Properties

Label 630.2.k.a.361.1
Level $630$
Weight $2$
Character 630.361
Analytic conductor $5.031$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [630,2,Mod(361,630)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(630, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("630.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 630.k (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1,0,-1,-1,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.03057532734\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 630.361
Dual form 630.2.k.a.541.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(-0.500000 - 0.866025i) q^{5} +(-2.00000 + 1.73205i) q^{7} +1.00000 q^{8} +(-0.500000 + 0.866025i) q^{10} +(1.50000 - 2.59808i) q^{11} +5.00000 q^{13} +(2.50000 + 0.866025i) q^{14} +(-0.500000 - 0.866025i) q^{16} +(-2.50000 - 4.33013i) q^{19} +1.00000 q^{20} -3.00000 q^{22} +(-4.50000 - 7.79423i) q^{23} +(-0.500000 + 0.866025i) q^{25} +(-2.50000 - 4.33013i) q^{26} +(-0.500000 - 2.59808i) q^{28} +(5.00000 - 8.66025i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(2.50000 + 0.866025i) q^{35} +(0.500000 + 0.866025i) q^{37} +(-2.50000 + 4.33013i) q^{38} +(-0.500000 - 0.866025i) q^{40} -9.00000 q^{41} +8.00000 q^{43} +(1.50000 + 2.59808i) q^{44} +(-4.50000 + 7.79423i) q^{46} +(1.50000 + 2.59808i) q^{47} +(1.00000 - 6.92820i) q^{49} +1.00000 q^{50} +(-2.50000 + 4.33013i) q^{52} +(-1.50000 + 2.59808i) q^{53} -3.00000 q^{55} +(-2.00000 + 1.73205i) q^{56} +(6.00000 - 10.3923i) q^{59} +(-4.00000 - 6.92820i) q^{61} -10.0000 q^{62} +1.00000 q^{64} +(-2.50000 - 4.33013i) q^{65} +(-4.00000 + 6.92820i) q^{67} +(-0.500000 - 2.59808i) q^{70} +6.00000 q^{71} +(-1.00000 + 1.73205i) q^{73} +(0.500000 - 0.866025i) q^{74} +5.00000 q^{76} +(1.50000 + 7.79423i) q^{77} +(-4.00000 - 6.92820i) q^{79} +(-0.500000 + 0.866025i) q^{80} +(4.50000 + 7.79423i) q^{82} +(-4.00000 - 6.92820i) q^{86} +(1.50000 - 2.59808i) q^{88} +(3.00000 + 5.19615i) q^{89} +(-10.0000 + 8.66025i) q^{91} +9.00000 q^{92} +(1.50000 - 2.59808i) q^{94} +(-2.50000 + 4.33013i) q^{95} +8.00000 q^{97} +(-6.50000 + 2.59808i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{4} - q^{5} - 4 q^{7} + 2 q^{8} - q^{10} + 3 q^{11} + 10 q^{13} + 5 q^{14} - q^{16} - 5 q^{19} + 2 q^{20} - 6 q^{22} - 9 q^{23} - q^{25} - 5 q^{26} - q^{28} + 10 q^{31} - q^{32}+ \cdots - 13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) 0 0
\(7\) −2.00000 + 1.73205i −0.755929 + 0.654654i
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −0.500000 + 0.866025i −0.158114 + 0.273861i
\(11\) 1.50000 2.59808i 0.452267 0.783349i −0.546259 0.837616i \(-0.683949\pi\)
0.998526 + 0.0542666i \(0.0172821\pi\)
\(12\) 0 0
\(13\) 5.00000 1.38675 0.693375 0.720577i \(-0.256123\pi\)
0.693375 + 0.720577i \(0.256123\pi\)
\(14\) 2.50000 + 0.866025i 0.668153 + 0.231455i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(18\) 0 0
\(19\) −2.50000 4.33013i −0.573539 0.993399i −0.996199 0.0871106i \(-0.972237\pi\)
0.422659 0.906289i \(-0.361097\pi\)
\(20\) 1.00000 0.223607
\(21\) 0 0
\(22\) −3.00000 −0.639602
\(23\) −4.50000 7.79423i −0.938315 1.62521i −0.768613 0.639713i \(-0.779053\pi\)
−0.169701 0.985496i \(-0.554280\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) −2.50000 4.33013i −0.490290 0.849208i
\(27\) 0 0
\(28\) −0.500000 2.59808i −0.0944911 0.490990i
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 5.00000 8.66025i 0.898027 1.55543i 0.0680129 0.997684i \(-0.478334\pi\)
0.830014 0.557743i \(-0.188333\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 0 0
\(35\) 2.50000 + 0.866025i 0.422577 + 0.146385i
\(36\) 0 0
\(37\) 0.500000 + 0.866025i 0.0821995 + 0.142374i 0.904194 0.427121i \(-0.140472\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) −2.50000 + 4.33013i −0.405554 + 0.702439i
\(39\) 0 0
\(40\) −0.500000 0.866025i −0.0790569 0.136931i
\(41\) −9.00000 −1.40556 −0.702782 0.711405i \(-0.748059\pi\)
−0.702782 + 0.711405i \(0.748059\pi\)
\(42\) 0 0
\(43\) 8.00000 1.21999 0.609994 0.792406i \(-0.291172\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) 1.50000 + 2.59808i 0.226134 + 0.391675i
\(45\) 0 0
\(46\) −4.50000 + 7.79423i −0.663489 + 1.14920i
\(47\) 1.50000 + 2.59808i 0.218797 + 0.378968i 0.954441 0.298401i \(-0.0964533\pi\)
−0.735643 + 0.677369i \(0.763120\pi\)
\(48\) 0 0
\(49\) 1.00000 6.92820i 0.142857 0.989743i
\(50\) 1.00000 0.141421
\(51\) 0 0
\(52\) −2.50000 + 4.33013i −0.346688 + 0.600481i
\(53\) −1.50000 + 2.59808i −0.206041 + 0.356873i −0.950464 0.310835i \(-0.899391\pi\)
0.744423 + 0.667708i \(0.232725\pi\)
\(54\) 0 0
\(55\) −3.00000 −0.404520
\(56\) −2.00000 + 1.73205i −0.267261 + 0.231455i
\(57\) 0 0
\(58\) 0 0
\(59\) 6.00000 10.3923i 0.781133 1.35296i −0.150148 0.988663i \(-0.547975\pi\)
0.931282 0.364299i \(-0.118692\pi\)
\(60\) 0 0
\(61\) −4.00000 6.92820i −0.512148 0.887066i −0.999901 0.0140840i \(-0.995517\pi\)
0.487753 0.872982i \(-0.337817\pi\)
\(62\) −10.0000 −1.27000
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −2.50000 4.33013i −0.310087 0.537086i
\(66\) 0 0
\(67\) −4.00000 + 6.92820i −0.488678 + 0.846415i −0.999915 0.0130248i \(-0.995854\pi\)
0.511237 + 0.859440i \(0.329187\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −0.500000 2.59808i −0.0597614 0.310530i
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) −1.00000 + 1.73205i −0.117041 + 0.202721i −0.918594 0.395203i \(-0.870674\pi\)
0.801553 + 0.597924i \(0.204008\pi\)
\(74\) 0.500000 0.866025i 0.0581238 0.100673i
\(75\) 0 0
\(76\) 5.00000 0.573539
\(77\) 1.50000 + 7.79423i 0.170941 + 0.888235i
\(78\) 0 0
\(79\) −4.00000 6.92820i −0.450035 0.779484i 0.548352 0.836247i \(-0.315255\pi\)
−0.998388 + 0.0567635i \(0.981922\pi\)
\(80\) −0.500000 + 0.866025i −0.0559017 + 0.0968246i
\(81\) 0 0
\(82\) 4.50000 + 7.79423i 0.496942 + 0.860729i
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −4.00000 6.92820i −0.431331 0.747087i
\(87\) 0 0
\(88\) 1.50000 2.59808i 0.159901 0.276956i
\(89\) 3.00000 + 5.19615i 0.317999 + 0.550791i 0.980071 0.198650i \(-0.0636557\pi\)
−0.662071 + 0.749441i \(0.730322\pi\)
\(90\) 0 0
\(91\) −10.0000 + 8.66025i −1.04828 + 0.907841i
\(92\) 9.00000 0.938315
\(93\) 0 0
\(94\) 1.50000 2.59808i 0.154713 0.267971i
\(95\) −2.50000 + 4.33013i −0.256495 + 0.444262i
\(96\) 0 0
\(97\) 8.00000 0.812277 0.406138 0.913812i \(-0.366875\pi\)
0.406138 + 0.913812i \(0.366875\pi\)
\(98\) −6.50000 + 2.59808i −0.656599 + 0.262445i
\(99\) 0 0
\(100\) −0.500000 0.866025i −0.0500000 0.0866025i
\(101\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(102\) 0 0
\(103\) −4.00000 6.92820i −0.394132 0.682656i 0.598858 0.800855i \(-0.295621\pi\)
−0.992990 + 0.118199i \(0.962288\pi\)
\(104\) 5.00000 0.490290
\(105\) 0 0
\(106\) 3.00000 0.291386
\(107\) 3.00000 + 5.19615i 0.290021 + 0.502331i 0.973814 0.227345i \(-0.0730044\pi\)
−0.683793 + 0.729676i \(0.739671\pi\)
\(108\) 0 0
\(109\) −7.00000 + 12.1244i −0.670478 + 1.16130i 0.307290 + 0.951616i \(0.400578\pi\)
−0.977769 + 0.209687i \(0.932756\pi\)
\(110\) 1.50000 + 2.59808i 0.143019 + 0.247717i
\(111\) 0 0
\(112\) 2.50000 + 0.866025i 0.236228 + 0.0818317i
\(113\) 18.0000 1.69330 0.846649 0.532152i \(-0.178617\pi\)
0.846649 + 0.532152i \(0.178617\pi\)
\(114\) 0 0
\(115\) −4.50000 + 7.79423i −0.419627 + 0.726816i
\(116\) 0 0
\(117\) 0 0
\(118\) −12.0000 −1.10469
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 + 1.73205i 0.0909091 + 0.157459i
\(122\) −4.00000 + 6.92820i −0.362143 + 0.627250i
\(123\) 0 0
\(124\) 5.00000 + 8.66025i 0.449013 + 0.777714i
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −13.0000 −1.15356 −0.576782 0.816898i \(-0.695692\pi\)
−0.576782 + 0.816898i \(0.695692\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) −2.50000 + 4.33013i −0.219265 + 0.379777i
\(131\) −4.50000 7.79423i −0.393167 0.680985i 0.599699 0.800226i \(-0.295287\pi\)
−0.992865 + 0.119241i \(0.961954\pi\)
\(132\) 0 0
\(133\) 12.5000 + 4.33013i 1.08389 + 0.375470i
\(134\) 8.00000 0.691095
\(135\) 0 0
\(136\) 0 0
\(137\) −9.00000 + 15.5885i −0.768922 + 1.33181i 0.169226 + 0.985577i \(0.445873\pi\)
−0.938148 + 0.346235i \(0.887460\pi\)
\(138\) 0 0
\(139\) 20.0000 1.69638 0.848189 0.529694i \(-0.177693\pi\)
0.848189 + 0.529694i \(0.177693\pi\)
\(140\) −2.00000 + 1.73205i −0.169031 + 0.146385i
\(141\) 0 0
\(142\) −3.00000 5.19615i −0.251754 0.436051i
\(143\) 7.50000 12.9904i 0.627182 1.08631i
\(144\) 0 0
\(145\) 0 0
\(146\) 2.00000 0.165521
\(147\) 0 0
\(148\) −1.00000 −0.0821995
\(149\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(150\) 0 0
\(151\) 5.00000 8.66025i 0.406894 0.704761i −0.587646 0.809118i \(-0.699945\pi\)
0.994540 + 0.104357i \(0.0332784\pi\)
\(152\) −2.50000 4.33013i −0.202777 0.351220i
\(153\) 0 0
\(154\) 6.00000 5.19615i 0.483494 0.418718i
\(155\) −10.0000 −0.803219
\(156\) 0 0
\(157\) −2.50000 + 4.33013i −0.199522 + 0.345582i −0.948373 0.317156i \(-0.897272\pi\)
0.748852 + 0.662738i \(0.230606\pi\)
\(158\) −4.00000 + 6.92820i −0.318223 + 0.551178i
\(159\) 0 0
\(160\) 1.00000 0.0790569
\(161\) 22.5000 + 7.79423i 1.77325 + 0.614271i
\(162\) 0 0
\(163\) 8.00000 + 13.8564i 0.626608 + 1.08532i 0.988227 + 0.152992i \(0.0488907\pi\)
−0.361619 + 0.932326i \(0.617776\pi\)
\(164\) 4.50000 7.79423i 0.351391 0.608627i
\(165\) 0 0
\(166\) 0 0
\(167\) 3.00000 0.232147 0.116073 0.993241i \(-0.462969\pi\)
0.116073 + 0.993241i \(0.462969\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) 0 0
\(172\) −4.00000 + 6.92820i −0.304997 + 0.528271i
\(173\) 4.50000 + 7.79423i 0.342129 + 0.592584i 0.984828 0.173534i \(-0.0555188\pi\)
−0.642699 + 0.766119i \(0.722185\pi\)
\(174\) 0 0
\(175\) −0.500000 2.59808i −0.0377964 0.196396i
\(176\) −3.00000 −0.226134
\(177\) 0 0
\(178\) 3.00000 5.19615i 0.224860 0.389468i
\(179\) −7.50000 + 12.9904i −0.560576 + 0.970947i 0.436870 + 0.899525i \(0.356087\pi\)
−0.997446 + 0.0714220i \(0.977246\pi\)
\(180\) 0 0
\(181\) 8.00000 0.594635 0.297318 0.954779i \(-0.403908\pi\)
0.297318 + 0.954779i \(0.403908\pi\)
\(182\) 12.5000 + 4.33013i 0.926562 + 0.320970i
\(183\) 0 0
\(184\) −4.50000 7.79423i −0.331744 0.574598i
\(185\) 0.500000 0.866025i 0.0367607 0.0636715i
\(186\) 0 0
\(187\) 0 0
\(188\) −3.00000 −0.218797
\(189\) 0 0
\(190\) 5.00000 0.362738
\(191\) 9.00000 + 15.5885i 0.651217 + 1.12794i 0.982828 + 0.184525i \(0.0590746\pi\)
−0.331611 + 0.943416i \(0.607592\pi\)
\(192\) 0 0
\(193\) 5.00000 8.66025i 0.359908 0.623379i −0.628037 0.778183i \(-0.716141\pi\)
0.987945 + 0.154805i \(0.0494748\pi\)
\(194\) −4.00000 6.92820i −0.287183 0.497416i
\(195\) 0 0
\(196\) 5.50000 + 4.33013i 0.392857 + 0.309295i
\(197\) −15.0000 −1.06871 −0.534353 0.845262i \(-0.679445\pi\)
−0.534353 + 0.845262i \(0.679445\pi\)
\(198\) 0 0
\(199\) 8.00000 13.8564i 0.567105 0.982255i −0.429745 0.902950i \(-0.641397\pi\)
0.996850 0.0793045i \(-0.0252700\pi\)
\(200\) −0.500000 + 0.866025i −0.0353553 + 0.0612372i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 4.50000 + 7.79423i 0.314294 + 0.544373i
\(206\) −4.00000 + 6.92820i −0.278693 + 0.482711i
\(207\) 0 0
\(208\) −2.50000 4.33013i −0.173344 0.300240i
\(209\) −15.0000 −1.03757
\(210\) 0 0
\(211\) 5.00000 0.344214 0.172107 0.985078i \(-0.444942\pi\)
0.172107 + 0.985078i \(0.444942\pi\)
\(212\) −1.50000 2.59808i −0.103020 0.178437i
\(213\) 0 0
\(214\) 3.00000 5.19615i 0.205076 0.355202i
\(215\) −4.00000 6.92820i −0.272798 0.472500i
\(216\) 0 0
\(217\) 5.00000 + 25.9808i 0.339422 + 1.76369i
\(218\) 14.0000 0.948200
\(219\) 0 0
\(220\) 1.50000 2.59808i 0.101130 0.175162i
\(221\) 0 0
\(222\) 0 0
\(223\) −28.0000 −1.87502 −0.937509 0.347960i \(-0.886874\pi\)
−0.937509 + 0.347960i \(0.886874\pi\)
\(224\) −0.500000 2.59808i −0.0334077 0.173591i
\(225\) 0 0
\(226\) −9.00000 15.5885i −0.598671 1.03693i
\(227\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(228\) 0 0
\(229\) −7.00000 12.1244i −0.462573 0.801200i 0.536515 0.843891i \(-0.319740\pi\)
−0.999088 + 0.0426906i \(0.986407\pi\)
\(230\) 9.00000 0.593442
\(231\) 0 0
\(232\) 0 0
\(233\) −3.00000 5.19615i −0.196537 0.340411i 0.750867 0.660454i \(-0.229636\pi\)
−0.947403 + 0.320043i \(0.896303\pi\)
\(234\) 0 0
\(235\) 1.50000 2.59808i 0.0978492 0.169480i
\(236\) 6.00000 + 10.3923i 0.390567 + 0.676481i
\(237\) 0 0
\(238\) 0 0
\(239\) −30.0000 −1.94054 −0.970269 0.242028i \(-0.922188\pi\)
−0.970269 + 0.242028i \(0.922188\pi\)
\(240\) 0 0
\(241\) 0.500000 0.866025i 0.0322078 0.0557856i −0.849472 0.527633i \(-0.823079\pi\)
0.881680 + 0.471848i \(0.156413\pi\)
\(242\) 1.00000 1.73205i 0.0642824 0.111340i
\(243\) 0 0
\(244\) 8.00000 0.512148
\(245\) −6.50000 + 2.59808i −0.415270 + 0.165985i
\(246\) 0 0
\(247\) −12.5000 21.6506i −0.795356 1.37760i
\(248\) 5.00000 8.66025i 0.317500 0.549927i
\(249\) 0 0
\(250\) −0.500000 0.866025i −0.0316228 0.0547723i
\(251\) −9.00000 −0.568075 −0.284037 0.958813i \(-0.591674\pi\)
−0.284037 + 0.958813i \(0.591674\pi\)
\(252\) 0 0
\(253\) −27.0000 −1.69748
\(254\) 6.50000 + 11.2583i 0.407846 + 0.706410i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −6.00000 10.3923i −0.374270 0.648254i 0.615948 0.787787i \(-0.288773\pi\)
−0.990217 + 0.139533i \(0.955440\pi\)
\(258\) 0 0
\(259\) −2.50000 0.866025i −0.155342 0.0538122i
\(260\) 5.00000 0.310087
\(261\) 0 0
\(262\) −4.50000 + 7.79423i −0.278011 + 0.481529i
\(263\) −12.0000 + 20.7846i −0.739952 + 1.28163i 0.212565 + 0.977147i \(0.431818\pi\)
−0.952517 + 0.304487i \(0.901515\pi\)
\(264\) 0 0
\(265\) 3.00000 0.184289
\(266\) −2.50000 12.9904i −0.153285 0.796491i
\(267\) 0 0
\(268\) −4.00000 6.92820i −0.244339 0.423207i
\(269\) 6.00000 10.3923i 0.365826 0.633630i −0.623082 0.782157i \(-0.714120\pi\)
0.988908 + 0.148527i \(0.0474530\pi\)
\(270\) 0 0
\(271\) 8.00000 + 13.8564i 0.485965 + 0.841717i 0.999870 0.0161307i \(-0.00513477\pi\)
−0.513905 + 0.857847i \(0.671801\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 18.0000 1.08742
\(275\) 1.50000 + 2.59808i 0.0904534 + 0.156670i
\(276\) 0 0
\(277\) −13.0000 + 22.5167i −0.781094 + 1.35290i 0.150210 + 0.988654i \(0.452005\pi\)
−0.931305 + 0.364241i \(0.881328\pi\)
\(278\) −10.0000 17.3205i −0.599760 1.03882i
\(279\) 0 0
\(280\) 2.50000 + 0.866025i 0.149404 + 0.0517549i
\(281\) 21.0000 1.25275 0.626377 0.779520i \(-0.284537\pi\)
0.626377 + 0.779520i \(0.284537\pi\)
\(282\) 0 0
\(283\) 11.0000 19.0526i 0.653882 1.13256i −0.328291 0.944577i \(-0.606473\pi\)
0.982173 0.187980i \(-0.0601941\pi\)
\(284\) −3.00000 + 5.19615i −0.178017 + 0.308335i
\(285\) 0 0
\(286\) −15.0000 −0.886969
\(287\) 18.0000 15.5885i 1.06251 0.920158i
\(288\) 0 0
\(289\) 8.50000 + 14.7224i 0.500000 + 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) −1.00000 1.73205i −0.0585206 0.101361i
\(293\) 21.0000 1.22683 0.613417 0.789760i \(-0.289795\pi\)
0.613417 + 0.789760i \(0.289795\pi\)
\(294\) 0 0
\(295\) −12.0000 −0.698667
\(296\) 0.500000 + 0.866025i 0.0290619 + 0.0503367i
\(297\) 0 0
\(298\) 0 0
\(299\) −22.5000 38.9711i −1.30121 2.25376i
\(300\) 0 0
\(301\) −16.0000 + 13.8564i −0.922225 + 0.798670i
\(302\) −10.0000 −0.575435
\(303\) 0 0
\(304\) −2.50000 + 4.33013i −0.143385 + 0.248350i
\(305\) −4.00000 + 6.92820i −0.229039 + 0.396708i
\(306\) 0 0
\(307\) −28.0000 −1.59804 −0.799022 0.601302i \(-0.794649\pi\)
−0.799022 + 0.601302i \(0.794649\pi\)
\(308\) −7.50000 2.59808i −0.427352 0.148039i
\(309\) 0 0
\(310\) 5.00000 + 8.66025i 0.283981 + 0.491869i
\(311\) −6.00000 + 10.3923i −0.340229 + 0.589294i −0.984475 0.175525i \(-0.943838\pi\)
0.644246 + 0.764818i \(0.277171\pi\)
\(312\) 0 0
\(313\) 2.00000 + 3.46410i 0.113047 + 0.195803i 0.916997 0.398894i \(-0.130606\pi\)
−0.803951 + 0.594696i \(0.797272\pi\)
\(314\) 5.00000 0.282166
\(315\) 0 0
\(316\) 8.00000 0.450035
\(317\) −9.00000 15.5885i −0.505490 0.875535i −0.999980 0.00635137i \(-0.997978\pi\)
0.494489 0.869184i \(-0.335355\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −0.500000 0.866025i −0.0279508 0.0484123i
\(321\) 0 0
\(322\) −4.50000 23.3827i −0.250775 1.30307i
\(323\) 0 0
\(324\) 0 0
\(325\) −2.50000 + 4.33013i −0.138675 + 0.240192i
\(326\) 8.00000 13.8564i 0.443079 0.767435i
\(327\) 0 0
\(328\) −9.00000 −0.496942
\(329\) −7.50000 2.59808i −0.413488 0.143237i
\(330\) 0 0
\(331\) −5.50000 9.52628i −0.302307 0.523612i 0.674351 0.738411i \(-0.264424\pi\)
−0.976658 + 0.214799i \(0.931090\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −1.50000 2.59808i −0.0820763 0.142160i
\(335\) 8.00000 0.437087
\(336\) 0 0
\(337\) 20.0000 1.08947 0.544735 0.838608i \(-0.316630\pi\)
0.544735 + 0.838608i \(0.316630\pi\)
\(338\) −6.00000 10.3923i −0.326357 0.565267i
\(339\) 0 0
\(340\) 0 0
\(341\) −15.0000 25.9808i −0.812296 1.40694i
\(342\) 0 0
\(343\) 10.0000 + 15.5885i 0.539949 + 0.841698i
\(344\) 8.00000 0.431331
\(345\) 0 0
\(346\) 4.50000 7.79423i 0.241921 0.419020i
\(347\) 15.0000 25.9808i 0.805242 1.39472i −0.110885 0.993833i \(-0.535369\pi\)
0.916127 0.400887i \(-0.131298\pi\)
\(348\) 0 0
\(349\) −28.0000 −1.49881 −0.749403 0.662114i \(-0.769659\pi\)
−0.749403 + 0.662114i \(0.769659\pi\)
\(350\) −2.00000 + 1.73205i −0.106904 + 0.0925820i
\(351\) 0 0
\(352\) 1.50000 + 2.59808i 0.0799503 + 0.138478i
\(353\) 12.0000 20.7846i 0.638696 1.10625i −0.347024 0.937856i \(-0.612808\pi\)
0.985719 0.168397i \(-0.0538590\pi\)
\(354\) 0 0
\(355\) −3.00000 5.19615i −0.159223 0.275783i
\(356\) −6.00000 −0.317999
\(357\) 0 0
\(358\) 15.0000 0.792775
\(359\) 6.00000 + 10.3923i 0.316668 + 0.548485i 0.979791 0.200026i \(-0.0641026\pi\)
−0.663123 + 0.748511i \(0.730769\pi\)
\(360\) 0 0
\(361\) −3.00000 + 5.19615i −0.157895 + 0.273482i
\(362\) −4.00000 6.92820i −0.210235 0.364138i
\(363\) 0 0
\(364\) −2.50000 12.9904i −0.131036 0.680881i
\(365\) 2.00000 0.104685
\(366\) 0 0
\(367\) 9.50000 16.4545i 0.495896 0.858917i −0.504093 0.863649i \(-0.668173\pi\)
0.999989 + 0.00473247i \(0.00150640\pi\)
\(368\) −4.50000 + 7.79423i −0.234579 + 0.406302i
\(369\) 0 0
\(370\) −1.00000 −0.0519875
\(371\) −1.50000 7.79423i −0.0778761 0.404656i
\(372\) 0 0
\(373\) 5.00000 + 8.66025i 0.258890 + 0.448411i 0.965945 0.258748i \(-0.0833099\pi\)
−0.707055 + 0.707159i \(0.749977\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 1.50000 + 2.59808i 0.0773566 + 0.133986i
\(377\) 0 0
\(378\) 0 0
\(379\) −19.0000 −0.975964 −0.487982 0.872854i \(-0.662267\pi\)
−0.487982 + 0.872854i \(0.662267\pi\)
\(380\) −2.50000 4.33013i −0.128247 0.222131i
\(381\) 0 0
\(382\) 9.00000 15.5885i 0.460480 0.797575i
\(383\) 13.5000 + 23.3827i 0.689818 + 1.19480i 0.971897 + 0.235408i \(0.0756427\pi\)
−0.282079 + 0.959391i \(0.591024\pi\)
\(384\) 0 0
\(385\) 6.00000 5.19615i 0.305788 0.264820i
\(386\) −10.0000 −0.508987
\(387\) 0 0
\(388\) −4.00000 + 6.92820i −0.203069 + 0.351726i
\(389\) −3.00000 + 5.19615i −0.152106 + 0.263455i −0.932002 0.362454i \(-0.881939\pi\)
0.779895 + 0.625910i \(0.215272\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 1.00000 6.92820i 0.0505076 0.349927i
\(393\) 0 0
\(394\) 7.50000 + 12.9904i 0.377845 + 0.654446i
\(395\) −4.00000 + 6.92820i −0.201262 + 0.348596i
\(396\) 0 0
\(397\) −7.00000 12.1244i −0.351320 0.608504i 0.635161 0.772380i \(-0.280934\pi\)
−0.986481 + 0.163876i \(0.947600\pi\)
\(398\) −16.0000 −0.802008
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) 7.50000 + 12.9904i 0.374532 + 0.648709i 0.990257 0.139253i \(-0.0444700\pi\)
−0.615725 + 0.787961i \(0.711137\pi\)
\(402\) 0 0
\(403\) 25.0000 43.3013i 1.24534 2.15699i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.00000 0.148704
\(408\) 0 0
\(409\) −1.00000 + 1.73205i −0.0494468 + 0.0856444i −0.889689 0.456566i \(-0.849079\pi\)
0.840243 + 0.542211i \(0.182412\pi\)
\(410\) 4.50000 7.79423i 0.222239 0.384930i
\(411\) 0 0
\(412\) 8.00000 0.394132
\(413\) 6.00000 + 31.1769i 0.295241 + 1.53412i
\(414\) 0 0
\(415\) 0 0
\(416\) −2.50000 + 4.33013i −0.122573 + 0.212302i
\(417\) 0 0
\(418\) 7.50000 + 12.9904i 0.366837 + 0.635380i
\(419\) 9.00000 0.439679 0.219839 0.975536i \(-0.429447\pi\)
0.219839 + 0.975536i \(0.429447\pi\)
\(420\) 0 0
\(421\) 14.0000 0.682318 0.341159 0.940006i \(-0.389181\pi\)
0.341159 + 0.940006i \(0.389181\pi\)
\(422\) −2.50000 4.33013i −0.121698 0.210787i
\(423\) 0 0
\(424\) −1.50000 + 2.59808i −0.0728464 + 0.126174i
\(425\) 0 0
\(426\) 0 0
\(427\) 20.0000 + 6.92820i 0.967868 + 0.335279i
\(428\) −6.00000 −0.290021
\(429\) 0 0
\(430\) −4.00000 + 6.92820i −0.192897 + 0.334108i
\(431\) −12.0000 + 20.7846i −0.578020 + 1.00116i 0.417687 + 0.908591i \(0.362841\pi\)
−0.995706 + 0.0925683i \(0.970492\pi\)
\(432\) 0 0
\(433\) −16.0000 −0.768911 −0.384455 0.923144i \(-0.625611\pi\)
−0.384455 + 0.923144i \(0.625611\pi\)
\(434\) 20.0000 17.3205i 0.960031 0.831411i
\(435\) 0 0
\(436\) −7.00000 12.1244i −0.335239 0.580651i
\(437\) −22.5000 + 38.9711i −1.07632 + 1.86424i
\(438\) 0 0
\(439\) −4.00000 6.92820i −0.190910 0.330665i 0.754642 0.656136i \(-0.227810\pi\)
−0.945552 + 0.325471i \(0.894477\pi\)
\(440\) −3.00000 −0.143019
\(441\) 0 0
\(442\) 0 0
\(443\) −12.0000 20.7846i −0.570137 0.987507i −0.996551 0.0829786i \(-0.973557\pi\)
0.426414 0.904528i \(-0.359777\pi\)
\(444\) 0 0
\(445\) 3.00000 5.19615i 0.142214 0.246321i
\(446\) 14.0000 + 24.2487i 0.662919 + 1.14821i
\(447\) 0 0
\(448\) −2.00000 + 1.73205i −0.0944911 + 0.0818317i
\(449\) 33.0000 1.55737 0.778683 0.627417i \(-0.215888\pi\)
0.778683 + 0.627417i \(0.215888\pi\)
\(450\) 0 0
\(451\) −13.5000 + 23.3827i −0.635690 + 1.10105i
\(452\) −9.00000 + 15.5885i −0.423324 + 0.733219i
\(453\) 0 0
\(454\) 0 0
\(455\) 12.5000 + 4.33013i 0.586009 + 0.202999i
\(456\) 0 0
\(457\) 5.00000 + 8.66025i 0.233890 + 0.405110i 0.958950 0.283577i \(-0.0915211\pi\)
−0.725059 + 0.688686i \(0.758188\pi\)
\(458\) −7.00000 + 12.1244i −0.327089 + 0.566534i
\(459\) 0 0
\(460\) −4.50000 7.79423i −0.209814 0.363408i
\(461\) −12.0000 −0.558896 −0.279448 0.960161i \(-0.590151\pi\)
−0.279448 + 0.960161i \(0.590151\pi\)
\(462\) 0 0
\(463\) −1.00000 −0.0464739 −0.0232370 0.999730i \(-0.507397\pi\)
−0.0232370 + 0.999730i \(0.507397\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −3.00000 + 5.19615i −0.138972 + 0.240707i
\(467\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(468\) 0 0
\(469\) −4.00000 20.7846i −0.184703 0.959744i
\(470\) −3.00000 −0.138380
\(471\) 0 0
\(472\) 6.00000 10.3923i 0.276172 0.478345i
\(473\) 12.0000 20.7846i 0.551761 0.955677i
\(474\) 0 0
\(475\) 5.00000 0.229416
\(476\) 0 0
\(477\) 0 0
\(478\) 15.0000 + 25.9808i 0.686084 + 1.18833i
\(479\) −9.00000 + 15.5885i −0.411220 + 0.712255i −0.995023 0.0996406i \(-0.968231\pi\)
0.583803 + 0.811895i \(0.301564\pi\)
\(480\) 0 0
\(481\) 2.50000 + 4.33013i 0.113990 + 0.197437i
\(482\) −1.00000 −0.0455488
\(483\) 0 0
\(484\) −2.00000 −0.0909091
\(485\) −4.00000 6.92820i −0.181631 0.314594i
\(486\) 0 0
\(487\) 20.0000 34.6410i 0.906287 1.56973i 0.0871056 0.996199i \(-0.472238\pi\)
0.819181 0.573535i \(-0.194428\pi\)
\(488\) −4.00000 6.92820i −0.181071 0.313625i
\(489\) 0 0
\(490\) 5.50000 + 4.33013i 0.248465 + 0.195615i
\(491\) −12.0000 −0.541552 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −12.5000 + 21.6506i −0.562402 + 0.974108i
\(495\) 0 0
\(496\) −10.0000 −0.449013
\(497\) −12.0000 + 10.3923i −0.538274 + 0.466159i
\(498\) 0 0
\(499\) 8.00000 + 13.8564i 0.358129 + 0.620298i 0.987648 0.156687i \(-0.0500814\pi\)
−0.629519 + 0.776985i \(0.716748\pi\)
\(500\) −0.500000 + 0.866025i −0.0223607 + 0.0387298i
\(501\) 0 0
\(502\) 4.50000 + 7.79423i 0.200845 + 0.347873i
\(503\) 12.0000 0.535054 0.267527 0.963550i \(-0.413794\pi\)
0.267527 + 0.963550i \(0.413794\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 13.5000 + 23.3827i 0.600148 + 1.03949i
\(507\) 0 0
\(508\) 6.50000 11.2583i 0.288391 0.499508i
\(509\) 3.00000 + 5.19615i 0.132973 + 0.230315i 0.924821 0.380402i \(-0.124214\pi\)
−0.791849 + 0.610718i \(0.790881\pi\)
\(510\) 0 0
\(511\) −1.00000 5.19615i −0.0442374 0.229864i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −6.00000 + 10.3923i −0.264649 + 0.458385i
\(515\) −4.00000 + 6.92820i −0.176261 + 0.305293i
\(516\) 0 0
\(517\) 9.00000 0.395820
\(518\) 0.500000 + 2.59808i 0.0219687 + 0.114153i
\(519\) 0 0
\(520\) −2.50000 4.33013i −0.109632 0.189889i
\(521\) 13.5000 23.3827i 0.591446 1.02441i −0.402592 0.915379i \(-0.631891\pi\)
0.994038 0.109035i \(-0.0347759\pi\)
\(522\) 0 0
\(523\) 11.0000 + 19.0526i 0.480996 + 0.833110i 0.999762 0.0218062i \(-0.00694167\pi\)
−0.518766 + 0.854916i \(0.673608\pi\)
\(524\) 9.00000 0.393167
\(525\) 0 0
\(526\) 24.0000 1.04645
\(527\) 0 0
\(528\) 0 0
\(529\) −29.0000 + 50.2295i −1.26087 + 2.18389i
\(530\) −1.50000 2.59808i −0.0651558 0.112853i
\(531\) 0 0
\(532\) −10.0000 + 8.66025i −0.433555 + 0.375470i
\(533\) −45.0000 −1.94917
\(534\) 0 0
\(535\) 3.00000 5.19615i 0.129701 0.224649i
\(536\) −4.00000 + 6.92820i −0.172774 + 0.299253i
\(537\) 0 0
\(538\) −12.0000 −0.517357
\(539\) −16.5000 12.9904i −0.710705 0.559535i
\(540\) 0 0
\(541\) 5.00000 + 8.66025i 0.214967 + 0.372333i 0.953262 0.302144i \(-0.0977023\pi\)
−0.738296 + 0.674477i \(0.764369\pi\)
\(542\) 8.00000 13.8564i 0.343629 0.595184i
\(543\) 0 0
\(544\) 0 0
\(545\) 14.0000 0.599694
\(546\) 0 0
\(547\) 8.00000 0.342055 0.171028 0.985266i \(-0.445291\pi\)
0.171028 + 0.985266i \(0.445291\pi\)
\(548\) −9.00000 15.5885i −0.384461 0.665906i
\(549\) 0 0
\(550\) 1.50000 2.59808i 0.0639602 0.110782i
\(551\) 0 0
\(552\) 0 0
\(553\) 20.0000 + 6.92820i 0.850487 + 0.294617i
\(554\) 26.0000 1.10463
\(555\) 0 0
\(556\) −10.0000 + 17.3205i −0.424094 + 0.734553i
\(557\) 19.5000 33.7750i 0.826242 1.43109i −0.0747252 0.997204i \(-0.523808\pi\)
0.900967 0.433888i \(-0.142859\pi\)
\(558\) 0 0
\(559\) 40.0000 1.69182
\(560\) −0.500000 2.59808i −0.0211289 0.109789i
\(561\) 0 0
\(562\) −10.5000 18.1865i −0.442916 0.767153i
\(563\) −3.00000 + 5.19615i −0.126435 + 0.218992i −0.922293 0.386492i \(-0.873687\pi\)
0.795858 + 0.605483i \(0.207020\pi\)
\(564\) 0 0
\(565\) −9.00000 15.5885i −0.378633 0.655811i
\(566\) −22.0000 −0.924729
\(567\) 0 0
\(568\) 6.00000 0.251754
\(569\) 13.5000 + 23.3827i 0.565949 + 0.980253i 0.996961 + 0.0779066i \(0.0248236\pi\)
−0.431011 + 0.902347i \(0.641843\pi\)
\(570\) 0 0
\(571\) 8.00000 13.8564i 0.334790 0.579873i −0.648655 0.761083i \(-0.724668\pi\)
0.983444 + 0.181210i \(0.0580014\pi\)
\(572\) 7.50000 + 12.9904i 0.313591 + 0.543155i
\(573\) 0 0
\(574\) −22.5000 7.79423i −0.939132 0.325325i
\(575\) 9.00000 0.375326
\(576\) 0 0
\(577\) 11.0000 19.0526i 0.457936 0.793168i −0.540916 0.841077i \(-0.681922\pi\)
0.998852 + 0.0479084i \(0.0152556\pi\)
\(578\) 8.50000 14.7224i 0.353553 0.612372i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 4.50000 + 7.79423i 0.186371 + 0.322804i
\(584\) −1.00000 + 1.73205i −0.0413803 + 0.0716728i
\(585\) 0 0
\(586\) −10.5000 18.1865i −0.433751 0.751279i
\(587\) 42.0000 1.73353 0.866763 0.498721i \(-0.166197\pi\)
0.866763 + 0.498721i \(0.166197\pi\)
\(588\) 0 0
\(589\) −50.0000 −2.06021
\(590\) 6.00000 + 10.3923i 0.247016 + 0.427844i
\(591\) 0 0
\(592\) 0.500000 0.866025i 0.0205499 0.0355934i
\(593\) 12.0000 + 20.7846i 0.492781 + 0.853522i 0.999965 0.00831589i \(-0.00264706\pi\)
−0.507184 + 0.861838i \(0.669314\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) −22.5000 + 38.9711i −0.920093 + 1.59365i
\(599\) 9.00000 15.5885i 0.367730 0.636927i −0.621480 0.783430i \(-0.713468\pi\)
0.989210 + 0.146503i \(0.0468017\pi\)
\(600\) 0 0
\(601\) 38.0000 1.55005 0.775026 0.631929i \(-0.217737\pi\)
0.775026 + 0.631929i \(0.217737\pi\)
\(602\) 20.0000 + 6.92820i 0.815139 + 0.282372i
\(603\) 0 0
\(604\) 5.00000 + 8.66025i 0.203447 + 0.352381i
\(605\) 1.00000 1.73205i 0.0406558 0.0704179i
\(606\) 0 0
\(607\) 12.5000 + 21.6506i 0.507359 + 0.878772i 0.999964 + 0.00851879i \(0.00271165\pi\)
−0.492604 + 0.870253i \(0.663955\pi\)
\(608\) 5.00000 0.202777
\(609\) 0 0
\(610\) 8.00000 0.323911
\(611\) 7.50000 + 12.9904i 0.303418 + 0.525535i
\(612\) 0 0
\(613\) −5.50000 + 9.52628i −0.222143 + 0.384763i −0.955458 0.295126i \(-0.904638\pi\)
0.733316 + 0.679888i \(0.237972\pi\)
\(614\) 14.0000 + 24.2487i 0.564994 + 0.978598i
\(615\) 0 0
\(616\) 1.50000 + 7.79423i 0.0604367 + 0.314038i
\(617\) −12.0000 −0.483102 −0.241551 0.970388i \(-0.577656\pi\)
−0.241551 + 0.970388i \(0.577656\pi\)
\(618\) 0 0
\(619\) −14.5000 + 25.1147i −0.582804 + 1.00945i 0.412341 + 0.911030i \(0.364711\pi\)
−0.995145 + 0.0984169i \(0.968622\pi\)
\(620\) 5.00000 8.66025i 0.200805 0.347804i
\(621\) 0 0
\(622\) 12.0000 0.481156
\(623\) −15.0000 5.19615i −0.600962 0.208179i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 2.00000 3.46410i 0.0799361 0.138453i
\(627\) 0 0
\(628\) −2.50000 4.33013i −0.0997609 0.172791i
\(629\) 0 0
\(630\) 0 0
\(631\) −34.0000 −1.35352 −0.676759 0.736204i \(-0.736616\pi\)
−0.676759 + 0.736204i \(0.736616\pi\)
\(632\) −4.00000 6.92820i −0.159111 0.275589i
\(633\) 0 0
\(634\) −9.00000 + 15.5885i −0.357436 + 0.619097i
\(635\) 6.50000 + 11.2583i 0.257945 + 0.446773i
\(636\) 0 0
\(637\) 5.00000 34.6410i 0.198107 1.37253i
\(638\) 0 0
\(639\) 0 0
\(640\) −0.500000 + 0.866025i −0.0197642 + 0.0342327i
\(641\) 16.5000 28.5788i 0.651711 1.12880i −0.330997 0.943632i \(-0.607385\pi\)
0.982708 0.185164i \(-0.0592817\pi\)
\(642\) 0 0
\(643\) −34.0000 −1.34083 −0.670415 0.741987i \(-0.733884\pi\)
−0.670415 + 0.741987i \(0.733884\pi\)
\(644\) −18.0000 + 15.5885i −0.709299 + 0.614271i
\(645\) 0 0
\(646\) 0 0
\(647\) −4.50000 + 7.79423i −0.176913 + 0.306423i −0.940822 0.338902i \(-0.889945\pi\)
0.763908 + 0.645325i \(0.223278\pi\)
\(648\) 0 0
\(649\) −18.0000 31.1769i −0.706562 1.22380i
\(650\) 5.00000 0.196116
\(651\) 0 0
\(652\) −16.0000 −0.626608
\(653\) 19.5000 + 33.7750i 0.763094 + 1.32172i 0.941248 + 0.337715i \(0.109654\pi\)
−0.178154 + 0.984003i \(0.557013\pi\)
\(654\) 0 0
\(655\) −4.50000 + 7.79423i −0.175830 + 0.304546i
\(656\) 4.50000 + 7.79423i 0.175695 + 0.304314i
\(657\) 0 0
\(658\) 1.50000 + 7.79423i 0.0584761 + 0.303851i
\(659\) −12.0000 −0.467454 −0.233727 0.972302i \(-0.575092\pi\)
−0.233727 + 0.972302i \(0.575092\pi\)
\(660\) 0 0
\(661\) 20.0000 34.6410i 0.777910 1.34738i −0.155235 0.987878i \(-0.549613\pi\)
0.933144 0.359502i \(-0.117053\pi\)
\(662\) −5.50000 + 9.52628i −0.213764 + 0.370249i
\(663\) 0 0
\(664\) 0 0
\(665\) −2.50000 12.9904i −0.0969458 0.503745i
\(666\) 0 0
\(667\) 0 0
\(668\) −1.50000 + 2.59808i −0.0580367 + 0.100523i
\(669\) 0 0
\(670\) −4.00000 6.92820i −0.154533 0.267660i
\(671\) −24.0000 −0.926510
\(672\) 0 0
\(673\) 20.0000 0.770943 0.385472 0.922720i \(-0.374039\pi\)
0.385472 + 0.922720i \(0.374039\pi\)
\(674\) −10.0000 17.3205i −0.385186 0.667161i
\(675\) 0 0
\(676\) −6.00000 + 10.3923i −0.230769 + 0.399704i
\(677\) 1.50000 + 2.59808i 0.0576497 + 0.0998522i 0.893410 0.449242i \(-0.148306\pi\)
−0.835760 + 0.549095i \(0.814973\pi\)
\(678\) 0 0
\(679\) −16.0000 + 13.8564i −0.614024 + 0.531760i
\(680\) 0 0
\(681\) 0 0
\(682\) −15.0000 + 25.9808i −0.574380 + 0.994855i
\(683\) −6.00000 + 10.3923i −0.229584 + 0.397650i −0.957685 0.287819i \(-0.907070\pi\)
0.728101 + 0.685470i \(0.240403\pi\)
\(684\) 0 0
\(685\) 18.0000 0.687745
\(686\) 8.50000 16.4545i 0.324532 0.628235i
\(687\) 0 0
\(688\) −4.00000 6.92820i −0.152499 0.264135i
\(689\) −7.50000 + 12.9904i −0.285727 + 0.494894i
\(690\) 0 0
\(691\) 14.0000 + 24.2487i 0.532585 + 0.922464i 0.999276 + 0.0380440i \(0.0121127\pi\)
−0.466691 + 0.884420i \(0.654554\pi\)
\(692\) −9.00000 −0.342129
\(693\) 0 0
\(694\) −30.0000 −1.13878
\(695\) −10.0000 17.3205i −0.379322 0.657004i
\(696\) 0 0
\(697\) 0 0
\(698\) 14.0000 + 24.2487i 0.529908 + 0.917827i
\(699\) 0 0
\(700\) 2.50000 + 0.866025i 0.0944911 + 0.0327327i
\(701\) 42.0000 1.58632 0.793159 0.609015i \(-0.208435\pi\)
0.793159 + 0.609015i \(0.208435\pi\)
\(702\) 0 0
\(703\) 2.50000 4.33013i 0.0942893 0.163314i
\(704\) 1.50000 2.59808i 0.0565334 0.0979187i
\(705\) 0 0
\(706\) −24.0000 −0.903252
\(707\) 0 0
\(708\) 0 0
\(709\) 14.0000 + 24.2487i 0.525781 + 0.910679i 0.999549 + 0.0300298i \(0.00956021\pi\)
−0.473768 + 0.880650i \(0.657106\pi\)
\(710\) −3.00000 + 5.19615i −0.112588 + 0.195008i
\(711\) 0 0
\(712\) 3.00000 + 5.19615i 0.112430 + 0.194734i
\(713\) −90.0000 −3.37053
\(714\) 0 0
\(715\) −15.0000 −0.560968
\(716\) −7.50000 12.9904i −0.280288 0.485473i
\(717\) 0 0
\(718\) 6.00000 10.3923i 0.223918 0.387837i
\(719\) 9.00000 + 15.5885i 0.335643 + 0.581351i 0.983608 0.180319i \(-0.0577130\pi\)
−0.647965 + 0.761670i \(0.724380\pi\)
\(720\) 0 0
\(721\) 20.0000 + 6.92820i 0.744839 + 0.258020i
\(722\) 6.00000 0.223297
\(723\) 0 0
\(724\) −4.00000 + 6.92820i −0.148659 + 0.257485i
\(725\) 0 0
\(726\) 0 0
\(727\) 23.0000 0.853023 0.426511 0.904482i \(-0.359742\pi\)
0.426511 + 0.904482i \(0.359742\pi\)
\(728\) −10.0000 + 8.66025i −0.370625 + 0.320970i
\(729\) 0 0
\(730\) −1.00000 1.73205i −0.0370117 0.0641061i
\(731\) 0 0
\(732\) 0 0
\(733\) 0.500000 + 0.866025i 0.0184679 + 0.0319874i 0.875112 0.483921i \(-0.160788\pi\)
−0.856644 + 0.515908i \(0.827454\pi\)
\(734\) −19.0000 −0.701303
\(735\) 0 0
\(736\) 9.00000 0.331744
\(737\) 12.0000 + 20.7846i 0.442026 + 0.765611i
\(738\) 0 0
\(739\) −2.50000 + 4.33013i −0.0919640 + 0.159286i −0.908337 0.418238i \(-0.862648\pi\)
0.816373 + 0.577524i \(0.195981\pi\)
\(740\) 0.500000 + 0.866025i 0.0183804 + 0.0318357i
\(741\) 0 0
\(742\) −6.00000 + 5.19615i −0.220267 + 0.190757i
\(743\) 39.0000 1.43077 0.715386 0.698730i \(-0.246251\pi\)
0.715386 + 0.698730i \(0.246251\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 5.00000 8.66025i 0.183063 0.317074i
\(747\) 0 0
\(748\) 0 0
\(749\) −15.0000 5.19615i −0.548088 0.189863i
\(750\) 0 0
\(751\) −1.00000 1.73205i −0.0364905 0.0632034i 0.847203 0.531269i \(-0.178285\pi\)
−0.883694 + 0.468065i \(0.844951\pi\)
\(752\) 1.50000 2.59808i 0.0546994 0.0947421i
\(753\) 0 0
\(754\) 0 0
\(755\) −10.0000 −0.363937
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 9.50000 + 16.4545i 0.345056 + 0.597654i
\(759\) 0 0
\(760\) −2.50000 + 4.33013i −0.0906845 + 0.157070i
\(761\) −16.5000 28.5788i −0.598125 1.03598i −0.993098 0.117289i \(-0.962579\pi\)
0.394973 0.918693i \(-0.370754\pi\)
\(762\) 0 0
\(763\) −7.00000 36.3731i −0.253417 1.31679i
\(764\) −18.0000 −0.651217
\(765\) 0 0
\(766\) 13.5000 23.3827i 0.487775 0.844851i
\(767\) 30.0000 51.9615i 1.08324 1.87622i
\(768\) 0 0
\(769\) 35.0000 1.26213 0.631066 0.775729i \(-0.282618\pi\)
0.631066 + 0.775729i \(0.282618\pi\)
\(770\) −7.50000 2.59808i −0.270281 0.0936282i
\(771\) 0 0
\(772\) 5.00000 + 8.66025i 0.179954 + 0.311689i
\(773\) 16.5000 28.5788i 0.593464 1.02791i −0.400298 0.916385i \(-0.631093\pi\)
0.993762 0.111524i \(-0.0355733\pi\)
\(774\) 0 0
\(775\) 5.00000 + 8.66025i 0.179605 + 0.311086i
\(776\) 8.00000 0.287183
\(777\) 0 0
\(778\) 6.00000 0.215110
\(779\) 22.5000 + 38.9711i 0.806146 + 1.39629i
\(780\) 0 0
\(781\) 9.00000 15.5885i 0.322045 0.557799i
\(782\) 0 0
\(783\) 0 0
\(784\) −6.50000 + 2.59808i −0.232143 + 0.0927884i
\(785\) 5.00000 0.178458
\(786\) 0 0
\(787\) −7.00000 + 12.1244i −0.249523 + 0.432187i −0.963394 0.268091i \(-0.913607\pi\)
0.713871 + 0.700278i \(0.246941\pi\)
\(788\) 7.50000 12.9904i 0.267176 0.462763i
\(789\) 0 0
\(790\) 8.00000 0.284627
\(791\) −36.0000 + 31.1769i −1.28001 + 1.10852i
\(792\) 0 0
\(793\) −20.0000 34.6410i −0.710221 1.23014i
\(794\) −7.00000 + 12.1244i −0.248421 + 0.430277i
\(795\) 0 0
\(796\) 8.00000 + 13.8564i 0.283552 + 0.491127i
\(797\) −30.0000 −1.06265 −0.531327 0.847167i \(-0.678307\pi\)
−0.531327 + 0.847167i \(0.678307\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.500000 0.866025i −0.0176777 0.0306186i
\(801\) 0 0
\(802\) 7.50000 12.9904i 0.264834 0.458706i
\(803\) 3.00000 + 5.19615i 0.105868 + 0.183368i
\(804\) 0 0
\(805\) −4.50000 23.3827i −0.158604 0.824131i
\(806\) −50.0000 −1.76117
\(807\) 0 0
\(808\) 0 0
\(809\) −13.5000 + 23.3827i −0.474635 + 0.822091i −0.999578 0.0290457i \(-0.990753\pi\)
0.524943 + 0.851137i \(0.324086\pi\)
\(810\) 0 0
\(811\) −7.00000 −0.245803 −0.122902 0.992419i \(-0.539220\pi\)
−0.122902 + 0.992419i \(0.539220\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −1.50000 2.59808i −0.0525750 0.0910625i
\(815\) 8.00000 13.8564i 0.280228 0.485369i
\(816\) 0 0
\(817\) −20.0000 34.6410i −0.699711 1.21194i
\(818\) 2.00000 0.0699284
\(819\) 0 0
\(820\) −9.00000 −0.314294
\(821\) −15.0000 25.9808i −0.523504 0.906735i −0.999626 0.0273557i \(-0.991291\pi\)
0.476122 0.879379i \(-0.342042\pi\)
\(822\) 0 0
\(823\) −16.0000 + 27.7128i −0.557725 + 0.966008i 0.439961 + 0.898017i \(0.354992\pi\)
−0.997686 + 0.0679910i \(0.978341\pi\)
\(824\) −4.00000 6.92820i −0.139347 0.241355i
\(825\) 0 0
\(826\) 24.0000 20.7846i 0.835067 0.723189i
\(827\) −6.00000 −0.208640 −0.104320 0.994544i \(-0.533267\pi\)
−0.104320 + 0.994544i \(0.533267\pi\)
\(828\) 0 0
\(829\) 20.0000 34.6410i 0.694629 1.20313i −0.275677 0.961250i \(-0.588902\pi\)
0.970306 0.241882i \(-0.0777647\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 5.00000 0.173344
\(833\) 0 0
\(834\) 0 0
\(835\) −1.50000 2.59808i −0.0519096 0.0899101i
\(836\) 7.50000 12.9904i 0.259393 0.449282i
\(837\) 0 0
\(838\) −4.50000 7.79423i −0.155450 0.269247i
\(839\) 24.0000 0.828572 0.414286 0.910147i \(-0.364031\pi\)
0.414286 + 0.910147i \(0.364031\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) −7.00000 12.1244i −0.241236 0.417833i
\(843\) 0 0
\(844\) −2.50000 + 4.33013i −0.0860535 + 0.149049i
\(845\) −6.00000 10.3923i −0.206406 0.357506i
\(846\) 0 0
\(847\) −5.00000 1.73205i −0.171802 0.0595140i
\(848\) 3.00000 0.103020
\(849\) 0 0
\(850\) 0 0
\(851\) 4.50000 7.79423i 0.154258 0.267183i
\(852\) 0 0
\(853\) −37.0000 −1.26686 −0.633428 0.773802i \(-0.718353\pi\)
−0.633428 + 0.773802i \(0.718353\pi\)
\(854\) −4.00000 20.7846i −0.136877 0.711235i
\(855\) 0 0
\(856\) 3.00000 + 5.19615i 0.102538 + 0.177601i
\(857\) −3.00000 + 5.19615i −0.102478 + 0.177497i −0.912705 0.408619i \(-0.866010\pi\)
0.810227 + 0.586116i \(0.199344\pi\)
\(858\) 0 0
\(859\) 2.00000 + 3.46410i 0.0682391 + 0.118194i 0.898126 0.439738i \(-0.144929\pi\)
−0.829887 + 0.557931i \(0.811595\pi\)
\(860\) 8.00000 0.272798
\(861\) 0 0
\(862\) 24.0000 0.817443
\(863\) −10.5000 18.1865i −0.357424 0.619077i 0.630106 0.776509i \(-0.283012\pi\)
−0.987530 + 0.157433i \(0.949678\pi\)
\(864\) 0 0
\(865\) 4.50000 7.79423i 0.153005 0.265012i
\(866\) 8.00000 + 13.8564i 0.271851 + 0.470860i
\(867\) 0 0
\(868\) −25.0000 8.66025i −0.848555 0.293948i
\(869\) −24.0000 −0.814144
\(870\) 0 0
\(871\) −20.0000 + 34.6410i −0.677674 + 1.17377i
\(872\) −7.00000 + 12.1244i −0.237050 + 0.410582i
\(873\) 0 0
\(874\) 45.0000 1.52215
\(875\) −2.00000 + 1.73205i −0.0676123 + 0.0585540i
\(876\) 0 0
\(877\) −2.50000 4.33013i −0.0844190 0.146218i 0.820724 0.571324i \(-0.193570\pi\)
−0.905143 + 0.425106i \(0.860237\pi\)
\(878\) −4.00000 + 6.92820i −0.134993 + 0.233816i
\(879\) 0 0
\(880\) 1.50000 + 2.59808i 0.0505650 + 0.0875811i
\(881\) 33.0000 1.11180 0.555899 0.831250i \(-0.312374\pi\)
0.555899 + 0.831250i \(0.312374\pi\)
\(882\) 0 0
\(883\) 14.0000 0.471138 0.235569 0.971858i \(-0.424305\pi\)
0.235569 + 0.971858i \(0.424305\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −12.0000 + 20.7846i −0.403148 + 0.698273i
\(887\) 6.00000 + 10.3923i 0.201460 + 0.348939i 0.948999 0.315279i \(-0.102098\pi\)
−0.747539 + 0.664218i \(0.768765\pi\)
\(888\) 0 0
\(889\) 26.0000 22.5167i 0.872012 0.755185i
\(890\) −6.00000 −0.201120
\(891\) 0 0
\(892\) 14.0000 24.2487i 0.468755 0.811907i
\(893\) 7.50000 12.9904i 0.250978 0.434707i
\(894\) 0 0
\(895\) 15.0000 0.501395
\(896\) 2.50000 + 0.866025i 0.0835191 + 0.0289319i
\(897\) 0 0
\(898\) −16.5000 28.5788i −0.550612 0.953688i
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 27.0000 0.899002
\(903\) 0 0
\(904\) 18.0000 0.598671
\(905\) −4.00000 6.92820i −0.132964 0.230301i
\(906\) 0 0
\(907\) 5.00000 8.66025i 0.166022 0.287559i −0.770996 0.636841i \(-0.780241\pi\)
0.937018 + 0.349281i \(0.113574\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) −2.50000 12.9904i −0.0828742 0.430627i
\(911\) −6.00000 −0.198789 −0.0993944 0.995048i \(-0.531691\pi\)
−0.0993944 + 0.995048i \(0.531691\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 5.00000 8.66025i 0.165385 0.286456i
\(915\) 0 0
\(916\) 14.0000 0.462573
\(917\) 22.5000 + 7.79423i 0.743015 + 0.257388i
\(918\) 0 0
\(919\) 14.0000 + 24.2487i 0.461817 + 0.799891i 0.999052 0.0435419i \(-0.0138642\pi\)
−0.537234 + 0.843433i \(0.680531\pi\)
\(920\) −4.50000 + 7.79423i −0.148361 + 0.256968i
\(921\) 0 0
\(922\) 6.00000 + 10.3923i 0.197599 + 0.342252i
\(923\) 30.0000 0.987462
\(924\) 0 0
\(925\) −1.00000 −0.0328798
\(926\) 0.500000 + 0.866025i 0.0164310 + 0.0284594i
\(927\) 0 0
\(928\) 0 0
\(929\) 19.5000 + 33.7750i 0.639774 + 1.10812i 0.985482 + 0.169779i \(0.0543055\pi\)
−0.345708 + 0.938342i \(0.612361\pi\)
\(930\) 0 0
\(931\) −32.5000 + 12.9904i −1.06514 + 0.425743i
\(932\) 6.00000 0.196537
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 44.0000 1.43742 0.718709 0.695311i \(-0.244734\pi\)
0.718709 + 0.695311i \(0.244734\pi\)
\(938\) −16.0000 + 13.8564i −0.522419 + 0.452428i
\(939\) 0 0
\(940\) 1.50000 + 2.59808i 0.0489246 + 0.0847399i
\(941\) −9.00000 + 15.5885i −0.293392 + 0.508169i −0.974609 0.223912i \(-0.928117\pi\)
0.681218 + 0.732081i \(0.261451\pi\)
\(942\) 0 0
\(943\) 40.5000 + 70.1481i 1.31886 + 2.28434i
\(944\) −12.0000 −0.390567
\(945\) 0 0
\(946\) −24.0000 −0.780307
\(947\) −9.00000 15.5885i −0.292461 0.506557i 0.681930 0.731417i \(-0.261141\pi\)
−0.974391 + 0.224860i \(0.927807\pi\)
\(948\) 0 0
\(949\) −5.00000 + 8.66025i −0.162307 + 0.281124i
\(950\) −2.50000 4.33013i −0.0811107 0.140488i
\(951\) 0 0
\(952\) 0 0
\(953\) −12.0000 −0.388718 −0.194359 0.980930i \(-0.562263\pi\)
−0.194359 + 0.980930i \(0.562263\pi\)
\(954\) 0 0
\(955\) 9.00000 15.5885i 0.291233 0.504431i
\(956\) 15.0000 25.9808i 0.485135 0.840278i
\(957\) 0 0
\(958\) 18.0000 0.581554
\(959\) −9.00000 46.7654i −0.290625 1.51013i
\(960\) 0 0
\(961\) −34.5000 59.7558i −1.11290 1.92760i
\(962\) 2.50000 4.33013i 0.0806032 0.139609i
\(963\) 0 0
\(964\) 0.500000 + 0.866025i 0.0161039 + 0.0278928i
\(965\) −10.0000 −0.321911
\(966\) 0 0
\(967\) −28.0000 −0.900419 −0.450210 0.892923i \(-0.648651\pi\)
−0.450210 + 0.892923i \(0.648651\pi\)
\(968\) 1.00000 + 1.73205i 0.0321412 + 0.0556702i
\(969\) 0 0
\(970\) −4.00000 + 6.92820i −0.128432 + 0.222451i
\(971\) 7.50000 + 12.9904i 0.240686 + 0.416881i 0.960910 0.276861i \(-0.0892941\pi\)
−0.720224 + 0.693742i \(0.755961\pi\)
\(972\) 0 0
\(973\) −40.0000 + 34.6410i −1.28234 + 1.11054i
\(974\) −40.0000 −1.28168
\(975\) 0 0
\(976\) −4.00000 + 6.92820i −0.128037 + 0.221766i
\(977\) 3.00000 5.19615i 0.0959785 0.166240i −0.814038 0.580812i \(-0.802735\pi\)
0.910017 + 0.414572i \(0.136069\pi\)
\(978\) 0 0
\(979\) 18.0000 0.575282
\(980\) 1.00000 6.92820i 0.0319438 0.221313i
\(981\) 0 0
\(982\) 6.00000 + 10.3923i 0.191468 + 0.331632i
\(983\) 4.50000 7.79423i 0.143528 0.248597i −0.785295 0.619122i \(-0.787489\pi\)
0.928823 + 0.370525i \(0.120822\pi\)
\(984\) 0 0
\(985\) 7.50000 + 12.9904i 0.238970 + 0.413908i
\(986\) 0 0
\(987\) 0 0
\(988\) 25.0000 0.795356
\(989\) −36.0000 62.3538i −1.14473 1.98274i
\(990\) 0 0
\(991\) 29.0000 50.2295i 0.921215 1.59559i 0.123678 0.992322i \(-0.460531\pi\)
0.797537 0.603269i \(-0.206136\pi\)
\(992\) 5.00000 + 8.66025i 0.158750 + 0.274963i
\(993\) 0 0
\(994\) 15.0000 + 5.19615i 0.475771 + 0.164812i
\(995\) −16.0000 −0.507234
\(996\) 0 0
\(997\) −7.00000 + 12.1244i −0.221692 + 0.383982i −0.955322 0.295567i \(-0.904491\pi\)
0.733630 + 0.679549i \(0.237825\pi\)
\(998\) 8.00000 13.8564i 0.253236 0.438617i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.2.k.a.361.1 2
3.2 odd 2 210.2.i.c.151.1 yes 2
7.2 even 3 inner 630.2.k.a.541.1 2
7.3 odd 6 4410.2.a.w.1.1 1
7.4 even 3 4410.2.a.bh.1.1 1
12.11 even 2 1680.2.bg.n.1201.1 2
15.2 even 4 1050.2.o.c.949.1 4
15.8 even 4 1050.2.o.c.949.2 4
15.14 odd 2 1050.2.i.i.151.1 2
21.2 odd 6 210.2.i.c.121.1 2
21.5 even 6 1470.2.i.p.961.1 2
21.11 odd 6 1470.2.a.f.1.1 1
21.17 even 6 1470.2.a.e.1.1 1
21.20 even 2 1470.2.i.p.361.1 2
84.23 even 6 1680.2.bg.n.961.1 2
105.2 even 12 1050.2.o.c.499.2 4
105.23 even 12 1050.2.o.c.499.1 4
105.44 odd 6 1050.2.i.i.751.1 2
105.59 even 6 7350.2.a.cx.1.1 1
105.74 odd 6 7350.2.a.cd.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
210.2.i.c.121.1 2 21.2 odd 6
210.2.i.c.151.1 yes 2 3.2 odd 2
630.2.k.a.361.1 2 1.1 even 1 trivial
630.2.k.a.541.1 2 7.2 even 3 inner
1050.2.i.i.151.1 2 15.14 odd 2
1050.2.i.i.751.1 2 105.44 odd 6
1050.2.o.c.499.1 4 105.23 even 12
1050.2.o.c.499.2 4 105.2 even 12
1050.2.o.c.949.1 4 15.2 even 4
1050.2.o.c.949.2 4 15.8 even 4
1470.2.a.e.1.1 1 21.17 even 6
1470.2.a.f.1.1 1 21.11 odd 6
1470.2.i.p.361.1 2 21.20 even 2
1470.2.i.p.961.1 2 21.5 even 6
1680.2.bg.n.961.1 2 84.23 even 6
1680.2.bg.n.1201.1 2 12.11 even 2
4410.2.a.w.1.1 1 7.3 odd 6
4410.2.a.bh.1.1 1 7.4 even 3
7350.2.a.cd.1.1 1 105.74 odd 6
7350.2.a.cx.1.1 1 105.59 even 6