(834\) 3.89949i 0.135028i
\(835\) −23.8995 27.5563i −0.827076 0.953627i
\(836\) 20.0083i 0.692002i
\(837\) 10.8284 10.8284i 0.374285 0.374285i
\(838\) −17.1710 + 17.1710i −0.593163 + 0.593163i
\(839\) 12.8799 0.444664 0.222332 0.974971i \(-0.428633\pi\)
0.222332 + 0.974971i \(0.428633\pi\)
\(840\) 2.39462 + 3.84296i 0.0826221 + 0.132595i
\(841\) 5.68629 0.196079
\(842\) −15.4142 + 15.4142i −0.531209 + 0.531209i
\(843\) 3.06147 3.06147i 0.105443 0.105443i
\(844\) 21.6569i 0.745460i
\(845\) −0.491469 + 6.91550i −0.0169071 + 0.237900i
\(846\) 8.92177i 0.306737i
\(847\) −4.66460 6.42196i −0.160277 0.220661i
\(848\) −0.242641 0.242641i −0.00833232 0.00833232i
\(849\) 0.242641i 0.00832741i
\(850\) 10.7151 + 1.53073i 0.367526 + 0.0525037i
\(851\) −26.1421 −0.896141
\(852\) 1.84776 + 1.84776i 0.0633032 + 0.0633032i
\(853\) −16.4826 + 16.4826i −0.564353 + 0.564353i −0.930541 0.366188i \(-0.880663\pi\)
0.366188 + 0.930541i \(0.380663\pi\)
\(854\) −4.27518 + 26.9706i −0.146294 + 0.922914i
\(855\) −2.70711 + 38.0919i −0.0925811 + 1.30271i
\(856\) −10.8284 −0.370108
\(857\) −35.0530 35.0530i −1.19739 1.19739i −0.974946 0.222443i \(-0.928597\pi\)
−0.222443 0.974946i \(-0.571403\pi\)
\(858\) 6.14214 + 6.14214i 0.209689 + 0.209689i
\(859\) 45.9313 1.56716 0.783579 0.621293i \(-0.213392\pi\)
0.783579 + 0.621293i \(0.213392\pi\)
\(860\) −9.55582 + 8.28772i −0.325851 + 0.282609i
\(861\) −0.485281 + 3.06147i −0.0165383 + 0.104335i
\(862\) −4.00000 + 4.00000i −0.136241 + 0.136241i
\(863\) −33.5563 33.5563i −1.14227 1.14227i −0.988034 0.154238i \(-0.950708\pi\)
−0.154238 0.988034i \(-0.549292\pi\)
\(864\) −4.14386 −0.140977
\(865\) −20.4645 + 17.7487i −0.695813 + 0.603475i
\(866\) 6.12293i 0.208066i
\(867\) −6.66413 6.66413i −0.226326 0.226326i
\(868\) −5.74603 7.91082i −0.195033 0.268511i
\(869\) 25.6569i 0.870349i
\(870\) 8.24264 + 0.585786i 0.279452 + 0.0198600i
\(871\) 36.8013i 1.24697i
\(872\) −11.4142 + 11.4142i −0.386534 + 0.386534i
\(873\) 26.7653 26.7653i 0.905868 0.905868i
\(874\) 24.1522 0.816960
\(875\) −11.9359 27.0654i −0.403508 0.914976i
\(876\) −5.17157 −0.174731
\(877\) 9.55635 9.55635i 0.322695 0.322695i −0.527105 0.849800i \(-0.676723\pi\)
0.849800 + 0.527105i \(0.176723\pi\)
\(878\) 13.2513 13.2513i 0.447211 0.447211i
\(879\) 2.24264i 0.0756424i
\(880\) −6.30864 0.448342i −0.212664 0.0151136i
\(881\) 11.7206i 0.394877i −0.980315 0.197439i \(-0.936738\pi\)
0.980315 0.197439i \(-0.0632623\pi\)
\(882\) −15.0595 + 7.66844i −0.507079 + 0.258210i
\(883\) −23.1716 23.1716i −0.779786 0.779786i 0.200009 0.979794i \(-0.435903\pi\)
−0.979794 + 0.200009i \(0.935903\pi\)
\(884\) 8.68629i 0.292152i
\(885\) −4.94769 + 4.29111i −0.166315 + 0.144244i
\(886\) 34.1421 1.14703
\(887\) 41.6243 + 41.6243i 1.39761 + 1.39761i 0.806847 + 0.590760i \(0.201172\pi\)
0.590760 + 0.806847i \(0.298828\pi\)
\(888\) −4.14386 + 4.14386i −0.139059 + 0.139059i
\(889\) 23.7038 + 3.75736i 0.795001 + 0.126018i
\(890\) −28.6274 + 24.8284i −0.959593 + 0.832251i
\(891\) 11.5147 0.385758
\(892\) −5.86030 5.86030i −0.196217 0.196217i
\(893\) 18.4853 + 18.4853i 0.618586 + 0.618586i
\(894\) 4.06694 0.136019
\(895\) 0.371418 5.22625i 0.0124151 0.174694i
\(896\) −0.414214 + 2.61313i −0.0138379 + 0.0872984i
\(897\) −7.41421 + 7.41421i −0.247553 + 0.247553i
\(898\) −10.1421 10.1421i −0.338447 0.338447i
\(899\) −17.8435 −0.595115
\(900\) 11.9497 + 1.70711i 0.398325 + 0.0569036i
\(901\) 0.742837i 0.0247475i
\(902\) −3.06147 3.06147i −0.101936 0.101936i
\(903\) 6.73190 + 9.26810i 0.224024 + 0.308423i
\(904\) 9.65685i 0.321182i
\(905\) −1.60660 + 22.6066i −0.0534052 + 0.751469i
\(906\) 2.42742i 0.0806455i
\(907\) 16.8284 16.8284i 0.558779 0.558779i −0.370181 0.928960i \(-0.620704\pi\)
0.928960 + 0.370181i \(0.120704\pi\)
\(908\) −1.94061 + 1.94061i −0.0644015 + 0.0644015i
\(909\) −28.6131 −0.949036
\(910\) −20.1473 + 12.5541i −0.667875 + 0.416165i
\(911\) 0.142136 0.00470916 0.00235458 0.999997i \(-0.499251\pi\)
0.00235458 + 0.999997i \(0.499251\pi\)
\(912\) 3.82843 3.82843i 0.126772 0.126772i
\(913\) 15.4161 15.4161i 0.510199 0.510199i
\(914\) 13.6569i 0.451729i
\(915\) −11.5734 13.3442i −0.382603 0.441145i
\(916\) 7.52235i 0.248546i
\(917\) 36.1609 26.2655i 1.19414 0.867364i
\(918\) 6.34315 + 6.34315i 0.209355 + 0.209355i
\(919\) 28.3848i 0.936327i 0.883642 + 0.468164i \(0.155084\pi\)
−0.883642 + 0.468164i \(0.844916\pi\)
\(920\) 0.541196 7.61521i 0.0178427 0.251066i
\(921\) −4.52691 −0.149167
\(922\) 8.43497 + 8.43497i 0.277791 + 0.277791i
\(923\) −9.68714 + 9.68714i −0.318856 + 0.318856i
\(924\) −0.896683 + 5.65685i −0.0294987 + 0.186097i
\(925\) 30.6274 22.9706i 1.00702 0.755267i
\(926\) 29.6569 0.974585
\(927\) 4.77791 + 4.77791i 0.156927 + 0.156927i
\(928\) 3.41421 + 3.41421i 0.112077 + 0.112077i
\(929\) 13.7766 0.451996 0.225998 0.974128i \(-0.427436\pi\)
0.225998 + 0.974128i \(0.427436\pi\)
\(930\) 6.30864 + 0.448342i 0.206869 + 0.0147017i
\(931\) 15.3137 47.0907i 0.501887 1.54333i
\(932\) 3.00000 3.00000i 0.0982683 0.0982683i
\(933\) 12.4853 + 12.4853i 0.408750 + 0.408750i
\(934\) 18.8715 0.617496
\(935\) 8.97056 + 10.3431i 0.293369 + 0.338257i
\(936\) 9.68714i 0.316634i
\(937\) 35.5014 + 35.5014i 1.15978 + 1.15978i 0.984523 + 0.175256i \(0.0560754\pi\)
0.175256 + 0.984523i \(0.443925\pi\)
\(938\) −19.6331 + 14.2606i −0.641045 + 0.465624i
\(939\) 6.34315i 0.207001i
\(940\) 6.24264 5.41421i 0.203612 0.176592i
\(941\) 37.7975i 1.23216i −0.787683 0.616081i \(-0.788719\pi\)
0.787683 0.616081i \(-0.211281\pi\)
\(942\) 0.899495 0.899495i 0.0293071 0.0293071i
\(943\) 3.69552 3.69552i 0.120343 0.120343i
\(944\) −3.82683 −0.124553
\(945\) 5.54487 23.8801i 0.180375 0.776820i
\(946\) −16.0000 −0.520205
\(947\) −10.9706 + 10.9706i −0.356495 + 0.356495i −0.862519 0.506024i \(-0.831115\pi\)
0.506024 + 0.862519i \(0.331115\pi\)
\(948\) 4.90923 4.90923i 0.159444 0.159444i
\(949\) 27.1127i 0.880115i
\(950\) −28.2960 + 21.2220i −0.918045 + 0.688534i
\(951\) 2.27357i 0.0737256i
\(952\) 4.63405 3.36595i 0.150190 0.109091i
\(953\) −5.14214 5.14214i −0.166570 0.166570i 0.618900 0.785470i \(-0.287579\pi\)
−0.785470 + 0.618900i \(0.787579\pi\)
\(954\) 0.828427i 0.0268213i
\(955\) −22.8456 1.62359i −0.739267 0.0525381i
\(956\) −10.4853 −0.339118
\(957\) 7.39104 + 7.39104i 0.238918 + 0.238918i
\(958\) 3.24718 3.24718i 0.104912 0.104912i
\(959\) −51.1032 8.10051i −1.65021 0.261579i
\(960\) −1.12132 1.29289i −0.0361905 0.0417279i
\(961\) 17.3431 0.559456
\(962\) −21.7248 21.7248i −0.700435 0.700435i
\(963\) 18.4853 + 18.4853i 0.595680 + 0.595680i
\(964\) 5.86030 0.188748
\(965\) 0.502734 + 0.579658i 0.0161836 + 0.0186598i
\(966\) −6.82843 1.08239i −0.219701 0.0348254i
\(967\) 40.2132 40.2132i 1.29317 1.29317i 0.360354 0.932816i \(-0.382656\pi\)
0.932816 0.360354i \(-0.117344\pi\)
\(968\) 2.12132 + 2.12132i 0.0681818 + 0.0681818i
\(969\) −11.7206 −0.376520
\(970\) 34.9706 + 2.48528i 1.12284 + 0.0797976i
\(971\) 33.6536i 1.08000i 0.841666 + 0.539998i \(0.181575\pi\)
−0.841666 + 0.539998i \(0.818425\pi\)
\(972\) 10.9937 + 10.9937i 0.352623 + 0.352623i
\(973\) −7.92194 10.9065i −0.253966 0.349646i
\(974\) 29.5563i 0.947047i
\(975\) 2.17157 15.2010i 0.0695460 0.486822i
\(976\) 10.3212i 0.330373i
\(977\) −20.1716 + 20.1716i −0.645346 + 0.645346i −0.951865 0.306519i \(-0.900836\pi\)
0.306519 + 0.951865i \(0.400836\pi\)
\(978\) 1.79337 1.79337i 0.0573455 0.0573455i
\(979\) −47.9329 −1.53194
\(980\) −14.5046 5.88362i −0.463332 0.187945i
\(981\) 38.9706 1.24423
\(982\) 21.7990 21.7990i 0.695634 0.695634i
\(983\) 11.9063 11.9063i 0.379752 0.379752i −0.491260 0.871013i \(-0.663464\pi\)
0.871013 + 0.491260i \(0.163464\pi\)
\(984\) 1.17157i 0.0373484i
\(985\) −8.15640 + 7.07401i −0.259885 + 0.225397i
\(986\) 10.4525i 0.332876i
\(987\) −4.39782 6.05468i −0.139984 0.192723i
\(988\) 20.0711 + 20.0711i 0.638546 + 0.638546i
\(989\) 19.3137i 0.614140i
\(990\) 10.0042 + 11.5349i 0.317953 + 0.366603i
\(991\) −35.4142 −1.12497 −0.562485 0.826808i \(-0.690155\pi\)
−0.562485 + 0.826808i \(0.690155\pi\)
\(992\) 2.61313 + 2.61313i 0.0829668 + 0.0829668i
\(993\) 0.371418 0.371418i 0.0117866 0.0117866i
\(994\) −8.92177 1.41421i −0.282981 0.0448561i
\(995\) 35.5563 + 2.52691i 1.12721 + 0.0801085i
\(996\) 5.89949 0.186933
\(997\) 38.0760 + 38.0760i 1.20588 + 1.20588i 0.972349 + 0.233531i \(0.0750279\pi\)
0.233531 + 0.972349i \(0.424972\pi\)
\(998\) −17.3137 17.3137i −0.548056 0.548056i
\(999\) 31.7289 1.00386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 70.2.g.a.13.4 yes 8
3.2 odd 2 630.2.p.a.433.2 8
4.3 odd 2 560.2.bj.c.433.2 8
5.2 odd 4 inner 70.2.g.a.27.3 yes 8
5.3 odd 4 350.2.g.a.307.2 8
5.4 even 2 350.2.g.a.293.1 8
7.2 even 3 490.2.l.a.423.2 16
7.3 odd 6 490.2.l.a.313.4 16
7.4 even 3 490.2.l.a.313.3 16
7.5 odd 6 490.2.l.a.423.1 16
7.6 odd 2 inner 70.2.g.a.13.3 8
15.2 even 4 630.2.p.a.307.1 8
20.7 even 4 560.2.bj.c.97.3 8
21.20 even 2 630.2.p.a.433.1 8
28.27 even 2 560.2.bj.c.433.3 8
35.2 odd 12 490.2.l.a.227.4 16
35.12 even 12 490.2.l.a.227.3 16
35.13 even 4 350.2.g.a.307.1 8
35.17 even 12 490.2.l.a.117.2 16
35.27 even 4 inner 70.2.g.a.27.4 yes 8
35.32 odd 12 490.2.l.a.117.1 16
35.34 odd 2 350.2.g.a.293.2 8
105.62 odd 4 630.2.p.a.307.2 8
140.27 odd 4 560.2.bj.c.97.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.2.g.a.13.3 8 7.6 odd 2 inner
70.2.g.a.13.4 yes 8 1.1 even 1 trivial
70.2.g.a.27.3 yes 8 5.2 odd 4 inner
70.2.g.a.27.4 yes 8 35.27 even 4 inner
350.2.g.a.293.1 8 5.4 even 2
350.2.g.a.293.2 8 35.34 odd 2
350.2.g.a.307.1 8 35.13 even 4
350.2.g.a.307.2 8 5.3 odd 4
490.2.l.a.117.1 16 35.32 odd 12
490.2.l.a.117.2 16 35.17 even 12
490.2.l.a.227.3 16 35.12 even 12
490.2.l.a.227.4 16 35.2 odd 12
490.2.l.a.313.3 16 7.4 even 3
490.2.l.a.313.4 16 7.3 odd 6
490.2.l.a.423.1 16 7.5 odd 6
490.2.l.a.423.2 16 7.2 even 3
560.2.bj.c.97.2 8 140.27 odd 4
560.2.bj.c.97.3 8 20.7 even 4
560.2.bj.c.433.2 8 4.3 odd 2
560.2.bj.c.433.3 8 28.27 even 2
630.2.p.a.307.1 8 15.2 even 4
630.2.p.a.307.2 8 105.62 odd 4
630.2.p.a.433.1 8 21.20 even 2
630.2.p.a.433.2 8 3.2 odd 2