Properties

Label 630.2.bv.d.73.3
Level $630$
Weight $2$
Character 630.73
Analytic conductor $5.031$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [630,2,Mod(73,630)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(630, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 9, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("630.73"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 630.bv (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.03057532734\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 73.3
Character \(\chi\) \(=\) 630.73
Dual form 630.2.bv.d.397.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.965926 - 0.258819i) q^{2} +(0.866025 + 0.500000i) q^{4} +(0.316731 - 2.21352i) q^{5} +(1.51871 + 2.16646i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(-0.878841 + 2.05612i) q^{10} +(-3.20142 + 5.54503i) q^{11} +(-4.52364 + 4.52364i) q^{13} +(-0.906239 - 2.48571i) q^{14} +(0.500000 + 0.866025i) q^{16} +(0.161291 - 0.0432177i) q^{17} +(1.04950 + 1.81778i) q^{19} +(1.38106 - 1.75860i) q^{20} +(4.52750 - 4.52750i) q^{22} +(1.39635 - 5.21124i) q^{23} +(-4.79936 - 1.40218i) q^{25} +(5.54030 - 3.19870i) q^{26} +(0.232012 + 2.63556i) q^{28} +3.74448i q^{29} +(6.20971 + 3.58518i) q^{31} +(-0.258819 - 0.965926i) q^{32} -0.166980 q^{34} +(5.27652 - 2.67551i) q^{35} +(-0.703938 - 0.188620i) q^{37} +(-0.543260 - 2.02747i) q^{38} +(-1.78916 + 1.34123i) q^{40} +2.33142i q^{41} +(1.92479 + 1.92479i) q^{43} +(-5.54503 + 3.20142i) q^{44} +(-2.69753 + 4.67227i) q^{46} +(-1.98829 + 7.42041i) q^{47} +(-2.38705 + 6.58042i) q^{49} +(4.27292 + 2.59657i) q^{50} +(-6.17941 + 1.65577i) q^{52} +(-10.2832 + 2.75538i) q^{53} +(11.2601 + 8.84271i) q^{55} +(0.458027 - 2.60580i) q^{56} +(0.969143 - 3.61689i) q^{58} +(-2.22826 + 3.85946i) q^{59} +(9.91039 - 5.72176i) q^{61} +(-5.07021 - 5.07021i) q^{62} +1.00000i q^{64} +(8.58040 + 11.4460i) q^{65} +(-3.18097 - 11.8715i) q^{67} +(0.161291 + 0.0432177i) q^{68} +(-5.78920 + 1.21868i) q^{70} +9.94282 q^{71} +(-2.18599 - 8.15822i) q^{73} +(0.631133 + 0.364385i) q^{74} +2.09900i q^{76} +(-16.8751 + 1.48554i) q^{77} +(-4.16589 + 2.40518i) q^{79} +(2.07533 - 0.832464i) q^{80} +(0.603415 - 2.25198i) q^{82} +(3.88443 - 3.88443i) q^{83} +(-0.0445775 - 0.370709i) q^{85} +(-1.36103 - 2.35737i) q^{86} +(6.18468 - 1.65718i) q^{88} +(5.84862 + 10.1301i) q^{89} +(-16.6703 - 2.93018i) q^{91} +(3.81489 - 3.81489i) q^{92} +(3.84109 - 6.65296i) q^{94} +(4.35611 - 1.74734i) q^{95} +(8.73441 + 8.73441i) q^{97} +(4.00886 - 5.73839i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{7} + 12 q^{10} + 16 q^{16} + 8 q^{22} + 20 q^{28} + 48 q^{31} + 32 q^{37} + 80 q^{43} + 8 q^{46} - 28 q^{58} + 48 q^{61} + 16 q^{67} - 60 q^{70} - 24 q^{73} + 48 q^{82} - 144 q^{85} + 4 q^{88}+ \cdots - 32 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.965926 0.258819i −0.683013 0.183013i
\(3\) 0 0
\(4\) 0.866025 + 0.500000i 0.433013 + 0.250000i
\(5\) 0.316731 2.21352i 0.141647 0.989917i
\(6\) 0 0
\(7\) 1.51871 + 2.16646i 0.574017 + 0.818843i
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 0 0
\(10\) −0.878841 + 2.05612i −0.277914 + 0.650203i
\(11\) −3.20142 + 5.54503i −0.965266 + 1.67189i −0.256367 + 0.966580i \(0.582525\pi\)
−0.708899 + 0.705310i \(0.750808\pi\)
\(12\) 0 0
\(13\) −4.52364 + 4.52364i −1.25463 + 1.25463i −0.301011 + 0.953621i \(0.597324\pi\)
−0.953621 + 0.301011i \(0.902676\pi\)
\(14\) −0.906239 2.48571i −0.242203 0.664333i
\(15\) 0 0
\(16\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(17\) 0.161291 0.0432177i 0.0391187 0.0104818i −0.239207 0.970969i \(-0.576887\pi\)
0.278325 + 0.960487i \(0.410221\pi\)
\(18\) 0 0
\(19\) 1.04950 + 1.81778i 0.240771 + 0.417028i 0.960934 0.276777i \(-0.0892663\pi\)
−0.720163 + 0.693805i \(0.755933\pi\)
\(20\) 1.38106 1.75860i 0.308814 0.393235i
\(21\) 0 0
\(22\) 4.52750 4.52750i 0.965266 0.965266i
\(23\) 1.39635 5.21124i 0.291158 1.08662i −0.653062 0.757304i \(-0.726516\pi\)
0.944221 0.329314i \(-0.106817\pi\)
\(24\) 0 0
\(25\) −4.79936 1.40218i −0.959873 0.280437i
\(26\) 5.54030 3.19870i 1.08654 0.627316i
\(27\) 0 0
\(28\) 0.232012 + 2.63556i 0.0438461 + 0.498074i
\(29\) 3.74448i 0.695333i 0.937618 + 0.347666i \(0.113026\pi\)
−0.937618 + 0.347666i \(0.886974\pi\)
\(30\) 0 0
\(31\) 6.20971 + 3.58518i 1.11530 + 0.643917i 0.940196 0.340633i \(-0.110641\pi\)
0.175101 + 0.984550i \(0.443975\pi\)
\(32\) −0.258819 0.965926i −0.0457532 0.170753i
\(33\) 0 0
\(34\) −0.166980 −0.0286369
\(35\) 5.27652 2.67551i 0.891894 0.452244i
\(36\) 0 0
\(37\) −0.703938 0.188620i −0.115727 0.0310089i 0.200491 0.979696i \(-0.435746\pi\)
−0.316218 + 0.948687i \(0.602413\pi\)
\(38\) −0.543260 2.02747i −0.0881284 0.328900i
\(39\) 0 0
\(40\) −1.78916 + 1.34123i −0.282891 + 0.212068i
\(41\) 2.33142i 0.364106i 0.983289 + 0.182053i \(0.0582743\pi\)
−0.983289 + 0.182053i \(0.941726\pi\)
\(42\) 0 0
\(43\) 1.92479 + 1.92479i 0.293527 + 0.293527i 0.838472 0.544945i \(-0.183449\pi\)
−0.544945 + 0.838472i \(0.683449\pi\)
\(44\) −5.54503 + 3.20142i −0.835945 + 0.482633i
\(45\) 0 0
\(46\) −2.69753 + 4.67227i −0.397730 + 0.688888i
\(47\) −1.98829 + 7.42041i −0.290022 + 1.08238i 0.655068 + 0.755570i \(0.272640\pi\)
−0.945091 + 0.326808i \(0.894027\pi\)
\(48\) 0 0
\(49\) −2.38705 + 6.58042i −0.341008 + 0.940060i
\(50\) 4.27292 + 2.59657i 0.604282 + 0.367211i
\(51\) 0 0
\(52\) −6.17941 + 1.65577i −0.856929 + 0.229614i
\(53\) −10.2832 + 2.75538i −1.41251 + 0.378481i −0.882821 0.469710i \(-0.844358\pi\)
−0.529690 + 0.848191i \(0.677692\pi\)
\(54\) 0 0
\(55\) 11.2601 + 8.84271i 1.51831 + 1.19235i
\(56\) 0.458027 2.60580i 0.0612064 0.348215i
\(57\) 0 0
\(58\) 0.969143 3.61689i 0.127255 0.474921i
\(59\) −2.22826 + 3.85946i −0.290095 + 0.502459i −0.973832 0.227269i \(-0.927020\pi\)
0.683737 + 0.729728i \(0.260354\pi\)
\(60\) 0 0
\(61\) 9.91039 5.72176i 1.26890 0.732597i 0.294116 0.955770i \(-0.404975\pi\)
0.974779 + 0.223173i \(0.0716414\pi\)
\(62\) −5.07021 5.07021i −0.643917 0.643917i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 8.58040 + 11.4460i 1.06427 + 1.41970i
\(66\) 0 0
\(67\) −3.18097 11.8715i −0.388617 1.45034i −0.832386 0.554197i \(-0.813025\pi\)
0.443769 0.896141i \(-0.353641\pi\)
\(68\) 0.161291 + 0.0432177i 0.0195594 + 0.00524092i
\(69\) 0 0
\(70\) −5.78920 + 1.21868i −0.691942 + 0.145660i
\(71\) 9.94282 1.18000 0.589998 0.807405i \(-0.299129\pi\)
0.589998 + 0.807405i \(0.299129\pi\)
\(72\) 0 0
\(73\) −2.18599 8.15822i −0.255851 0.954848i −0.967615 0.252430i \(-0.918770\pi\)
0.711764 0.702418i \(-0.247896\pi\)
\(74\) 0.631133 + 0.364385i 0.0733678 + 0.0423589i
\(75\) 0 0
\(76\) 2.09900i 0.240771i
\(77\) −16.8751 + 1.48554i −1.92309 + 0.169293i
\(78\) 0 0
\(79\) −4.16589 + 2.40518i −0.468699 + 0.270604i −0.715695 0.698413i \(-0.753890\pi\)
0.246996 + 0.969017i \(0.420557\pi\)
\(80\) 2.07533 0.832464i 0.232029 0.0930723i
\(81\) 0 0
\(82\) 0.603415 2.25198i 0.0666360 0.248689i
\(83\) 3.88443 3.88443i 0.426371 0.426371i −0.461019 0.887390i \(-0.652516\pi\)
0.887390 + 0.461019i \(0.152516\pi\)
\(84\) 0 0
\(85\) −0.0445775 0.370709i −0.00483511 0.0402090i
\(86\) −1.36103 2.35737i −0.146764 0.254202i
\(87\) 0 0
\(88\) 6.18468 1.65718i 0.659289 0.176656i
\(89\) 5.84862 + 10.1301i 0.619952 + 1.07379i 0.989494 + 0.144575i \(0.0461814\pi\)
−0.369542 + 0.929214i \(0.620485\pi\)
\(90\) 0 0
\(91\) −16.6703 2.93018i −1.74753 0.307166i
\(92\) 3.81489 3.81489i 0.397730 0.397730i
\(93\) 0 0
\(94\) 3.84109 6.65296i 0.396178 0.686200i
\(95\) 4.35611 1.74734i 0.446928 0.179273i
\(96\) 0 0
\(97\) 8.73441 + 8.73441i 0.886845 + 0.886845i 0.994219 0.107373i \(-0.0342440\pi\)
−0.107373 + 0.994219i \(0.534244\pi\)
\(98\) 4.00886 5.73839i 0.404956 0.579664i
\(99\) 0 0
\(100\) −3.45528 3.61401i −0.345528 0.361401i
\(101\) 3.04723 + 1.75932i 0.303211 + 0.175059i 0.643884 0.765123i \(-0.277322\pi\)
−0.340674 + 0.940182i \(0.610655\pi\)
\(102\) 0 0
\(103\) −8.73475 2.34047i −0.860660 0.230613i −0.198615 0.980078i \(-0.563644\pi\)
−0.662045 + 0.749464i \(0.730311\pi\)
\(104\) 6.39739 0.627316
\(105\) 0 0
\(106\) 10.6460 1.03403
\(107\) 8.95923 + 2.40062i 0.866121 + 0.232077i 0.664410 0.747368i \(-0.268683\pi\)
0.201712 + 0.979445i \(0.435350\pi\)
\(108\) 0 0
\(109\) 10.9463 + 6.31985i 1.04847 + 0.605332i 0.922220 0.386667i \(-0.126374\pi\)
0.126247 + 0.991999i \(0.459707\pi\)
\(110\) −8.58772 11.4557i −0.818807 1.09226i
\(111\) 0 0
\(112\) −1.11685 + 2.39847i −0.105533 + 0.226634i
\(113\) −4.76690 4.76690i −0.448432 0.448432i 0.446401 0.894833i \(-0.352706\pi\)
−0.894833 + 0.446401i \(0.852706\pi\)
\(114\) 0 0
\(115\) −11.0929 4.74141i −1.03442 0.442138i
\(116\) −1.87224 + 3.24282i −0.173833 + 0.301088i
\(117\) 0 0
\(118\) 3.15124 3.15124i 0.290095 0.290095i
\(119\) 0.338583 + 0.283794i 0.0310378 + 0.0260153i
\(120\) 0 0
\(121\) −14.9982 25.9777i −1.36348 2.36161i
\(122\) −11.0536 + 2.96180i −1.00075 + 0.268149i
\(123\) 0 0
\(124\) 3.58518 + 6.20971i 0.321959 + 0.557649i
\(125\) −4.62387 + 10.1794i −0.413572 + 0.910471i
\(126\) 0 0
\(127\) 8.53377 8.53377i 0.757250 0.757250i −0.218571 0.975821i \(-0.570140\pi\)
0.975821 + 0.218571i \(0.0701395\pi\)
\(128\) 0.258819 0.965926i 0.0228766 0.0853766i
\(129\) 0 0
\(130\) −5.32560 13.2767i −0.467086 1.16444i
\(131\) −3.62474 + 2.09274i −0.316695 + 0.182844i −0.649918 0.760004i \(-0.725197\pi\)
0.333224 + 0.942848i \(0.391864\pi\)
\(132\) 0 0
\(133\) −2.34427 + 5.03437i −0.203274 + 0.436535i
\(134\) 12.2903i 1.06172i
\(135\) 0 0
\(136\) −0.144609 0.0834902i −0.0124001 0.00715923i
\(137\) −0.934097 3.48610i −0.0798053 0.297837i 0.914475 0.404643i \(-0.132604\pi\)
−0.994280 + 0.106806i \(0.965938\pi\)
\(138\) 0 0
\(139\) −2.57986 −0.218821 −0.109410 0.993997i \(-0.534896\pi\)
−0.109410 + 0.993997i \(0.534896\pi\)
\(140\) 5.90735 + 0.321201i 0.499263 + 0.0271464i
\(141\) 0 0
\(142\) −9.60403 2.57339i −0.805952 0.215954i
\(143\) −10.6016 39.5658i −0.886552 3.30866i
\(144\) 0 0
\(145\) 8.28849 + 1.18599i 0.688322 + 0.0984915i
\(146\) 8.44602i 0.698997i
\(147\) 0 0
\(148\) −0.515318 0.515318i −0.0423589 0.0423589i
\(149\) −8.57321 + 4.94975i −0.702345 + 0.405499i −0.808220 0.588880i \(-0.799569\pi\)
0.105875 + 0.994379i \(0.466236\pi\)
\(150\) 0 0
\(151\) 5.49303 9.51421i 0.447016 0.774255i −0.551174 0.834390i \(-0.685820\pi\)
0.998190 + 0.0601353i \(0.0191532\pi\)
\(152\) 0.543260 2.02747i 0.0440642 0.164450i
\(153\) 0 0
\(154\) 16.6846 + 2.93268i 1.34448 + 0.236322i
\(155\) 9.90269 12.6098i 0.795403 1.01284i
\(156\) 0 0
\(157\) −8.84880 + 2.37103i −0.706211 + 0.189229i −0.594011 0.804457i \(-0.702456\pi\)
−0.112200 + 0.993686i \(0.535790\pi\)
\(158\) 4.64645 1.24501i 0.369651 0.0990478i
\(159\) 0 0
\(160\) −2.22007 + 0.266963i −0.175512 + 0.0211053i
\(161\) 13.4106 4.88922i 1.05690 0.385325i
\(162\) 0 0
\(163\) 0.202806 0.756884i 0.0158850 0.0592837i −0.957528 0.288339i \(-0.906897\pi\)
0.973413 + 0.229055i \(0.0735637\pi\)
\(164\) −1.16571 + 2.01907i −0.0910265 + 0.157663i
\(165\) 0 0
\(166\) −4.75743 + 2.74670i −0.369248 + 0.213186i
\(167\) 0.0141982 + 0.0141982i 0.00109869 + 0.00109869i 0.707656 0.706557i \(-0.249753\pi\)
−0.706557 + 0.707656i \(0.749753\pi\)
\(168\) 0 0
\(169\) 27.9266i 2.14820i
\(170\) −0.0528879 + 0.369615i −0.00405632 + 0.0283482i
\(171\) 0 0
\(172\) 0.704521 + 2.62931i 0.0537192 + 0.200483i
\(173\) 6.27037 + 1.68014i 0.476728 + 0.127739i 0.489178 0.872184i \(-0.337297\pi\)
−0.0124509 + 0.999922i \(0.503963\pi\)
\(174\) 0 0
\(175\) −4.25106 12.5271i −0.321350 0.946961i
\(176\) −6.40285 −0.482633
\(177\) 0 0
\(178\) −3.02747 11.2987i −0.226918 0.846871i
\(179\) −12.1002 6.98604i −0.904409 0.522161i −0.0257813 0.999668i \(-0.508207\pi\)
−0.878628 + 0.477507i \(0.841541\pi\)
\(180\) 0 0
\(181\) 8.45277i 0.628289i 0.949375 + 0.314145i \(0.101718\pi\)
−0.949375 + 0.314145i \(0.898282\pi\)
\(182\) 15.3439 + 7.14494i 1.13737 + 0.529618i
\(183\) 0 0
\(184\) −4.67227 + 2.69753i −0.344444 + 0.198865i
\(185\) −0.640473 + 1.49844i −0.0470885 + 0.110168i
\(186\) 0 0
\(187\) −0.276716 + 1.03272i −0.0202355 + 0.0755200i
\(188\) −5.43212 + 5.43212i −0.396178 + 0.396178i
\(189\) 0 0
\(190\) −4.65993 + 0.560354i −0.338067 + 0.0406523i
\(191\) −5.71004 9.89008i −0.413164 0.715621i 0.582070 0.813139i \(-0.302243\pi\)
−0.995234 + 0.0975179i \(0.968910\pi\)
\(192\) 0 0
\(193\) −2.41450 + 0.646964i −0.173800 + 0.0465695i −0.344669 0.938724i \(-0.612009\pi\)
0.170870 + 0.985294i \(0.445342\pi\)
\(194\) −6.17616 10.6974i −0.443423 0.768031i
\(195\) 0 0
\(196\) −5.35746 + 4.50529i −0.382676 + 0.321806i
\(197\) −11.6147 + 11.6147i −0.827515 + 0.827515i −0.987172 0.159657i \(-0.948961\pi\)
0.159657 + 0.987172i \(0.448961\pi\)
\(198\) 0 0
\(199\) −8.79681 + 15.2365i −0.623589 + 1.08009i 0.365223 + 0.930920i \(0.380993\pi\)
−0.988812 + 0.149168i \(0.952340\pi\)
\(200\) 2.40217 + 4.38516i 0.169859 + 0.310077i
\(201\) 0 0
\(202\) −2.48805 2.48805i −0.175059 0.175059i
\(203\) −8.11225 + 5.68677i −0.569368 + 0.399133i
\(204\) 0 0
\(205\) 5.16064 + 0.738433i 0.360435 + 0.0515744i
\(206\) 7.83136 + 4.52144i 0.545637 + 0.315023i
\(207\) 0 0
\(208\) −6.17941 1.65577i −0.428465 0.114807i
\(209\) −13.4396 −0.929633
\(210\) 0 0
\(211\) 19.0654 1.31252 0.656259 0.754536i \(-0.272138\pi\)
0.656259 + 0.754536i \(0.272138\pi\)
\(212\) −10.2832 2.75538i −0.706255 0.189241i
\(213\) 0 0
\(214\) −8.03263 4.63764i −0.549099 0.317022i
\(215\) 4.87020 3.65092i 0.332145 0.248990i
\(216\) 0 0
\(217\) 1.66361 + 18.8979i 0.112933 + 1.28287i
\(218\) −8.93762 8.93762i −0.605332 0.605332i
\(219\) 0 0
\(220\) 5.33014 + 13.2880i 0.359358 + 0.895879i
\(221\) −0.534119 + 0.925122i −0.0359288 + 0.0622304i
\(222\) 0 0
\(223\) 4.73842 4.73842i 0.317308 0.317308i −0.530424 0.847732i \(-0.677967\pi\)
0.847732 + 0.530424i \(0.177967\pi\)
\(224\) 1.69956 2.02768i 0.113557 0.135480i
\(225\) 0 0
\(226\) 3.37071 + 5.83824i 0.224216 + 0.388354i
\(227\) −6.05586 + 1.62266i −0.401942 + 0.107700i −0.454126 0.890938i \(-0.650048\pi\)
0.0521842 + 0.998637i \(0.483382\pi\)
\(228\) 0 0
\(229\) −8.42986 14.6010i −0.557061 0.964858i −0.997740 0.0671932i \(-0.978596\pi\)
0.440679 0.897665i \(-0.354738\pi\)
\(230\) 9.48777 + 7.45091i 0.625605 + 0.491298i
\(231\) 0 0
\(232\) 2.64775 2.64775i 0.173833 0.173833i
\(233\) −2.10647 + 7.86147i −0.138000 + 0.515022i 0.861968 + 0.506963i \(0.169232\pi\)
−0.999968 + 0.00805892i \(0.997435\pi\)
\(234\) 0 0
\(235\) 15.7955 + 6.75141i 1.03038 + 0.440413i
\(236\) −3.85946 + 2.22826i −0.251230 + 0.145047i
\(237\) 0 0
\(238\) −0.253594 0.361756i −0.0164381 0.0234491i
\(239\) 7.59533i 0.491301i −0.969358 0.245651i \(-0.920998\pi\)
0.969358 0.245651i \(-0.0790016\pi\)
\(240\) 0 0
\(241\) −7.49824 4.32911i −0.483004 0.278862i 0.238664 0.971102i \(-0.423291\pi\)
−0.721668 + 0.692240i \(0.756624\pi\)
\(242\) 7.76366 + 28.9744i 0.499067 + 1.86254i
\(243\) 0 0
\(244\) 11.4435 0.732597
\(245\) 13.8099 + 7.36803i 0.882280 + 0.470726i
\(246\) 0 0
\(247\) −12.9705 3.47545i −0.825296 0.221137i
\(248\) −1.85583 6.92604i −0.117845 0.439804i
\(249\) 0 0
\(250\) 7.10094 8.63578i 0.449103 0.546175i
\(251\) 7.35879i 0.464483i −0.972658 0.232241i \(-0.925394\pi\)
0.972658 0.232241i \(-0.0746059\pi\)
\(252\) 0 0
\(253\) 24.4262 + 24.4262i 1.53566 + 1.53566i
\(254\) −10.4517 + 6.03429i −0.655798 + 0.378625i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 5.27164 19.6740i 0.328836 1.22723i −0.581563 0.813501i \(-0.697559\pi\)
0.910399 0.413731i \(-0.135775\pi\)
\(258\) 0 0
\(259\) −0.660440 1.81151i −0.0410377 0.112562i
\(260\) 1.70787 + 14.2027i 0.105917 + 0.880813i
\(261\) 0 0
\(262\) 4.04287 1.08328i 0.249769 0.0669255i
\(263\) 25.0750 6.71883i 1.54619 0.414301i 0.617931 0.786232i \(-0.287971\pi\)
0.928260 + 0.371931i \(0.121304\pi\)
\(264\) 0 0
\(265\) 2.84208 + 23.6349i 0.174588 + 1.45188i
\(266\) 3.56738 4.25609i 0.218730 0.260958i
\(267\) 0 0
\(268\) 3.18097 11.8715i 0.194308 0.725169i
\(269\) −4.32616 + 7.49314i −0.263771 + 0.456865i −0.967241 0.253860i \(-0.918300\pi\)
0.703470 + 0.710725i \(0.251633\pi\)
\(270\) 0 0
\(271\) −5.91873 + 3.41718i −0.359538 + 0.207579i −0.668878 0.743372i \(-0.733225\pi\)
0.309340 + 0.950951i \(0.399892\pi\)
\(272\) 0.118073 + 0.118073i 0.00715923 + 0.00715923i
\(273\) 0 0
\(274\) 3.60907i 0.218032i
\(275\) 23.1399 22.1236i 1.39539 1.33410i
\(276\) 0 0
\(277\) −0.105861 0.395080i −0.00636059 0.0237380i 0.962673 0.270669i \(-0.0872447\pi\)
−0.969033 + 0.246930i \(0.920578\pi\)
\(278\) 2.49195 + 0.667716i 0.149457 + 0.0400470i
\(279\) 0 0
\(280\) −5.62293 1.83919i −0.336035 0.109913i
\(281\) 20.0813 1.19795 0.598974 0.800768i \(-0.295575\pi\)
0.598974 + 0.800768i \(0.295575\pi\)
\(282\) 0 0
\(283\) 4.31086 + 16.0884i 0.256254 + 0.956353i 0.967389 + 0.253297i \(0.0815150\pi\)
−0.711134 + 0.703056i \(0.751818\pi\)
\(284\) 8.61074 + 4.97141i 0.510953 + 0.294999i
\(285\) 0 0
\(286\) 40.9615i 2.42211i
\(287\) −5.05091 + 3.54074i −0.298146 + 0.209003i
\(288\) 0 0
\(289\) −14.6983 + 8.48606i −0.864605 + 0.499180i
\(290\) −7.69911 3.29080i −0.452107 0.193243i
\(291\) 0 0
\(292\) 2.18599 8.15822i 0.127925 0.477424i
\(293\) 10.6204 10.6204i 0.620450 0.620450i −0.325196 0.945647i \(-0.605430\pi\)
0.945647 + 0.325196i \(0.105430\pi\)
\(294\) 0 0
\(295\) 7.83724 + 6.15472i 0.456302 + 0.358342i
\(296\) 0.364385 + 0.631133i 0.0211794 + 0.0366839i
\(297\) 0 0
\(298\) 9.56218 2.56218i 0.553922 0.148423i
\(299\) 17.2572 + 29.8903i 0.998009 + 1.72860i
\(300\) 0 0
\(301\) −1.24678 + 7.09315i −0.0718629 + 0.408842i
\(302\) −7.76832 + 7.76832i −0.447016 + 0.447016i
\(303\) 0 0
\(304\) −1.04950 + 1.81778i −0.0601928 + 0.104257i
\(305\) −9.52632 23.7491i −0.545476 1.35987i
\(306\) 0 0
\(307\) 18.1826 + 18.1826i 1.03774 + 1.03774i 0.999259 + 0.0384786i \(0.0122511\pi\)
0.0384786 + 0.999259i \(0.487749\pi\)
\(308\) −15.3570 7.15103i −0.875047 0.407468i
\(309\) 0 0
\(310\) −12.8289 + 9.61713i −0.728634 + 0.546216i
\(311\) 21.9321 + 12.6625i 1.24366 + 0.718025i 0.969837 0.243756i \(-0.0783796\pi\)
0.273820 + 0.961781i \(0.411713\pi\)
\(312\) 0 0
\(313\) −6.39754 1.71422i −0.361610 0.0968932i 0.0734393 0.997300i \(-0.476602\pi\)
−0.435050 + 0.900407i \(0.643269\pi\)
\(314\) 9.16095 0.516982
\(315\) 0 0
\(316\) −4.81036 −0.270604
\(317\) 8.06195 + 2.16019i 0.452804 + 0.121329i 0.478011 0.878354i \(-0.341358\pi\)
−0.0252069 + 0.999682i \(0.508024\pi\)
\(318\) 0 0
\(319\) −20.7633 11.9877i −1.16252 0.671181i
\(320\) 2.21352 + 0.316731i 0.123740 + 0.0177058i
\(321\) 0 0
\(322\) −14.2190 + 1.25172i −0.792395 + 0.0697556i
\(323\) 0.247835 + 0.247835i 0.0137899 + 0.0137899i
\(324\) 0 0
\(325\) 28.0536 15.3676i 1.55613 0.852442i
\(326\) −0.391792 + 0.678603i −0.0216993 + 0.0375844i
\(327\) 0 0
\(328\) 1.64856 1.64856i 0.0910265 0.0910265i
\(329\) −19.0956 + 6.96188i −1.05278 + 0.383821i
\(330\) 0 0
\(331\) 6.84214 + 11.8509i 0.376078 + 0.651387i 0.990488 0.137601i \(-0.0439391\pi\)
−0.614410 + 0.788987i \(0.710606\pi\)
\(332\) 5.30622 1.42180i 0.291217 0.0780313i
\(333\) 0 0
\(334\) −0.0100397 0.0173892i −0.000549345 0.000951494i
\(335\) −27.2854 + 3.28106i −1.49076 + 0.179263i
\(336\) 0 0
\(337\) 12.7271 12.7271i 0.693290 0.693290i −0.269665 0.962954i \(-0.586913\pi\)
0.962954 + 0.269665i \(0.0869129\pi\)
\(338\) −7.22794 + 26.9750i −0.393148 + 1.46725i
\(339\) 0 0
\(340\) 0.146749 0.343332i 0.00795859 0.0186198i
\(341\) −39.7599 + 22.9554i −2.15312 + 1.24310i
\(342\) 0 0
\(343\) −17.8814 + 4.82229i −0.965506 + 0.260379i
\(344\) 2.72206i 0.146764i
\(345\) 0 0
\(346\) −5.62186 3.24578i −0.302233 0.174494i
\(347\) −5.49792 20.5185i −0.295144 1.10149i −0.941103 0.338120i \(-0.890209\pi\)
0.645959 0.763372i \(-0.276458\pi\)
\(348\) 0 0
\(349\) −17.9442 −0.960531 −0.480266 0.877123i \(-0.659460\pi\)
−0.480266 + 0.877123i \(0.659460\pi\)
\(350\) 0.863954 + 13.2005i 0.0461803 + 0.705597i
\(351\) 0 0
\(352\) 6.18468 + 1.65718i 0.329644 + 0.0883280i
\(353\) 7.10696 + 26.5235i 0.378265 + 1.41170i 0.848515 + 0.529171i \(0.177497\pi\)
−0.470250 + 0.882533i \(0.655836\pi\)
\(354\) 0 0
\(355\) 3.14920 22.0087i 0.167142 1.16810i
\(356\) 11.6972i 0.619952i
\(357\) 0 0
\(358\) 9.87975 + 9.87975i 0.522161 + 0.522161i
\(359\) 22.0411 12.7254i 1.16328 0.671623i 0.211195 0.977444i \(-0.432264\pi\)
0.952089 + 0.305821i \(0.0989310\pi\)
\(360\) 0 0
\(361\) 7.29711 12.6390i 0.384058 0.665209i
\(362\) 2.18774 8.16475i 0.114985 0.429130i
\(363\) 0 0
\(364\) −12.9719 10.8728i −0.679910 0.569889i
\(365\) −18.7508 + 2.25477i −0.981461 + 0.118020i
\(366\) 0 0
\(367\) −1.72190 + 0.461382i −0.0898825 + 0.0240839i −0.303480 0.952838i \(-0.598149\pi\)
0.213597 + 0.976922i \(0.431482\pi\)
\(368\) 5.21124 1.39635i 0.271654 0.0727896i
\(369\) 0 0
\(370\) 1.00647 1.28162i 0.0523241 0.0666280i
\(371\) −21.5866 18.0935i −1.12072 0.939370i
\(372\) 0 0
\(373\) −3.94946 + 14.7396i −0.204496 + 0.763188i 0.785107 + 0.619360i \(0.212608\pi\)
−0.989603 + 0.143828i \(0.954059\pi\)
\(374\) 0.534575 0.925911i 0.0276422 0.0478777i
\(375\) 0 0
\(376\) 6.65296 3.84109i 0.343100 0.198089i
\(377\) −16.9387 16.9387i −0.872386 0.872386i
\(378\) 0 0
\(379\) 0.453587i 0.0232992i −0.999932 0.0116496i \(-0.996292\pi\)
0.999932 0.0116496i \(-0.00370827\pi\)
\(380\) 4.64617 + 0.664818i 0.238344 + 0.0341044i
\(381\) 0 0
\(382\) 2.95573 + 11.0309i 0.151228 + 0.564392i
\(383\) −2.97916 0.798263i −0.152228 0.0407893i 0.181900 0.983317i \(-0.441775\pi\)
−0.334128 + 0.942528i \(0.608442\pi\)
\(384\) 0 0
\(385\) −2.05660 + 37.8239i −0.104814 + 1.92768i
\(386\) 2.49968 0.127230
\(387\) 0 0
\(388\) 3.19702 + 11.9314i 0.162304 + 0.605727i
\(389\) −10.6514 6.14959i −0.540048 0.311797i 0.205050 0.978751i \(-0.434264\pi\)
−0.745098 + 0.666955i \(0.767597\pi\)
\(390\) 0 0
\(391\) 0.900871i 0.0455590i
\(392\) 6.34096 2.96516i 0.320267 0.149763i
\(393\) 0 0
\(394\) 14.2251 8.21285i 0.716649 0.413758i
\(395\) 4.00445 + 9.98309i 0.201486 + 0.502304i
\(396\) 0 0
\(397\) −6.72452 + 25.0963i −0.337494 + 1.25954i 0.563646 + 0.826017i \(0.309398\pi\)
−0.901140 + 0.433528i \(0.857268\pi\)
\(398\) 12.4406 12.4406i 0.623589 0.623589i
\(399\) 0 0
\(400\) −1.18535 4.85746i −0.0592677 0.242873i
\(401\) 0.371752 + 0.643893i 0.0185644 + 0.0321545i 0.875158 0.483837i \(-0.160757\pi\)
−0.856594 + 0.515991i \(0.827424\pi\)
\(402\) 0 0
\(403\) −44.3086 + 11.8724i −2.20717 + 0.591409i
\(404\) 1.75932 + 3.04723i 0.0875294 + 0.151605i
\(405\) 0 0
\(406\) 9.30767 3.39339i 0.461932 0.168411i
\(407\) 3.29950 3.29950i 0.163550 0.163550i
\(408\) 0 0
\(409\) 3.41820 5.92050i 0.169019 0.292750i −0.769056 0.639181i \(-0.779273\pi\)
0.938075 + 0.346432i \(0.112607\pi\)
\(410\) −4.79368 2.04894i −0.236743 0.101190i
\(411\) 0 0
\(412\) −6.39428 6.39428i −0.315023 0.315023i
\(413\) −11.7454 + 1.03397i −0.577955 + 0.0508781i
\(414\) 0 0
\(415\) −7.36794 9.82858i −0.361678 0.482466i
\(416\) 5.54030 + 3.19870i 0.271636 + 0.156829i
\(417\) 0 0
\(418\) 12.9816 + 3.47841i 0.634951 + 0.170135i
\(419\) 36.1102 1.76410 0.882050 0.471156i \(-0.156163\pi\)
0.882050 + 0.471156i \(0.156163\pi\)
\(420\) 0 0
\(421\) −27.1406 −1.32275 −0.661377 0.750054i \(-0.730027\pi\)
−0.661377 + 0.750054i \(0.730027\pi\)
\(422\) −18.4158 4.93449i −0.896466 0.240207i
\(423\) 0 0
\(424\) 9.21969 + 5.32299i 0.447748 + 0.258507i
\(425\) −0.834692 0.0187417i −0.0404885 0.000909108i
\(426\) 0 0
\(427\) 27.4469 + 12.7807i 1.32825 + 0.618502i
\(428\) 6.55861 + 6.55861i 0.317022 + 0.317022i
\(429\) 0 0
\(430\) −5.64918 + 2.26602i −0.272427 + 0.109277i
\(431\) 7.78998 13.4926i 0.375230 0.649918i −0.615131 0.788425i \(-0.710897\pi\)
0.990361 + 0.138507i \(0.0442304\pi\)
\(432\) 0 0
\(433\) 14.8325 14.8325i 0.712802 0.712802i −0.254318 0.967121i \(-0.581851\pi\)
0.967121 + 0.254318i \(0.0818511\pi\)
\(434\) 3.28422 18.6845i 0.157647 0.896887i
\(435\) 0 0
\(436\) 6.31985 + 10.9463i 0.302666 + 0.524233i
\(437\) 10.9384 2.93093i 0.523253 0.140205i
\(438\) 0 0
\(439\) 20.0936 + 34.8031i 0.959014 + 1.66106i 0.724903 + 0.688851i \(0.241884\pi\)
0.234110 + 0.972210i \(0.424782\pi\)
\(440\) −1.70932 14.2148i −0.0814887 0.677664i
\(441\) 0 0
\(442\) 0.755359 0.755359i 0.0359288 0.0359288i
\(443\) −1.02465 + 3.82405i −0.0486826 + 0.181686i −0.985986 0.166829i \(-0.946647\pi\)
0.937303 + 0.348515i \(0.113314\pi\)
\(444\) 0 0
\(445\) 24.2757 9.73753i 1.15078 0.461603i
\(446\) −5.80336 + 3.35057i −0.274797 + 0.158654i
\(447\) 0 0
\(448\) −2.16646 + 1.51871i −0.102355 + 0.0717522i
\(449\) 34.5063i 1.62845i −0.580546 0.814227i \(-0.697161\pi\)
0.580546 0.814227i \(-0.302839\pi\)
\(450\) 0 0
\(451\) −12.9278 7.46385i −0.608745 0.351459i
\(452\) −1.74481 6.51171i −0.0820688 0.306285i
\(453\) 0 0
\(454\) 6.26949 0.294242
\(455\) −11.7660 + 35.9721i −0.551600 + 1.68640i
\(456\) 0 0
\(457\) −3.91655 1.04944i −0.183208 0.0490905i 0.166048 0.986118i \(-0.446899\pi\)
−0.349257 + 0.937027i \(0.613566\pi\)
\(458\) 4.36362 + 16.2852i 0.203898 + 0.760959i
\(459\) 0 0
\(460\) −7.23605 9.65264i −0.337382 0.450057i
\(461\) 19.0506i 0.887274i −0.896206 0.443637i \(-0.853688\pi\)
0.896206 0.443637i \(-0.146312\pi\)
\(462\) 0 0
\(463\) −0.835173 0.835173i −0.0388138 0.0388138i 0.687434 0.726247i \(-0.258737\pi\)
−0.726247 + 0.687434i \(0.758737\pi\)
\(464\) −3.24282 + 1.87224i −0.150544 + 0.0869166i
\(465\) 0 0
\(466\) 4.06940 7.04840i 0.188511 0.326511i
\(467\) 2.92289 10.9084i 0.135255 0.504779i −0.864742 0.502217i \(-0.832518\pi\)
0.999997 0.00256202i \(-0.000815518\pi\)
\(468\) 0 0
\(469\) 20.8882 24.9208i 0.964526 1.15074i
\(470\) −13.5099 10.6095i −0.623164 0.489381i
\(471\) 0 0
\(472\) 4.30467 1.15343i 0.198138 0.0530910i
\(473\) −16.8351 + 4.51094i −0.774077 + 0.207413i
\(474\) 0 0
\(475\) −2.48805 10.1958i −0.114160 0.467815i
\(476\) 0.151324 + 0.415064i 0.00693593 + 0.0190244i
\(477\) 0 0
\(478\) −1.96582 + 7.33652i −0.0899143 + 0.335565i
\(479\) 13.9561 24.1726i 0.637668 1.10447i −0.348275 0.937392i \(-0.613232\pi\)
0.985943 0.167081i \(-0.0534343\pi\)
\(480\) 0 0
\(481\) 4.03761 2.33111i 0.184099 0.106290i
\(482\) 6.12229 + 6.12229i 0.278862 + 0.278862i
\(483\) 0 0
\(484\) 29.9965i 1.36348i
\(485\) 22.1003 16.5674i 1.00352 0.752285i
\(486\) 0 0
\(487\) 4.53397 + 16.9210i 0.205454 + 0.766764i 0.989311 + 0.145822i \(0.0465828\pi\)
−0.783857 + 0.620941i \(0.786751\pi\)
\(488\) −11.0536 2.96180i −0.500373 0.134075i
\(489\) 0 0
\(490\) −11.4323 10.6912i −0.516459 0.482980i
\(491\) −6.03651 −0.272424 −0.136212 0.990680i \(-0.543493\pi\)
−0.136212 + 0.990680i \(0.543493\pi\)
\(492\) 0 0
\(493\) 0.161828 + 0.603950i 0.00728836 + 0.0272005i
\(494\) 11.6291 + 6.71405i 0.523217 + 0.302079i
\(495\) 0 0
\(496\) 7.17036i 0.321959i
\(497\) 15.1002 + 21.5407i 0.677338 + 0.966231i
\(498\) 0 0
\(499\) −0.0350182 + 0.0202177i −0.00156763 + 0.000905071i −0.500784 0.865573i \(-0.666955\pi\)
0.499216 + 0.866478i \(0.333621\pi\)
\(500\) −9.09408 + 6.50367i −0.406700 + 0.290853i
\(501\) 0 0
\(502\) −1.90459 + 7.10804i −0.0850062 + 0.317248i
\(503\) −21.1889 + 21.1889i −0.944766 + 0.944766i −0.998552 0.0537866i \(-0.982871\pi\)
0.0537866 + 0.998552i \(0.482871\pi\)
\(504\) 0 0
\(505\) 4.85945 6.18788i 0.216243 0.275357i
\(506\) −17.2719 29.9158i −0.767830 1.32992i
\(507\) 0 0
\(508\) 11.6574 3.12358i 0.517211 0.138586i
\(509\) 13.8919 + 24.0614i 0.615746 + 1.06650i 0.990253 + 0.139279i \(0.0444785\pi\)
−0.374507 + 0.927224i \(0.622188\pi\)
\(510\) 0 0
\(511\) 14.3545 17.1258i 0.635008 0.757601i
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) 0 0
\(514\) −10.1840 + 17.6393i −0.449198 + 0.778034i
\(515\) −7.94725 + 18.5933i −0.350198 + 0.819317i
\(516\) 0 0
\(517\) −34.7810 34.7810i −1.52967 1.52967i
\(518\) 0.169083 + 1.92072i 0.00742909 + 0.0843914i
\(519\) 0 0
\(520\) 2.02625 14.1608i 0.0888571 0.620991i
\(521\) 27.1354 + 15.6667i 1.18883 + 0.686369i 0.958040 0.286636i \(-0.0925370\pi\)
0.230786 + 0.973005i \(0.425870\pi\)
\(522\) 0 0
\(523\) 10.3236 + 2.76619i 0.451419 + 0.120957i 0.477363 0.878706i \(-0.341593\pi\)
−0.0259445 + 0.999663i \(0.508259\pi\)
\(524\) −4.18549 −0.182844
\(525\) 0 0
\(526\) −25.9596 −1.13189
\(527\) 1.15651 + 0.309887i 0.0503785 + 0.0134989i
\(528\) 0 0
\(529\) −5.28861 3.05338i −0.229940 0.132756i
\(530\) 3.37192 23.5651i 0.146467 1.02360i
\(531\) 0 0
\(532\) −4.54738 + 3.18776i −0.197154 + 0.138207i
\(533\) −10.5465 10.5465i −0.456819 0.456819i
\(534\) 0 0
\(535\) 8.15149 19.0711i 0.352420 0.824516i
\(536\) −6.14516 + 10.6437i −0.265430 + 0.459739i
\(537\) 0 0
\(538\) 6.11812 6.11812i 0.263771 0.263771i
\(539\) −28.8467 34.3030i −1.24251 1.47754i
\(540\) 0 0
\(541\) −5.21982 9.04100i −0.224418 0.388703i 0.731727 0.681598i \(-0.238715\pi\)
−0.956145 + 0.292895i \(0.905381\pi\)
\(542\) 6.60149 1.76886i 0.283558 0.0759792i
\(543\) 0 0
\(544\) −0.0834902 0.144609i −0.00357961 0.00620007i
\(545\) 17.4562 22.2282i 0.747741 0.952152i
\(546\) 0 0
\(547\) 11.2203 11.2203i 0.479745 0.479745i −0.425305 0.905050i \(-0.639833\pi\)
0.905050 + 0.425305i \(0.139833\pi\)
\(548\) 0.934097 3.48610i 0.0399026 0.148919i
\(549\) 0 0
\(550\) −28.0775 + 15.3807i −1.19723 + 0.655836i
\(551\) −6.80666 + 3.92982i −0.289973 + 0.167416i
\(552\) 0 0
\(553\) −11.5375 5.37245i −0.490623 0.228460i
\(554\) 0.409017i 0.0173775i
\(555\) 0 0
\(556\) −2.23422 1.28993i −0.0947521 0.0547052i
\(557\) 7.65431 + 28.5663i 0.324324 + 1.21039i 0.914990 + 0.403477i \(0.132198\pi\)
−0.590666 + 0.806916i \(0.701135\pi\)
\(558\) 0 0
\(559\) −17.4141 −0.736537
\(560\) 4.95532 + 3.23185i 0.209400 + 0.136570i
\(561\) 0 0
\(562\) −19.3970 5.19742i −0.818214 0.219240i
\(563\) 4.95291 + 18.4845i 0.208740 + 0.779029i 0.988277 + 0.152673i \(0.0487880\pi\)
−0.779537 + 0.626357i \(0.784545\pi\)
\(564\) 0 0
\(565\) −12.0615 + 9.04182i −0.507430 + 0.380392i
\(566\) 16.6559i 0.700099i
\(567\) 0 0
\(568\) −7.03064 7.03064i −0.294999 0.294999i
\(569\) −17.2067 + 9.93427i −0.721341 + 0.416466i −0.815246 0.579115i \(-0.803398\pi\)
0.0939053 + 0.995581i \(0.470065\pi\)
\(570\) 0 0
\(571\) 4.69056 8.12429i 0.196294 0.339991i −0.751030 0.660268i \(-0.770443\pi\)
0.947324 + 0.320277i \(0.103776\pi\)
\(572\) 10.6016 39.5658i 0.443276 1.65433i
\(573\) 0 0
\(574\) 5.79522 2.11282i 0.241888 0.0881874i
\(575\) −14.0087 + 23.0527i −0.584203 + 0.961363i
\(576\) 0 0
\(577\) −20.8218 + 5.57918i −0.866822 + 0.232264i −0.664713 0.747099i \(-0.731446\pi\)
−0.202109 + 0.979363i \(0.564780\pi\)
\(578\) 16.3938 4.39271i 0.681892 0.182713i
\(579\) 0 0
\(580\) 6.58505 + 5.17135i 0.273429 + 0.214728i
\(581\) 14.3147 + 2.51613i 0.593875 + 0.104387i
\(582\) 0 0
\(583\) 17.6423 65.8420i 0.730670 2.72690i
\(584\) −4.22301 + 7.31446i −0.174749 + 0.302675i
\(585\) 0 0
\(586\) −13.0073 + 7.50976i −0.537326 + 0.310225i
\(587\) 19.7138 + 19.7138i 0.813676 + 0.813676i 0.985183 0.171507i \(-0.0548637\pi\)
−0.171507 + 0.985183i \(0.554864\pi\)
\(588\) 0 0
\(589\) 15.0506i 0.620147i
\(590\) −5.97724 7.97343i −0.246079 0.328261i
\(591\) 0 0
\(592\) −0.188620 0.703938i −0.00775222 0.0289317i
\(593\) 44.6168 + 11.9550i 1.83219 + 0.490934i 0.998152 0.0607712i \(-0.0193560\pi\)
0.834039 + 0.551705i \(0.186023\pi\)
\(594\) 0 0
\(595\) 0.735424 0.659574i 0.0301494 0.0270399i
\(596\) −9.89949 −0.405499
\(597\) 0 0
\(598\) −8.93298 33.3383i −0.365297 1.36331i
\(599\) −4.26297 2.46123i −0.174180 0.100563i 0.410375 0.911917i \(-0.365398\pi\)
−0.584555 + 0.811354i \(0.698731\pi\)
\(600\) 0 0
\(601\) 3.06956i 0.125210i −0.998038 0.0626049i \(-0.980059\pi\)
0.998038 0.0626049i \(-0.0199408\pi\)
\(602\) 3.04013 6.52877i 0.123907 0.266093i
\(603\) 0 0
\(604\) 9.51421 5.49303i 0.387128 0.223508i
\(605\) −62.2527 + 24.9710i −2.53093 + 1.01521i
\(606\) 0 0
\(607\) −2.32572 + 8.67972i −0.0943982 + 0.352299i −0.996928 0.0783295i \(-0.975041\pi\)
0.902529 + 0.430628i \(0.141708\pi\)
\(608\) 1.48421 1.48421i 0.0601928 0.0601928i
\(609\) 0 0
\(610\) 3.05500 + 25.4055i 0.123693 + 1.02864i
\(611\) −24.5729 42.5616i −0.994115 1.72186i
\(612\) 0 0
\(613\) 10.7867 2.89030i 0.435673 0.116738i −0.0343152 0.999411i \(-0.510925\pi\)
0.469988 + 0.882673i \(0.344258\pi\)
\(614\) −12.8571 22.2691i −0.518869 0.898707i
\(615\) 0 0
\(616\) 12.9829 + 10.8821i 0.523097 + 0.438450i
\(617\) 17.1120 17.1120i 0.688904 0.688904i −0.273085 0.961990i \(-0.588044\pi\)
0.961990 + 0.273085i \(0.0880442\pi\)
\(618\) 0 0
\(619\) −3.24578 + 5.62186i −0.130459 + 0.225962i −0.923854 0.382746i \(-0.874978\pi\)
0.793395 + 0.608708i \(0.208312\pi\)
\(620\) 14.8809 5.96907i 0.597631 0.239723i
\(621\) 0 0
\(622\) −17.9075 17.9075i −0.718025 0.718025i
\(623\) −13.0641 + 28.0554i −0.523401 + 1.12402i
\(624\) 0 0
\(625\) 21.0678 + 13.4592i 0.842710 + 0.538367i
\(626\) 5.73588 + 3.31161i 0.229252 + 0.132359i
\(627\) 0 0
\(628\) −8.84880 2.37103i −0.353105 0.0946143i
\(629\) −0.121690 −0.00485211
\(630\) 0 0
\(631\) −10.2203 −0.406863 −0.203431 0.979089i \(-0.565209\pi\)
−0.203431 + 0.979089i \(0.565209\pi\)
\(632\) 4.64645 + 1.24501i 0.184826 + 0.0495239i
\(633\) 0 0
\(634\) −7.22815 4.17317i −0.287067 0.165738i
\(635\) −16.1868 21.5926i −0.642353 0.856877i
\(636\) 0 0
\(637\) −18.9693 40.5656i −0.751590 1.60727i
\(638\) 16.9531 + 16.9531i 0.671181 + 0.671181i
\(639\) 0 0
\(640\) −2.05612 0.878841i −0.0812754 0.0347392i
\(641\) −1.75152 + 3.03371i −0.0691807 + 0.119825i −0.898541 0.438890i \(-0.855372\pi\)
0.829360 + 0.558714i \(0.188705\pi\)
\(642\) 0 0
\(643\) 20.0653 20.0653i 0.791299 0.791299i −0.190407 0.981705i \(-0.560981\pi\)
0.981705 + 0.190407i \(0.0609806\pi\)
\(644\) 14.0585 + 2.47109i 0.553982 + 0.0973744i
\(645\) 0 0
\(646\) −0.175246 0.303534i −0.00689495 0.0119424i
\(647\) −3.40818 + 0.913219i −0.133989 + 0.0359023i −0.325190 0.945649i \(-0.605428\pi\)
0.191201 + 0.981551i \(0.438762\pi\)
\(648\) 0 0
\(649\) −14.2672 24.7115i −0.560037 0.970013i
\(650\) −31.0751 + 7.58318i −1.21887 + 0.297437i
\(651\) 0 0
\(652\) 0.554077 0.554077i 0.0216993 0.0216993i
\(653\) −11.0702 + 41.3146i −0.433211 + 1.61677i 0.312100 + 0.950049i \(0.398968\pi\)
−0.745311 + 0.666717i \(0.767699\pi\)
\(654\) 0 0
\(655\) 3.48427 + 8.68627i 0.136142 + 0.339401i
\(656\) −2.01907 + 1.16571i −0.0788313 + 0.0455133i
\(657\) 0 0
\(658\) 20.2468 1.78235i 0.789303 0.0694834i
\(659\) 16.7292i 0.651678i 0.945425 + 0.325839i \(0.105647\pi\)
−0.945425 + 0.325839i \(0.894353\pi\)
\(660\) 0 0
\(661\) −7.82077 4.51533i −0.304193 0.175626i 0.340132 0.940378i \(-0.389528\pi\)
−0.644325 + 0.764752i \(0.722862\pi\)
\(662\) −3.54175 13.2180i −0.137654 0.513732i
\(663\) 0 0
\(664\) −5.49341 −0.213186
\(665\) 10.4012 + 6.78363i 0.403341 + 0.263058i
\(666\) 0 0
\(667\) 19.5134 + 5.22859i 0.755561 + 0.202452i
\(668\) 0.00519691 + 0.0193951i 0.000201074 + 0.000750420i
\(669\) 0 0
\(670\) 27.2049 + 3.89273i 1.05102 + 0.150389i
\(671\) 73.2712i 2.82860i
\(672\) 0 0
\(673\) −5.23874 5.23874i −0.201938 0.201938i 0.598892 0.800830i \(-0.295608\pi\)
−0.800830 + 0.598892i \(0.795608\pi\)
\(674\) −15.5875 + 8.99942i −0.600406 + 0.346645i
\(675\) 0 0
\(676\) 13.9633 24.1852i 0.537050 0.930199i
\(677\) −10.5285 + 39.2929i −0.404643 + 1.51015i 0.400071 + 0.916484i \(0.368986\pi\)
−0.804713 + 0.593663i \(0.797681\pi\)
\(678\) 0 0
\(679\) −5.65769 + 32.1877i −0.217122 + 1.23525i
\(680\) −0.230610 + 0.293652i −0.00884348 + 0.0112610i
\(681\) 0 0
\(682\) 44.3464 11.8826i 1.69811 0.455007i
\(683\) 21.0342 5.63609i 0.804851 0.215659i 0.167138 0.985933i \(-0.446547\pi\)
0.637713 + 0.770274i \(0.279881\pi\)
\(684\) 0 0
\(685\) −8.01241 + 0.963488i −0.306139 + 0.0368130i
\(686\) 18.5202 0.0299210i 0.707106 0.00114239i
\(687\) 0 0
\(688\) −0.704521 + 2.62931i −0.0268596 + 0.100241i
\(689\) 34.0533 58.9820i 1.29733 2.24704i
\(690\) 0 0
\(691\) 32.0081 18.4799i 1.21765 0.703008i 0.253232 0.967406i \(-0.418506\pi\)
0.964414 + 0.264397i \(0.0851730\pi\)
\(692\) 4.59023 + 4.59023i 0.174494 + 0.174494i
\(693\) 0 0
\(694\) 21.2423i 0.806348i
\(695\) −0.817122 + 5.71057i −0.0309952 + 0.216614i
\(696\) 0 0
\(697\) 0.100758 + 0.376036i 0.00381650 + 0.0142434i
\(698\) 17.3328 + 4.64430i 0.656055 + 0.175789i
\(699\) 0 0
\(700\) 2.58203 12.9743i 0.0975915 0.490383i
\(701\) −50.0832 −1.89161 −0.945807 0.324728i \(-0.894727\pi\)
−0.945807 + 0.324728i \(0.894727\pi\)
\(702\) 0 0
\(703\) −0.395912 1.47756i −0.0149321 0.0557273i
\(704\) −5.54503 3.20142i −0.208986 0.120658i
\(705\) 0 0
\(706\) 27.4592i 1.03344i
\(707\) 0.816366 + 9.27358i 0.0307026 + 0.348769i
\(708\) 0 0
\(709\) 31.9251 18.4320i 1.19897 0.692228i 0.238647 0.971106i \(-0.423296\pi\)
0.960326 + 0.278879i \(0.0899628\pi\)
\(710\) −8.73816 + 20.4437i −0.327937 + 0.767237i
\(711\) 0 0
\(712\) 3.02747 11.2987i 0.113459 0.423435i
\(713\) 27.3541 27.3541i 1.02442 1.02442i
\(714\) 0 0
\(715\) −90.9377 + 10.9352i −3.40088 + 0.408953i
\(716\) −6.98604 12.1002i −0.261081 0.452205i
\(717\) 0 0
\(718\) −24.5836 + 6.58717i −0.917453 + 0.245831i
\(719\) 0.638450 + 1.10583i 0.0238102 + 0.0412404i 0.877685 0.479238i \(-0.159087\pi\)
−0.853875 + 0.520478i \(0.825754\pi\)
\(720\) 0 0
\(721\) −8.19501 22.4779i −0.305198 0.837122i
\(722\) −10.3197 + 10.3197i −0.384058 + 0.384058i
\(723\) 0 0
\(724\) −4.22638 + 7.32031i −0.157072 + 0.272057i
\(725\) 5.25045 17.9711i 0.194997 0.667431i
\(726\) 0 0
\(727\) 5.37795 + 5.37795i 0.199457 + 0.199457i 0.799767 0.600310i \(-0.204956\pi\)
−0.600310 + 0.799767i \(0.704956\pi\)
\(728\) 9.71577 + 13.8597i 0.360090 + 0.513673i
\(729\) 0 0
\(730\) 18.6954 + 2.67512i 0.691949 + 0.0990106i
\(731\) 0.393635 + 0.227265i 0.0145591 + 0.00840571i
\(732\) 0 0
\(733\) −19.5984 5.25137i −0.723882 0.193964i −0.121979 0.992533i \(-0.538924\pi\)
−0.601903 + 0.798569i \(0.705591\pi\)
\(734\) 1.78264 0.0657986
\(735\) 0 0
\(736\) −5.39507 −0.198865
\(737\) 76.0116 + 20.3673i 2.79992 + 0.750237i
\(738\) 0 0
\(739\) 14.6947 + 8.48399i 0.540553 + 0.312089i 0.745303 0.666726i \(-0.232305\pi\)
−0.204750 + 0.978814i \(0.565638\pi\)
\(740\) −1.30389 + 0.977451i −0.0479318 + 0.0359318i
\(741\) 0 0
\(742\) 16.1681 + 23.0641i 0.593551 + 0.846708i
\(743\) 12.6206 + 12.6206i 0.463004 + 0.463004i 0.899639 0.436635i \(-0.143830\pi\)
−0.436635 + 0.899639i \(0.643830\pi\)
\(744\) 0 0
\(745\) 8.24097 + 20.5447i 0.301926 + 0.752701i
\(746\) 7.62978 13.2152i 0.279346 0.483842i
\(747\) 0 0
\(748\) −0.756003 + 0.756003i −0.0276422 + 0.0276422i
\(749\) 8.40562 + 23.0556i 0.307135 + 0.842434i
\(750\) 0 0
\(751\) 14.3912 + 24.9264i 0.525144 + 0.909576i 0.999571 + 0.0292810i \(0.00932175\pi\)
−0.474428 + 0.880295i \(0.657345\pi\)
\(752\) −7.42041 + 1.98829i −0.270594 + 0.0725056i
\(753\) 0 0
\(754\) 11.9775 + 20.7456i 0.436193 + 0.755509i
\(755\) −19.3201 15.1724i −0.703130 0.552180i
\(756\) 0 0
\(757\) −27.7316 + 27.7316i −1.00792 + 1.00792i −0.00795446 + 0.999968i \(0.502532\pi\)
−0.999968 + 0.00795446i \(0.997468\pi\)
\(758\) −0.117397 + 0.438132i −0.00426405 + 0.0159137i
\(759\) 0 0
\(760\) −4.31579 1.84468i −0.156550 0.0669137i
\(761\) −30.2569 + 17.4688i −1.09681 + 0.633244i −0.935381 0.353640i \(-0.884944\pi\)
−0.161429 + 0.986884i \(0.551610\pi\)
\(762\) 0 0
\(763\) 2.93256 + 33.3127i 0.106166 + 1.20600i
\(764\) 11.4201i 0.413164i
\(765\) 0 0
\(766\) 2.67104 + 1.54213i 0.0965086 + 0.0557193i
\(767\) −7.37896 27.5387i −0.266439 0.994363i
\(768\) 0 0
\(769\) 20.1606 0.727009 0.363504 0.931593i \(-0.381580\pi\)
0.363504 + 0.931593i \(0.381580\pi\)
\(770\) 11.7761 36.0028i 0.424380 1.29745i
\(771\) 0 0
\(772\) −2.41450 0.646964i −0.0868999 0.0232847i
\(773\) −5.12297 19.1192i −0.184260 0.687669i −0.994788 0.101968i \(-0.967486\pi\)
0.810527 0.585701i \(-0.199181\pi\)
\(774\) 0 0
\(775\) −24.7756 25.9137i −0.889965 0.930849i
\(776\) 12.3523i 0.443423i
\(777\) 0 0
\(778\) 8.69684 + 8.69684i 0.311797 + 0.311797i
\(779\) −4.23801 + 2.44682i −0.151843 + 0.0876663i
\(780\) 0 0
\(781\) −31.8312 + 55.1332i −1.13901 + 1.97282i
\(782\) −0.233162 + 0.870174i −0.00833787 + 0.0311174i
\(783\) 0 0
\(784\) −6.89234 + 1.22296i −0.246155 + 0.0436772i
\(785\) 2.44563 + 20.3380i 0.0872883 + 0.725894i
\(786\) 0 0
\(787\) −3.14552 + 0.842840i −0.112126 + 0.0300440i −0.314446 0.949275i \(-0.601819\pi\)
0.202320 + 0.979319i \(0.435152\pi\)
\(788\) −15.8660 + 4.25129i −0.565203 + 0.151446i
\(789\) 0 0
\(790\) −1.28419 10.6793i −0.0456893 0.379954i
\(791\) 3.08775 17.5668i 0.109788 0.624604i
\(792\) 0 0
\(793\) −18.9478 + 70.7142i −0.672857 + 2.51114i
\(794\) 12.9908 22.5007i 0.461025 0.798519i
\(795\) 0 0
\(796\) −15.2365 + 8.79681i −0.540044 + 0.311795i
\(797\) −24.9240 24.9240i −0.882852 0.882852i 0.110971 0.993824i \(-0.464604\pi\)
−0.993824 + 0.110971i \(0.964604\pi\)
\(798\) 0 0
\(799\) 1.28277i 0.0453812i
\(800\) −0.112239 + 4.99874i −0.00396825 + 0.176732i
\(801\) 0 0
\(802\) −0.192433 0.718170i −0.00679505 0.0253595i
\(803\) 52.2359 + 13.9966i 1.84336 + 0.493928i
\(804\) 0 0
\(805\) −6.57486 31.2331i −0.231733 1.10082i
\(806\) 45.8716 1.61576
\(807\) 0 0
\(808\) −0.910691 3.39875i −0.0320380 0.119567i
\(809\) 40.1547 + 23.1833i 1.41176 + 0.815082i 0.995555 0.0941872i \(-0.0300252\pi\)
0.416209 + 0.909269i \(0.363359\pi\)
\(810\) 0 0
\(811\) 29.8077i 1.04669i −0.852120 0.523346i \(-0.824684\pi\)
0.852120 0.523346i \(-0.175316\pi\)
\(812\) −9.86880 + 0.868764i −0.346327 + 0.0304876i
\(813\) 0 0
\(814\) −4.04105 + 2.33310i −0.141639 + 0.0817752i
\(815\) −1.61114 0.688645i −0.0564359 0.0241222i
\(816\) 0 0
\(817\) −1.47879 + 5.51890i −0.0517362 + 0.193082i
\(818\) −4.83406 + 4.83406i −0.169019 + 0.169019i
\(819\) 0 0
\(820\) 4.10003 + 3.21982i 0.143179 + 0.112441i
\(821\) −15.5650 26.9593i −0.543221 0.940886i −0.998717 0.0506482i \(-0.983871\pi\)
0.455496 0.890238i \(-0.349462\pi\)
\(822\) 0 0
\(823\) −6.48862 + 1.73862i −0.226179 + 0.0606045i −0.370129 0.928981i \(-0.620686\pi\)
0.143950 + 0.989585i \(0.454020\pi\)
\(824\) 4.52144 + 7.83136i 0.157512 + 0.272818i
\(825\) 0 0
\(826\) 11.6128 + 2.04121i 0.404062 + 0.0710226i
\(827\) 23.1948 23.1948i 0.806562 0.806562i −0.177550 0.984112i \(-0.556817\pi\)
0.984112 + 0.177550i \(0.0568171\pi\)
\(828\) 0 0
\(829\) 14.6772 25.4217i 0.509762 0.882933i −0.490174 0.871624i \(-0.663067\pi\)
0.999936 0.0113086i \(-0.00359973\pi\)
\(830\) 4.57306 + 11.4006i 0.158733 + 0.395722i
\(831\) 0 0
\(832\) −4.52364 4.52364i −0.156829 0.156829i
\(833\) −0.100619 + 1.16452i −0.00348624 + 0.0403484i
\(834\) 0 0
\(835\) 0.0359251 0.0269310i 0.00124324 0.000931987i
\(836\) −11.6390 6.71978i −0.402543 0.232408i
\(837\) 0 0
\(838\) −34.8798 9.34601i −1.20490 0.322853i
\(839\) −11.9227 −0.411619 −0.205809 0.978592i \(-0.565983\pi\)
−0.205809 + 0.978592i \(0.565983\pi\)
\(840\) 0 0
\(841\) 14.9789 0.516513
\(842\) 26.2158 + 7.02451i 0.903457 + 0.242081i
\(843\) 0 0
\(844\) 16.5111 + 9.53271i 0.568337 + 0.328129i
\(845\) −61.8162 8.84524i −2.12654 0.304285i
\(846\) 0 0
\(847\) 33.5016 71.9456i 1.15113 2.47208i
\(848\) −7.52785 7.52785i −0.258507 0.258507i
\(849\) 0 0
\(850\) 0.801399 + 0.234137i 0.0274878 + 0.00803084i
\(851\) −1.96588 + 3.40501i −0.0673896 + 0.116722i
\(852\) 0 0
\(853\) 9.07222 9.07222i 0.310627 0.310627i −0.534525 0.845152i \(-0.679510\pi\)
0.845152 + 0.534525i \(0.179510\pi\)
\(854\) −23.2038 19.4490i −0.794018 0.665532i
\(855\) 0 0
\(856\) −4.63764 8.03263i −0.158511 0.274549i
\(857\) 10.4366 2.79649i 0.356508 0.0955262i −0.0761195 0.997099i \(-0.524253\pi\)
0.432628 + 0.901573i \(0.357586\pi\)
\(858\) 0 0
\(859\) 13.3334 + 23.0940i 0.454928 + 0.787959i 0.998684 0.0512848i \(-0.0163316\pi\)
−0.543756 + 0.839243i \(0.682998\pi\)
\(860\) 6.04317 0.726688i 0.206070 0.0247799i
\(861\) 0 0
\(862\) −11.0167 + 11.0167i −0.375230 + 0.375230i
\(863\) −10.7780 + 40.2240i −0.366887 + 1.36924i 0.497958 + 0.867201i \(0.334083\pi\)
−0.864845 + 0.502039i \(0.832583\pi\)
\(864\) 0 0
\(865\) 5.70505 13.3475i 0.193978 0.453827i
\(866\) −18.1660 + 10.4881i −0.617305 + 0.356401i
\(867\) 0 0
\(868\) −8.00823 + 17.1979i −0.271817 + 0.583734i
\(869\) 30.8000i 1.04482i
\(870\) 0 0
\(871\) 68.0921 + 39.3130i 2.30721 + 1.33207i
\(872\) −3.27140 12.2090i −0.110784 0.413450i
\(873\) 0 0
\(874\) −11.3242 −0.383048
\(875\) −29.0755 + 5.44209i −0.982931 + 0.183976i
\(876\) 0 0
\(877\) 56.5413 + 15.1502i 1.90926 + 0.511586i 0.994095 + 0.108514i \(0.0346091\pi\)
0.915168 + 0.403072i \(0.132058\pi\)
\(878\) −10.4012 38.8178i −0.351023 1.31004i
\(879\) 0 0
\(880\) −2.02798 + 14.1728i −0.0683633 + 0.477767i
\(881\) 5.21431i 0.175675i 0.996135 + 0.0878373i \(0.0279956\pi\)
−0.996135 + 0.0878373i \(0.972004\pi\)
\(882\) 0 0
\(883\) −1.39598 1.39598i −0.0469786 0.0469786i 0.683227 0.730206i \(-0.260576\pi\)
−0.730206 + 0.683227i \(0.760576\pi\)
\(884\) −0.925122 + 0.534119i −0.0311152 + 0.0179644i
\(885\) 0 0
\(886\) 1.97947 3.42855i 0.0665017 0.115184i
\(887\) −4.65470 + 17.3716i −0.156289 + 0.583280i 0.842702 + 0.538380i \(0.180964\pi\)
−0.998991 + 0.0448998i \(0.985703\pi\)
\(888\) 0 0
\(889\) 31.4483 + 5.52773i 1.05474 + 0.185394i
\(890\) −25.9687 + 3.12273i −0.870474 + 0.104674i
\(891\) 0 0
\(892\) 6.47280 1.73438i 0.216725 0.0580714i
\(893\) −15.5754 + 4.17342i −0.521211 + 0.139658i
\(894\) 0 0
\(895\) −19.2963 + 24.5713i −0.645003 + 0.821328i
\(896\) 2.48571 0.906239i 0.0830416 0.0302753i
\(897\) 0 0
\(898\) −8.93090 + 33.3306i −0.298028 + 1.11226i
\(899\) −13.4246 + 23.2522i −0.447737 + 0.775503i
\(900\) 0 0
\(901\) −1.53951 + 0.888835i −0.0512885 + 0.0296114i
\(902\) 10.5555 + 10.5555i 0.351459 + 0.351459i
\(903\) 0 0
\(904\) 6.74142i 0.224216i
\(905\) 18.7104 + 2.67726i 0.621955 + 0.0889950i
\(906\) 0 0
\(907\) −4.21277 15.7223i −0.139883 0.522049i −0.999930 0.0118350i \(-0.996233\pi\)
0.860047 0.510214i \(-0.170434\pi\)
\(908\) −6.05586 1.62266i −0.200971 0.0538500i
\(909\) 0 0
\(910\) 20.6754 31.7011i 0.685382 1.05088i
\(911\) 30.1101 0.997592 0.498796 0.866719i \(-0.333776\pi\)
0.498796 + 0.866719i \(0.333776\pi\)
\(912\) 0 0
\(913\) 9.10356 + 33.9750i 0.301284 + 1.12441i
\(914\) 3.51148 + 2.02735i 0.116149 + 0.0670589i
\(915\) 0 0
\(916\) 16.8597i 0.557061i
\(917\) −10.0387 4.67457i −0.331509 0.154368i
\(918\) 0 0
\(919\) −49.5704 + 28.6195i −1.63518 + 0.944070i −0.652716 + 0.757603i \(0.726370\pi\)
−0.982461 + 0.186467i \(0.940296\pi\)
\(920\) 4.49120 + 11.1966i 0.148070 + 0.369140i
\(921\) 0 0
\(922\) −4.93066 + 18.4015i −0.162382 + 0.606020i
\(923\) −44.9777 + 44.9777i −1.48046 + 1.48046i
\(924\) 0 0
\(925\) 3.11397 + 1.89230i 0.102387 + 0.0622186i
\(926\) 0.590556 + 1.02287i 0.0194069 + 0.0336137i
\(927\) 0 0
\(928\) 3.61689 0.969143i 0.118730 0.0318137i
\(929\) −23.2278 40.2317i −0.762078 1.31996i −0.941778 0.336236i \(-0.890846\pi\)
0.179700 0.983722i \(-0.442487\pi\)
\(930\) 0 0
\(931\) −14.4670 + 2.56699i −0.474137 + 0.0841297i
\(932\) −5.75499 + 5.75499i −0.188511 + 0.188511i
\(933\) 0 0
\(934\) −5.64659 + 9.78018i −0.184762 + 0.320017i
\(935\) 2.19830 + 0.939613i 0.0718922 + 0.0307286i
\(936\) 0 0
\(937\) −2.59520 2.59520i −0.0847814 0.0847814i 0.663444 0.748226i \(-0.269094\pi\)
−0.748226 + 0.663444i \(0.769094\pi\)
\(938\) −26.6264 + 18.6654i −0.869383 + 0.609447i
\(939\) 0 0
\(940\) 10.3036 + 13.7446i 0.336066 + 0.448300i
\(941\) −13.6189 7.86288i −0.443964 0.256323i 0.261314 0.965254i \(-0.415844\pi\)
−0.705278 + 0.708931i \(0.749178\pi\)
\(942\) 0 0
\(943\) 12.1496 + 3.25547i 0.395644 + 0.106013i
\(944\) −4.45652 −0.145047
\(945\) 0 0
\(946\) 17.4289 0.566663
\(947\) 39.5464 + 10.5964i 1.28509 + 0.344338i 0.835792 0.549046i \(-0.185009\pi\)
0.449294 + 0.893384i \(0.351675\pi\)
\(948\) 0 0
\(949\) 46.7935 + 27.0162i 1.51898 + 0.876984i
\(950\) −0.235589 + 10.4923i −0.00764353 + 0.340416i
\(951\) 0 0
\(952\) −0.0387414 0.440087i −0.00125562 0.0142633i
\(953\) −14.5512 14.5512i −0.471358 0.471358i 0.430996 0.902354i \(-0.358162\pi\)
−0.902354 + 0.430996i \(0.858162\pi\)
\(954\) 0 0
\(955\) −23.7005 + 9.50680i −0.766929 + 0.307633i
\(956\) 3.79766 6.57775i 0.122825 0.212740i
\(957\) 0 0
\(958\) −19.7368 + 19.7368i −0.637668 + 0.637668i
\(959\) 6.13385 7.31804i 0.198072 0.236312i
\(960\) 0 0
\(961\) 10.2070 + 17.6791i 0.329259 + 0.570294i
\(962\) −4.50337 + 1.20667i −0.145194 + 0.0389047i
\(963\) 0 0
\(964\) −4.32911 7.49824i −0.139431 0.241502i
\(965\) 0.667321 + 5.54947i 0.0214818 + 0.178644i
\(966\) 0 0
\(967\) −15.3042 + 15.3042i −0.492148 + 0.492148i −0.908983 0.416834i \(-0.863140\pi\)
0.416834 + 0.908983i \(0.363140\pi\)
\(968\) −7.76366 + 28.9744i −0.249533 + 0.931272i
\(969\) 0 0
\(970\) −25.6352 + 10.2829i −0.823096 + 0.330163i
\(971\) −13.0517 + 7.53542i −0.418850 + 0.241823i −0.694585 0.719410i \(-0.744412\pi\)
0.275735 + 0.961234i \(0.411079\pi\)
\(972\) 0 0
\(973\) −3.91805 5.58915i −0.125607 0.179180i
\(974\) 17.5179i 0.561310i
\(975\) 0 0
\(976\) 9.91039 + 5.72176i 0.317224 + 0.183149i
\(977\) −11.2120 41.8438i −0.358704 1.33870i −0.875759 0.482749i \(-0.839638\pi\)
0.517055 0.855952i \(-0.327028\pi\)
\(978\) 0 0
\(979\) −74.8956 −2.39368
\(980\) 8.27568 + 13.2858i 0.264357 + 0.424400i
\(981\) 0 0
\(982\) 5.83082 + 1.56236i 0.186069 + 0.0498570i
\(983\) −11.4868 42.8692i −0.366371 1.36731i −0.865553 0.500817i \(-0.833033\pi\)
0.499183 0.866497i \(-0.333634\pi\)
\(984\) 0 0
\(985\) 22.0307 + 29.3882i 0.701957 + 0.936386i
\(986\) 0.625255i 0.0199122i
\(987\) 0 0
\(988\) −9.49510 9.49510i −0.302079 0.302079i
\(989\) 12.7182 7.34285i 0.404415 0.233489i
\(990\) 0 0
\(991\) −26.0327 + 45.0900i −0.826956 + 1.43233i 0.0734588 + 0.997298i \(0.476596\pi\)
−0.900415 + 0.435032i \(0.856737\pi\)
\(992\) 1.85583 6.92604i 0.0589225 0.219902i
\(993\) 0 0
\(994\) −9.01057 24.7149i −0.285798 0.783910i
\(995\) 30.9401 + 24.2978i 0.980869 + 0.770292i
\(996\) 0 0
\(997\) −22.5397 + 6.03949i −0.713839 + 0.191273i −0.597421 0.801928i \(-0.703808\pi\)
−0.116418 + 0.993200i \(0.537141\pi\)
\(998\) 0.0390577 0.0104655i 0.00123635 0.000331279i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.2.bv.d.73.3 32
3.2 odd 2 inner 630.2.bv.d.73.6 yes 32
5.2 odd 4 inner 630.2.bv.d.577.8 yes 32
7.5 odd 6 inner 630.2.bv.d.523.8 yes 32
15.2 even 4 inner 630.2.bv.d.577.1 yes 32
21.5 even 6 inner 630.2.bv.d.523.1 yes 32
35.12 even 12 inner 630.2.bv.d.397.3 yes 32
105.47 odd 12 inner 630.2.bv.d.397.6 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.2.bv.d.73.3 32 1.1 even 1 trivial
630.2.bv.d.73.6 yes 32 3.2 odd 2 inner
630.2.bv.d.397.3 yes 32 35.12 even 12 inner
630.2.bv.d.397.6 yes 32 105.47 odd 12 inner
630.2.bv.d.523.1 yes 32 21.5 even 6 inner
630.2.bv.d.523.8 yes 32 7.5 odd 6 inner
630.2.bv.d.577.1 yes 32 15.2 even 4 inner
630.2.bv.d.577.8 yes 32 5.2 odd 4 inner