# Properties

 Label 630.2.k.a Level $630$ Weight $2$ Character orbit 630.k Analytic conductor $5.031$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$630 = 2 \cdot 3^{2} \cdot 5 \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 630.k (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$5.03057532734$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 210) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -\zeta_{6} q^{2} + ( -1 + \zeta_{6} ) q^{4} -\zeta_{6} q^{5} + ( -3 + 2 \zeta_{6} ) q^{7} + q^{8} +O(q^{10})$$ $$q -\zeta_{6} q^{2} + ( -1 + \zeta_{6} ) q^{4} -\zeta_{6} q^{5} + ( -3 + 2 \zeta_{6} ) q^{7} + q^{8} + ( -1 + \zeta_{6} ) q^{10} + ( 3 - 3 \zeta_{6} ) q^{11} + 5 q^{13} + ( 2 + \zeta_{6} ) q^{14} -\zeta_{6} q^{16} -5 \zeta_{6} q^{19} + q^{20} -3 q^{22} -9 \zeta_{6} q^{23} + ( -1 + \zeta_{6} ) q^{25} -5 \zeta_{6} q^{26} + ( 1 - 3 \zeta_{6} ) q^{28} + ( 10 - 10 \zeta_{6} ) q^{31} + ( -1 + \zeta_{6} ) q^{32} + ( 2 + \zeta_{6} ) q^{35} + \zeta_{6} q^{37} + ( -5 + 5 \zeta_{6} ) q^{38} -\zeta_{6} q^{40} -9 q^{41} + 8 q^{43} + 3 \zeta_{6} q^{44} + ( -9 + 9 \zeta_{6} ) q^{46} + 3 \zeta_{6} q^{47} + ( 5 - 8 \zeta_{6} ) q^{49} + q^{50} + ( -5 + 5 \zeta_{6} ) q^{52} + ( -3 + 3 \zeta_{6} ) q^{53} -3 q^{55} + ( -3 + 2 \zeta_{6} ) q^{56} + ( 12 - 12 \zeta_{6} ) q^{59} -8 \zeta_{6} q^{61} -10 q^{62} + q^{64} -5 \zeta_{6} q^{65} + ( -8 + 8 \zeta_{6} ) q^{67} + ( 1 - 3 \zeta_{6} ) q^{70} + 6 q^{71} + ( -2 + 2 \zeta_{6} ) q^{73} + ( 1 - \zeta_{6} ) q^{74} + 5 q^{76} + ( -3 + 9 \zeta_{6} ) q^{77} -8 \zeta_{6} q^{79} + ( -1 + \zeta_{6} ) q^{80} + 9 \zeta_{6} q^{82} -8 \zeta_{6} q^{86} + ( 3 - 3 \zeta_{6} ) q^{88} + 6 \zeta_{6} q^{89} + ( -15 + 10 \zeta_{6} ) q^{91} + 9 q^{92} + ( 3 - 3 \zeta_{6} ) q^{94} + ( -5 + 5 \zeta_{6} ) q^{95} + 8 q^{97} + ( -8 + 3 \zeta_{6} ) q^{98} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - q^{2} - q^{4} - q^{5} - 4q^{7} + 2q^{8} + O(q^{10})$$ $$2q - q^{2} - q^{4} - q^{5} - 4q^{7} + 2q^{8} - q^{10} + 3q^{11} + 10q^{13} + 5q^{14} - q^{16} - 5q^{19} + 2q^{20} - 6q^{22} - 9q^{23} - q^{25} - 5q^{26} - q^{28} + 10q^{31} - q^{32} + 5q^{35} + q^{37} - 5q^{38} - q^{40} - 18q^{41} + 16q^{43} + 3q^{44} - 9q^{46} + 3q^{47} + 2q^{49} + 2q^{50} - 5q^{52} - 3q^{53} - 6q^{55} - 4q^{56} + 12q^{59} - 8q^{61} - 20q^{62} + 2q^{64} - 5q^{65} - 8q^{67} - q^{70} + 12q^{71} - 2q^{73} + q^{74} + 10q^{76} + 3q^{77} - 8q^{79} - q^{80} + 9q^{82} - 8q^{86} + 3q^{88} + 6q^{89} - 20q^{91} + 18q^{92} + 3q^{94} - 5q^{95} + 16q^{97} - 13q^{98} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/630\mathbb{Z}\right)^\times$$.

 $$n$$ $$127$$ $$281$$ $$451$$ $$\chi(n)$$ $$1$$ $$1$$ $$-\zeta_{6}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
361.1
 0.5 + 0.866025i 0.5 − 0.866025i
−0.500000 0.866025i 0 −0.500000 + 0.866025i −0.500000 0.866025i 0 −2.00000 + 1.73205i 1.00000 0 −0.500000 + 0.866025i
541.1 −0.500000 + 0.866025i 0 −0.500000 0.866025i −0.500000 + 0.866025i 0 −2.00000 1.73205i 1.00000 0 −0.500000 0.866025i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 630.2.k.a 2
3.b odd 2 1 210.2.i.c 2
7.c even 3 1 inner 630.2.k.a 2
7.c even 3 1 4410.2.a.bh 1
7.d odd 6 1 4410.2.a.w 1
12.b even 2 1 1680.2.bg.n 2
15.d odd 2 1 1050.2.i.i 2
15.e even 4 2 1050.2.o.c 4
21.c even 2 1 1470.2.i.p 2
21.g even 6 1 1470.2.a.e 1
21.g even 6 1 1470.2.i.p 2
21.h odd 6 1 210.2.i.c 2
21.h odd 6 1 1470.2.a.f 1
84.n even 6 1 1680.2.bg.n 2
105.o odd 6 1 1050.2.i.i 2
105.o odd 6 1 7350.2.a.cd 1
105.p even 6 1 7350.2.a.cx 1
105.x even 12 2 1050.2.o.c 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
210.2.i.c 2 3.b odd 2 1
210.2.i.c 2 21.h odd 6 1
630.2.k.a 2 1.a even 1 1 trivial
630.2.k.a 2 7.c even 3 1 inner
1050.2.i.i 2 15.d odd 2 1
1050.2.i.i 2 105.o odd 6 1
1050.2.o.c 4 15.e even 4 2
1050.2.o.c 4 105.x even 12 2
1470.2.a.e 1 21.g even 6 1
1470.2.a.f 1 21.h odd 6 1
1470.2.i.p 2 21.c even 2 1
1470.2.i.p 2 21.g even 6 1
1680.2.bg.n 2 12.b even 2 1
1680.2.bg.n 2 84.n even 6 1
4410.2.a.w 1 7.d odd 6 1
4410.2.a.bh 1 7.c even 3 1
7350.2.a.cd 1 105.o odd 6 1
7350.2.a.cx 1 105.p even 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(630, [\chi])$$:

 $$T_{11}^{2} - 3 T_{11} + 9$$ $$T_{13} - 5$$ $$T_{17}$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 + T + T^{2}$$
$3$ $$T^{2}$$
$5$ $$1 + T + T^{2}$$
$7$ $$7 + 4 T + T^{2}$$
$11$ $$9 - 3 T + T^{2}$$
$13$ $$( -5 + T )^{2}$$
$17$ $$T^{2}$$
$19$ $$25 + 5 T + T^{2}$$
$23$ $$81 + 9 T + T^{2}$$
$29$ $$T^{2}$$
$31$ $$100 - 10 T + T^{2}$$
$37$ $$1 - T + T^{2}$$
$41$ $$( 9 + T )^{2}$$
$43$ $$( -8 + T )^{2}$$
$47$ $$9 - 3 T + T^{2}$$
$53$ $$9 + 3 T + T^{2}$$
$59$ $$144 - 12 T + T^{2}$$
$61$ $$64 + 8 T + T^{2}$$
$67$ $$64 + 8 T + T^{2}$$
$71$ $$( -6 + T )^{2}$$
$73$ $$4 + 2 T + T^{2}$$
$79$ $$64 + 8 T + T^{2}$$
$83$ $$T^{2}$$
$89$ $$36 - 6 T + T^{2}$$
$97$ $$( -8 + T )^{2}$$