Properties

Label 630.2.bv.c.397.1
Level $630$
Weight $2$
Character 630.397
Analytic conductor $5.031$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [630,2,Mod(73,630)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(630, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 9, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("630.73"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 630.bv (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,12,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.03057532734\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 10x^{14} + 61x^{12} + 266x^{10} + 852x^{8} + 1438x^{6} + 1933x^{4} + 3038x^{2} + 2401 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 397.1
Root \(-0.587308 - 2.01725i\) of defining polynomial
Character \(\chi\) \(=\) 630.397
Dual form 630.2.bv.c.73.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.965926 + 0.258819i) q^{2} +(0.866025 - 0.500000i) q^{4} +(1.38266 + 1.75735i) q^{5} +(2.58583 + 0.559876i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(-1.79038 - 1.33961i) q^{10} +(1.83557 + 3.17930i) q^{11} +(-0.830578 - 0.830578i) q^{13} +(-2.64263 + 0.128464i) q^{14} +(0.500000 - 0.866025i) q^{16} +(0.761471 + 0.204036i) q^{17} +(-1.09461 + 1.89593i) q^{19} +(2.07609 + 0.830578i) q^{20} +(-2.59589 - 2.59589i) q^{22} +(-1.21791 - 4.54529i) q^{23} +(-1.17653 + 4.85961i) q^{25} +(1.01725 + 0.587308i) q^{26} +(2.51934 - 0.808050i) q^{28} -2.62236i q^{29} +(0.0359651 - 0.0207644i) q^{31} +(-0.258819 + 0.965926i) q^{32} -0.788333 q^{34} +(2.59142 + 5.31832i) q^{35} +(-0.248174 + 0.0664979i) q^{37} +(0.566614 - 2.11463i) q^{38} +(-2.22032 - 0.264946i) q^{40} +8.98026i q^{41} +(-0.474569 + 0.474569i) q^{43} +(3.17930 + 1.83557i) q^{44} +(2.35282 + 4.07520i) q^{46} +(-1.65648 - 6.18205i) q^{47} +(6.37308 + 2.89549i) q^{49} +(-0.121320 - 4.99853i) q^{50} +(-1.13459 - 0.304013i) q^{52} +(7.64413 + 2.04824i) q^{53} +(-3.04917 + 7.62161i) q^{55} +(-2.22435 + 1.43257i) q^{56} +(0.678717 + 2.53301i) q^{58} +(5.35616 + 9.27713i) q^{59} +(1.72539 + 0.996157i) q^{61} +(-0.0293654 + 0.0293654i) q^{62} -1.00000i q^{64} +(0.311210 - 2.60802i) q^{65} +(-1.71399 + 6.39671i) q^{67} +(0.761471 - 0.204036i) q^{68} +(-3.87960 - 4.46639i) q^{70} -8.11777 q^{71} +(2.55331 - 9.52910i) q^{73} +(0.222506 - 0.128464i) q^{74} +2.18923i q^{76} +(2.96647 + 9.24884i) q^{77} +(11.6145 + 6.70563i) q^{79} +(2.21323 - 0.318742i) q^{80} +(-2.32426 - 8.67427i) q^{82} +(-9.73033 - 9.73033i) q^{83} +(0.694291 + 1.62028i) q^{85} +(0.335571 - 0.581226i) q^{86} +(-3.54605 - 0.950161i) q^{88} +(0.715130 - 1.23864i) q^{89} +(-1.68272 - 2.61276i) q^{91} +(-3.32739 - 3.32739i) q^{92} +(3.20007 + 5.54268i) q^{94} +(-4.84527 + 0.697798i) q^{95} +(3.16693 - 3.16693i) q^{97} +(-6.90533 - 1.14736i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 12 q^{5} + 8 q^{7} - 12 q^{10} + 12 q^{11} + 8 q^{16} + 36 q^{17} - 8 q^{22} + 4 q^{23} + 12 q^{25} - 12 q^{26} + 4 q^{28} + 24 q^{31} - 8 q^{35} + 4 q^{37} - 24 q^{38} - 8 q^{43} - 8 q^{46} - 12 q^{47}+ \cdots - 40 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.965926 + 0.258819i −0.683013 + 0.183013i
\(3\) 0 0
\(4\) 0.866025 0.500000i 0.433013 0.250000i
\(5\) 1.38266 + 1.75735i 0.618342 + 0.785909i
\(6\) 0 0
\(7\) 2.58583 + 0.559876i 0.977353 + 0.211613i
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) 0 0
\(10\) −1.79038 1.33961i −0.566167 0.423621i
\(11\) 1.83557 + 3.17930i 0.553445 + 0.958596i 0.998023 + 0.0628551i \(0.0200206\pi\)
−0.444577 + 0.895741i \(0.646646\pi\)
\(12\) 0 0
\(13\) −0.830578 0.830578i −0.230361 0.230361i 0.582482 0.812843i \(-0.302082\pi\)
−0.812843 + 0.582482i \(0.802082\pi\)
\(14\) −2.64263 + 0.128464i −0.706273 + 0.0343335i
\(15\) 0 0
\(16\) 0.500000 0.866025i 0.125000 0.216506i
\(17\) 0.761471 + 0.204036i 0.184684 + 0.0494859i 0.349976 0.936759i \(-0.386190\pi\)
−0.165292 + 0.986245i \(0.552857\pi\)
\(18\) 0 0
\(19\) −1.09461 + 1.89593i −0.251122 + 0.434955i −0.963835 0.266500i \(-0.914133\pi\)
0.712713 + 0.701455i \(0.247466\pi\)
\(20\) 2.07609 + 0.830578i 0.464227 + 0.185723i
\(21\) 0 0
\(22\) −2.59589 2.59589i −0.553445 0.553445i
\(23\) −1.21791 4.54529i −0.253951 0.947759i −0.968671 0.248348i \(-0.920112\pi\)
0.714719 0.699411i \(-0.246554\pi\)
\(24\) 0 0
\(25\) −1.17653 + 4.85961i −0.235306 + 0.971921i
\(26\) 1.01725 + 0.587308i 0.199498 + 0.115180i
\(27\) 0 0
\(28\) 2.51934 0.808050i 0.476110 0.152707i
\(29\) 2.62236i 0.486960i −0.969906 0.243480i \(-0.921711\pi\)
0.969906 0.243480i \(-0.0782891\pi\)
\(30\) 0 0
\(31\) 0.0359651 0.0207644i 0.00645952 0.00372940i −0.496767 0.867884i \(-0.665480\pi\)
0.503226 + 0.864155i \(0.332146\pi\)
\(32\) −0.258819 + 0.965926i −0.0457532 + 0.170753i
\(33\) 0 0
\(34\) −0.788333 −0.135198
\(35\) 2.59142 + 5.31832i 0.438030 + 0.898960i
\(36\) 0 0
\(37\) −0.248174 + 0.0664979i −0.0407995 + 0.0109322i −0.279161 0.960244i \(-0.590056\pi\)
0.238362 + 0.971176i \(0.423390\pi\)
\(38\) 0.566614 2.11463i 0.0919169 0.343038i
\(39\) 0 0
\(40\) −2.22032 0.264946i −0.351063 0.0418916i
\(41\) 8.98026i 1.40248i 0.712925 + 0.701241i \(0.247370\pi\)
−0.712925 + 0.701241i \(0.752630\pi\)
\(42\) 0 0
\(43\) −0.474569 + 0.474569i −0.0723711 + 0.0723711i −0.742366 0.669995i \(-0.766296\pi\)
0.669995 + 0.742366i \(0.266296\pi\)
\(44\) 3.17930 + 1.83557i 0.479298 + 0.276723i
\(45\) 0 0
\(46\) 2.35282 + 4.07520i 0.346904 + 0.600855i
\(47\) −1.65648 6.18205i −0.241622 0.901745i −0.975051 0.221980i \(-0.928748\pi\)
0.733429 0.679766i \(-0.237919\pi\)
\(48\) 0 0
\(49\) 6.37308 + 2.89549i 0.910440 + 0.413642i
\(50\) −0.121320 4.99853i −0.0171573 0.706899i
\(51\) 0 0
\(52\) −1.13459 0.304013i −0.157339 0.0421590i
\(53\) 7.64413 + 2.04824i 1.05000 + 0.281347i 0.742252 0.670120i \(-0.233758\pi\)
0.307749 + 0.951468i \(0.400424\pi\)
\(54\) 0 0
\(55\) −3.04917 + 7.62161i −0.411150 + 1.02770i
\(56\) −2.22435 + 1.43257i −0.297242 + 0.191435i
\(57\) 0 0
\(58\) 0.678717 + 2.53301i 0.0891199 + 0.332600i
\(59\) 5.35616 + 9.27713i 0.697312 + 1.20778i 0.969395 + 0.245506i \(0.0789541\pi\)
−0.272083 + 0.962274i \(0.587713\pi\)
\(60\) 0 0
\(61\) 1.72539 + 0.996157i 0.220914 + 0.127545i 0.606373 0.795180i \(-0.292624\pi\)
−0.385459 + 0.922725i \(0.625957\pi\)
\(62\) −0.0293654 + 0.0293654i −0.00372940 + 0.00372940i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 0.311210 2.60802i 0.0386008 0.323485i
\(66\) 0 0
\(67\) −1.71399 + 6.39671i −0.209398 + 0.781482i 0.778666 + 0.627438i \(0.215897\pi\)
−0.988064 + 0.154044i \(0.950770\pi\)
\(68\) 0.761471 0.204036i 0.0923420 0.0247430i
\(69\) 0 0
\(70\) −3.87960 4.46639i −0.463701 0.533836i
\(71\) −8.11777 −0.963402 −0.481701 0.876336i \(-0.659981\pi\)
−0.481701 + 0.876336i \(0.659981\pi\)
\(72\) 0 0
\(73\) 2.55331 9.52910i 0.298843 1.11530i −0.639274 0.768979i \(-0.720765\pi\)
0.938117 0.346318i \(-0.112568\pi\)
\(74\) 0.222506 0.128464i 0.0258658 0.0149336i
\(75\) 0 0
\(76\) 2.18923i 0.251122i
\(77\) 2.96647 + 9.24884i 0.338060 + 1.05400i
\(78\) 0 0
\(79\) 11.6145 + 6.70563i 1.30673 + 0.754443i 0.981550 0.191208i \(-0.0612405\pi\)
0.325184 + 0.945651i \(0.394574\pi\)
\(80\) 2.21323 0.318742i 0.247447 0.0356364i
\(81\) 0 0
\(82\) −2.32426 8.67427i −0.256672 0.957912i
\(83\) −9.73033 9.73033i −1.06804 1.06804i −0.997509 0.0705331i \(-0.977530\pi\)
−0.0705331 0.997509i \(-0.522470\pi\)
\(84\) 0 0
\(85\) 0.694291 + 1.62028i 0.0753065 + 0.175744i
\(86\) 0.335571 0.581226i 0.0361855 0.0626752i
\(87\) 0 0
\(88\) −3.54605 0.950161i −0.378010 0.101288i
\(89\) 0.715130 1.23864i 0.0758036 0.131296i −0.825632 0.564209i \(-0.809181\pi\)
0.901435 + 0.432914i \(0.142514\pi\)
\(90\) 0 0
\(91\) −1.68272 2.61276i −0.176397 0.273892i
\(92\) −3.32739 3.32739i −0.346904 0.346904i
\(93\) 0 0
\(94\) 3.20007 + 5.54268i 0.330062 + 0.571684i
\(95\) −4.84527 + 0.697798i −0.497114 + 0.0715926i
\(96\) 0 0
\(97\) 3.16693 3.16693i 0.321553 0.321553i −0.527810 0.849363i \(-0.676987\pi\)
0.849363 + 0.527810i \(0.176987\pi\)
\(98\) −6.90533 1.14736i −0.697544 0.115901i
\(99\) 0 0
\(100\) 1.41090 + 4.79681i 0.141090 + 0.479681i
\(101\) 0.0622734 0.0359536i 0.00619644 0.00357751i −0.496899 0.867809i \(-0.665528\pi\)
0.503095 + 0.864231i \(0.332195\pi\)
\(102\) 0 0
\(103\) −16.0148 + 4.29116i −1.57799 + 0.422820i −0.938302 0.345817i \(-0.887602\pi\)
−0.639685 + 0.768638i \(0.720935\pi\)
\(104\) 1.17462 0.115180
\(105\) 0 0
\(106\) −7.91378 −0.768654
\(107\) 4.41372 1.18265i 0.426690 0.114331i −0.0390819 0.999236i \(-0.512443\pi\)
0.465772 + 0.884905i \(0.345777\pi\)
\(108\) 0 0
\(109\) 15.6773 9.05131i 1.50162 0.866958i 0.501617 0.865090i \(-0.332739\pi\)
0.999998 0.00186842i \(-0.000594737\pi\)
\(110\) 0.972654 8.15110i 0.0927390 0.777176i
\(111\) 0 0
\(112\) 1.77778 1.95946i 0.167985 0.185152i
\(113\) −1.52064 + 1.52064i −0.143049 + 0.143049i −0.775005 0.631955i \(-0.782253\pi\)
0.631955 + 0.775005i \(0.282253\pi\)
\(114\) 0 0
\(115\) 6.30371 8.42486i 0.587824 0.785622i
\(116\) −1.31118 2.27103i −0.121740 0.210860i
\(117\) 0 0
\(118\) −7.57475 7.57475i −0.697312 0.697312i
\(119\) 1.85480 + 0.953932i 0.170030 + 0.0874468i
\(120\) 0 0
\(121\) −1.23864 + 2.14539i −0.112604 + 0.195035i
\(122\) −1.92443 0.515649i −0.174229 0.0466846i
\(123\) 0 0
\(124\) 0.0207644 0.0359651i 0.00186470 0.00322976i
\(125\) −10.1667 + 4.65160i −0.909341 + 0.416051i
\(126\) 0 0
\(127\) −13.2527 13.2527i −1.17599 1.17599i −0.980757 0.195234i \(-0.937453\pi\)
−0.195234 0.980757i \(-0.562547\pi\)
\(128\) 0.258819 + 0.965926i 0.0228766 + 0.0853766i
\(129\) 0 0
\(130\) 0.374399 + 2.59970i 0.0328370 + 0.228009i
\(131\) −12.2929 7.09731i −1.07404 0.620095i −0.144755 0.989468i \(-0.546239\pi\)
−0.929281 + 0.369372i \(0.879573\pi\)
\(132\) 0 0
\(133\) −3.89197 + 4.28970i −0.337477 + 0.371964i
\(134\) 6.62236i 0.572085i
\(135\) 0 0
\(136\) −0.682717 + 0.394167i −0.0585425 + 0.0337995i
\(137\) 4.90887 18.3201i 0.419393 1.56519i −0.356479 0.934303i \(-0.616023\pi\)
0.775871 0.630891i \(-0.217311\pi\)
\(138\) 0 0
\(139\) −8.23706 −0.698658 −0.349329 0.937000i \(-0.613591\pi\)
−0.349329 + 0.937000i \(0.613591\pi\)
\(140\) 4.90340 + 3.31009i 0.414413 + 0.279754i
\(141\) 0 0
\(142\) 7.84116 2.10103i 0.658016 0.176315i
\(143\) 1.11607 4.16524i 0.0933308 0.348315i
\(144\) 0 0
\(145\) 4.60840 3.62582i 0.382706 0.301108i
\(146\) 9.86525i 0.816454i
\(147\) 0 0
\(148\) −0.181676 + 0.181676i −0.0149336 + 0.0149336i
\(149\) 4.19317 + 2.42093i 0.343518 + 0.198330i 0.661826 0.749657i \(-0.269782\pi\)
−0.318309 + 0.947987i \(0.603115\pi\)
\(150\) 0 0
\(151\) −5.02292 8.69995i −0.408759 0.707992i 0.585992 0.810317i \(-0.300705\pi\)
−0.994751 + 0.102325i \(0.967372\pi\)
\(152\) −0.566614 2.11463i −0.0459584 0.171519i
\(153\) 0 0
\(154\) −5.25916 8.16592i −0.423795 0.658028i
\(155\) 0.0862176 + 0.0344930i 0.00692516 + 0.00277054i
\(156\) 0 0
\(157\) 23.6523 + 6.33762i 1.88766 + 0.505797i 0.998872 + 0.0474774i \(0.0151182\pi\)
0.888788 + 0.458320i \(0.151548\pi\)
\(158\) −12.9543 3.47109i −1.03059 0.276145i
\(159\) 0 0
\(160\) −2.05532 + 0.880708i −0.162488 + 0.0696261i
\(161\) −0.604505 12.4353i −0.0476417 0.980035i
\(162\) 0 0
\(163\) −5.68510 21.2171i −0.445291 1.66185i −0.715166 0.698954i \(-0.753649\pi\)
0.269875 0.962895i \(-0.413018\pi\)
\(164\) 4.49013 + 7.77713i 0.350620 + 0.607292i
\(165\) 0 0
\(166\) 11.9172 + 6.88038i 0.924952 + 0.534021i
\(167\) −3.14616 + 3.14616i −0.243457 + 0.243457i −0.818279 0.574821i \(-0.805072\pi\)
0.574821 + 0.818279i \(0.305072\pi\)
\(168\) 0 0
\(169\) 11.6203i 0.893868i
\(170\) −1.08999 1.38537i −0.0835987 0.106253i
\(171\) 0 0
\(172\) −0.173704 + 0.648273i −0.0132448 + 0.0494304i
\(173\) 5.04844 1.35273i 0.383826 0.102846i −0.0617463 0.998092i \(-0.519667\pi\)
0.445572 + 0.895246i \(0.353000\pi\)
\(174\) 0 0
\(175\) −5.76309 + 11.9074i −0.435648 + 0.900117i
\(176\) 3.67114 0.276723
\(177\) 0 0
\(178\) −0.370178 + 1.38152i −0.0277460 + 0.103550i
\(179\) 10.8847 6.28428i 0.813560 0.469709i −0.0346308 0.999400i \(-0.511026\pi\)
0.848191 + 0.529691i \(0.177692\pi\)
\(180\) 0 0
\(181\) 11.6742i 0.867740i 0.900976 + 0.433870i \(0.142852\pi\)
−0.900976 + 0.433870i \(0.857148\pi\)
\(182\) 2.30161 + 2.08821i 0.170607 + 0.154789i
\(183\) 0 0
\(184\) 4.07520 + 2.35282i 0.300428 + 0.173452i
\(185\) −0.459998 0.344183i −0.0338197 0.0253048i
\(186\) 0 0
\(187\) 0.749044 + 2.79547i 0.0547755 + 0.204425i
\(188\) −4.52558 4.52558i −0.330062 0.330062i
\(189\) 0 0
\(190\) 4.49957 1.92807i 0.326433 0.139877i
\(191\) 7.75170 13.4263i 0.560894 0.971496i −0.436525 0.899692i \(-0.643791\pi\)
0.997419 0.0718040i \(-0.0228756\pi\)
\(192\) 0 0
\(193\) −8.69132 2.32883i −0.625615 0.167633i −0.0679359 0.997690i \(-0.521641\pi\)
−0.557679 + 0.830057i \(0.688308\pi\)
\(194\) −2.23936 + 3.87868i −0.160776 + 0.278473i
\(195\) 0 0
\(196\) 6.96699 0.678966i 0.497642 0.0484976i
\(197\) −12.1951 12.1951i −0.868865 0.868865i 0.123482 0.992347i \(-0.460594\pi\)
−0.992347 + 0.123482i \(0.960594\pi\)
\(198\) 0 0
\(199\) −4.36557 7.56140i −0.309467 0.536013i 0.668779 0.743462i \(-0.266817\pi\)
−0.978246 + 0.207448i \(0.933484\pi\)
\(200\) −2.60433 4.26819i −0.184154 0.301807i
\(201\) 0 0
\(202\) −0.0508460 + 0.0508460i −0.00357751 + 0.00357751i
\(203\) 1.46820 6.78099i 0.103047 0.475932i
\(204\) 0 0
\(205\) −15.7814 + 12.4166i −1.10222 + 0.867213i
\(206\) 14.3585 8.28988i 1.00040 0.577583i
\(207\) 0 0
\(208\) −1.13459 + 0.304013i −0.0786697 + 0.0210795i
\(209\) −8.03696 −0.555928
\(210\) 0 0
\(211\) −11.1745 −0.769288 −0.384644 0.923065i \(-0.625676\pi\)
−0.384644 + 0.923065i \(0.625676\pi\)
\(212\) 7.64413 2.04824i 0.525001 0.140674i
\(213\) 0 0
\(214\) −3.95723 + 2.28471i −0.270511 + 0.156179i
\(215\) −1.49015 0.177816i −0.101627 0.0121270i
\(216\) 0 0
\(217\) 0.104625 0.0335574i 0.00710242 0.00227803i
\(218\) −12.8005 + 12.8005i −0.866958 + 0.866958i
\(219\) 0 0
\(220\) 1.17015 + 8.12509i 0.0788913 + 0.547794i
\(221\) −0.462994 0.801929i −0.0311443 0.0539436i
\(222\) 0 0
\(223\) −0.746804 0.746804i −0.0500097 0.0500097i 0.681660 0.731669i \(-0.261258\pi\)
−0.731669 + 0.681660i \(0.761258\pi\)
\(224\) −1.21006 + 2.35282i −0.0808507 + 0.157204i
\(225\) 0 0
\(226\) 1.07525 1.86239i 0.0715247 0.123884i
\(227\) 3.01404 + 0.807609i 0.200049 + 0.0536029i 0.357452 0.933932i \(-0.383646\pi\)
−0.157403 + 0.987534i \(0.550312\pi\)
\(228\) 0 0
\(229\) −4.21091 + 7.29350i −0.278264 + 0.481968i −0.970954 0.239268i \(-0.923093\pi\)
0.692689 + 0.721236i \(0.256426\pi\)
\(230\) −3.90840 + 9.76931i −0.257712 + 0.644169i
\(231\) 0 0
\(232\) 1.85429 + 1.85429i 0.121740 + 0.121740i
\(233\) 5.90027 + 22.0201i 0.386540 + 1.44259i 0.835725 + 0.549148i \(0.185048\pi\)
−0.449186 + 0.893439i \(0.648286\pi\)
\(234\) 0 0
\(235\) 8.57367 11.4587i 0.559285 0.747480i
\(236\) 9.27713 + 5.35616i 0.603890 + 0.348656i
\(237\) 0 0
\(238\) −2.03850 0.441369i −0.132136 0.0286097i
\(239\) 23.9971i 1.55224i −0.630585 0.776120i \(-0.717185\pi\)
0.630585 0.776120i \(-0.282815\pi\)
\(240\) 0 0
\(241\) −21.4666 + 12.3937i −1.38278 + 0.798350i −0.992488 0.122340i \(-0.960960\pi\)
−0.390295 + 0.920690i \(0.627627\pi\)
\(242\) 0.641168 2.39287i 0.0412158 0.153820i
\(243\) 0 0
\(244\) 1.99231 0.127545
\(245\) 3.72338 + 15.2032i 0.237878 + 0.971295i
\(246\) 0 0
\(247\) 2.48388 0.665553i 0.158045 0.0423481i
\(248\) −0.0107485 + 0.0401138i −0.000682528 + 0.00254723i
\(249\) 0 0
\(250\) 8.61640 7.12444i 0.544949 0.450589i
\(251\) 11.1158i 0.701623i 0.936446 + 0.350811i \(0.114094\pi\)
−0.936446 + 0.350811i \(0.885906\pi\)
\(252\) 0 0
\(253\) 12.2153 12.2153i 0.767970 0.767970i
\(254\) 16.2312 + 9.37110i 1.01844 + 0.587995i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 6.54637 + 24.4314i 0.408351 + 1.52399i 0.797790 + 0.602935i \(0.206002\pi\)
−0.389439 + 0.921052i \(0.627331\pi\)
\(258\) 0 0
\(259\) −0.678966 + 0.0330060i −0.0421889 + 0.00205090i
\(260\) −1.03449 2.41421i −0.0641565 0.149723i
\(261\) 0 0
\(262\) 13.7110 + 3.67384i 0.847066 + 0.226971i
\(263\) 10.9595 + 2.93659i 0.675792 + 0.181078i 0.580363 0.814358i \(-0.302911\pi\)
0.0954297 + 0.995436i \(0.469577\pi\)
\(264\) 0 0
\(265\) 6.96973 + 16.2654i 0.428147 + 0.999174i
\(266\) 2.64910 5.15085i 0.162427 0.315819i
\(267\) 0 0
\(268\) 1.71399 + 6.39671i 0.104699 + 0.390741i
\(269\) −4.03346 6.98616i −0.245924 0.425954i 0.716467 0.697621i \(-0.245758\pi\)
−0.962391 + 0.271668i \(0.912425\pi\)
\(270\) 0 0
\(271\) 7.27419 + 4.19976i 0.441876 + 0.255117i 0.704393 0.709810i \(-0.251219\pi\)
−0.262517 + 0.964927i \(0.584553\pi\)
\(272\) 0.557436 0.557436i 0.0337995 0.0337995i
\(273\) 0 0
\(274\) 18.9664i 1.14580i
\(275\) −17.6098 + 5.17962i −1.06191 + 0.312343i
\(276\) 0 0
\(277\) 1.47009 5.48646i 0.0883293 0.329650i −0.907594 0.419848i \(-0.862083\pi\)
0.995924 + 0.0901983i \(0.0287501\pi\)
\(278\) 7.95639 2.13191i 0.477193 0.127863i
\(279\) 0 0
\(280\) −5.59303 1.92821i −0.334248 0.115233i
\(281\) −7.27627 −0.434066 −0.217033 0.976164i \(-0.569638\pi\)
−0.217033 + 0.976164i \(0.569638\pi\)
\(282\) 0 0
\(283\) −1.99550 + 7.44729i −0.118620 + 0.442696i −0.999532 0.0305840i \(-0.990263\pi\)
0.880912 + 0.473280i \(0.156930\pi\)
\(284\) −7.03019 + 4.05888i −0.417165 + 0.240850i
\(285\) 0 0
\(286\) 4.31218i 0.254984i
\(287\) −5.02784 + 23.2215i −0.296784 + 1.37072i
\(288\) 0 0
\(289\) −14.1842 8.18927i −0.834366 0.481721i
\(290\) −3.51294 + 4.69502i −0.206287 + 0.275701i
\(291\) 0 0
\(292\) −2.55331 9.52910i −0.149421 0.557648i
\(293\) 3.35198 + 3.35198i 0.195824 + 0.195824i 0.798207 0.602383i \(-0.205782\pi\)
−0.602383 + 0.798207i \(0.705782\pi\)
\(294\) 0 0
\(295\) −8.89741 + 22.2397i −0.518027 + 1.29485i
\(296\) 0.128464 0.222506i 0.00746682 0.0129329i
\(297\) 0 0
\(298\) −4.67687 1.25316i −0.270924 0.0725938i
\(299\) −2.76365 + 4.78679i −0.159826 + 0.276827i
\(300\) 0 0
\(301\) −1.49286 + 0.961456i −0.0860468 + 0.0554174i
\(302\) 7.10348 + 7.10348i 0.408759 + 0.408759i
\(303\) 0 0
\(304\) 1.09461 + 1.89593i 0.0627804 + 0.108739i
\(305\) 0.635034 + 4.40946i 0.0363619 + 0.252485i
\(306\) 0 0
\(307\) 1.06546 1.06546i 0.0608089 0.0608089i −0.676048 0.736857i \(-0.736309\pi\)
0.736857 + 0.676048i \(0.236309\pi\)
\(308\) 7.19345 + 6.52650i 0.409885 + 0.371882i
\(309\) 0 0
\(310\) −0.0922072 0.0110029i −0.00523702 0.000624923i
\(311\) −11.9584 + 6.90417i −0.678097 + 0.391500i −0.799138 0.601148i \(-0.794710\pi\)
0.121040 + 0.992648i \(0.461377\pi\)
\(312\) 0 0
\(313\) 22.5515 6.04266i 1.27469 0.341551i 0.442863 0.896590i \(-0.353963\pi\)
0.831825 + 0.555038i \(0.187296\pi\)
\(314\) −24.4867 −1.38186
\(315\) 0 0
\(316\) 13.4113 0.754443
\(317\) 12.7394 3.41352i 0.715518 0.191722i 0.117347 0.993091i \(-0.462561\pi\)
0.598171 + 0.801369i \(0.295894\pi\)
\(318\) 0 0
\(319\) 8.33728 4.81353i 0.466798 0.269506i
\(320\) 1.75735 1.38266i 0.0982386 0.0772928i
\(321\) 0 0
\(322\) 3.80239 + 11.8551i 0.211899 + 0.660658i
\(323\) −1.22035 + 1.22035i −0.0679023 + 0.0679023i
\(324\) 0 0
\(325\) 5.01348 3.05909i 0.278098 0.169688i
\(326\) 10.9828 + 19.0227i 0.608279 + 1.05357i
\(327\) 0 0
\(328\) −6.35000 6.35000i −0.350620 0.350620i
\(329\) −0.822187 16.9132i −0.0453286 0.932454i
\(330\) 0 0
\(331\) 9.54799 16.5376i 0.524805 0.908989i −0.474778 0.880106i \(-0.657472\pi\)
0.999583 0.0288830i \(-0.00919501\pi\)
\(332\) −13.2919 3.56155i −0.729487 0.195465i
\(333\) 0 0
\(334\) 2.22467 3.85325i 0.121729 0.210840i
\(335\) −13.6111 + 5.83237i −0.743653 + 0.318656i
\(336\) 0 0
\(337\) 0.488226 + 0.488226i 0.0265953 + 0.0265953i 0.720279 0.693684i \(-0.244014\pi\)
−0.693684 + 0.720279i \(0.744014\pi\)
\(338\) 3.00755 + 11.2243i 0.163589 + 0.610523i
\(339\) 0 0
\(340\) 1.41141 + 1.05606i 0.0765447 + 0.0572728i
\(341\) 0.132033 + 0.0762292i 0.00714998 + 0.00412804i
\(342\) 0 0
\(343\) 14.8586 + 11.0554i 0.802289 + 0.596936i
\(344\) 0.671142i 0.0361855i
\(345\) 0 0
\(346\) −4.52631 + 2.61327i −0.243336 + 0.140490i
\(347\) −0.986094 + 3.68015i −0.0529363 + 0.197561i −0.987330 0.158682i \(-0.949276\pi\)
0.934393 + 0.356243i \(0.115942\pi\)
\(348\) 0 0
\(349\) 7.91303 0.423575 0.211787 0.977316i \(-0.432072\pi\)
0.211787 + 0.977316i \(0.432072\pi\)
\(350\) 2.48484 12.9933i 0.132820 0.694520i
\(351\) 0 0
\(352\) −3.54605 + 0.950161i −0.189005 + 0.0506438i
\(353\) 6.67203 24.9004i 0.355116 1.32531i −0.525222 0.850965i \(-0.676018\pi\)
0.880338 0.474347i \(-0.157316\pi\)
\(354\) 0 0
\(355\) −11.2241 14.2657i −0.595712 0.757146i
\(356\) 1.43026i 0.0758036i
\(357\) 0 0
\(358\) −8.88731 + 8.88731i −0.469709 + 0.469709i
\(359\) 8.99497 + 5.19325i 0.474737 + 0.274089i 0.718220 0.695816i \(-0.244957\pi\)
−0.243484 + 0.969905i \(0.578290\pi\)
\(360\) 0 0
\(361\) 7.10364 + 12.3039i 0.373876 + 0.647572i
\(362\) −3.02152 11.2765i −0.158807 0.592677i
\(363\) 0 0
\(364\) −2.76365 1.42136i −0.144855 0.0744994i
\(365\) 20.2763 8.68840i 1.06131 0.454772i
\(366\) 0 0
\(367\) −8.39004 2.24811i −0.437957 0.117350i 0.0331020 0.999452i \(-0.489461\pi\)
−0.471059 + 0.882102i \(0.656128\pi\)
\(368\) −4.54529 1.21791i −0.236940 0.0634878i
\(369\) 0 0
\(370\) 0.533405 + 0.213399i 0.0277304 + 0.0110941i
\(371\) 18.6197 + 9.57617i 0.966686 + 0.497170i
\(372\) 0 0
\(373\) 3.44476 + 12.8560i 0.178363 + 0.665660i 0.995954 + 0.0898611i \(0.0286423\pi\)
−0.817591 + 0.575799i \(0.804691\pi\)
\(374\) −1.44704 2.50635i −0.0748247 0.129600i
\(375\) 0 0
\(376\) 5.54268 + 3.20007i 0.285842 + 0.165031i
\(377\) −2.17808 + 2.17808i −0.112177 + 0.112177i
\(378\) 0 0
\(379\) 25.3453i 1.30190i −0.759121 0.650949i \(-0.774371\pi\)
0.759121 0.650949i \(-0.225629\pi\)
\(380\) −3.84723 + 3.02695i −0.197359 + 0.155279i
\(381\) 0 0
\(382\) −4.01258 + 14.9751i −0.205301 + 0.766195i
\(383\) −17.7739 + 4.76251i −0.908205 + 0.243353i −0.682537 0.730851i \(-0.739123\pi\)
−0.225668 + 0.974204i \(0.572457\pi\)
\(384\) 0 0
\(385\) −12.1518 + 18.0011i −0.619314 + 0.917419i
\(386\) 8.99792 0.457982
\(387\) 0 0
\(388\) 1.15918 4.32611i 0.0588483 0.219625i
\(389\) −19.3621 + 11.1787i −0.981699 + 0.566784i −0.902783 0.430097i \(-0.858479\pi\)
−0.0789164 + 0.996881i \(0.525146\pi\)
\(390\) 0 0
\(391\) 3.70961i 0.187603i
\(392\) −6.55387 + 2.45902i −0.331020 + 0.124199i
\(393\) 0 0
\(394\) 14.9359 + 8.62324i 0.752459 + 0.434432i
\(395\) 4.27473 + 29.6823i 0.215085 + 1.49348i
\(396\) 0 0
\(397\) −4.08518 15.2461i −0.205029 0.765181i −0.989441 0.144939i \(-0.953701\pi\)
0.784411 0.620241i \(-0.212965\pi\)
\(398\) 6.17385 + 6.17385i 0.309467 + 0.309467i
\(399\) 0 0
\(400\) 3.62028 + 3.44871i 0.181014 + 0.172435i
\(401\) 6.98528 12.0989i 0.348828 0.604188i −0.637213 0.770687i \(-0.719913\pi\)
0.986042 + 0.166499i \(0.0532463\pi\)
\(402\) 0 0
\(403\) −0.0471183 0.0126253i −0.00234713 0.000628911i
\(404\) 0.0359536 0.0622734i 0.00178876 0.00309822i
\(405\) 0 0
\(406\) 0.336879 + 6.92993i 0.0167190 + 0.343927i
\(407\) −0.666957 0.666957i −0.0330598 0.0330598i
\(408\) 0 0
\(409\) 0.156681 + 0.271379i 0.00774737 + 0.0134188i 0.869873 0.493276i \(-0.164201\pi\)
−0.862126 + 0.506694i \(0.830867\pi\)
\(410\) 12.0300 16.0781i 0.594121 0.794038i
\(411\) 0 0
\(412\) −11.7237 + 11.7237i −0.577583 + 0.577583i
\(413\) 8.65608 + 26.9879i 0.425938 + 1.32799i
\(414\) 0 0
\(415\) 3.64586 30.5532i 0.178968 1.49980i
\(416\) 1.01725 0.587308i 0.0498746 0.0287951i
\(417\) 0 0
\(418\) 7.76311 2.08012i 0.379706 0.101742i
\(419\) 31.6254 1.54500 0.772501 0.635014i \(-0.219006\pi\)
0.772501 + 0.635014i \(0.219006\pi\)
\(420\) 0 0
\(421\) 24.2137 1.18011 0.590053 0.807365i \(-0.299107\pi\)
0.590053 + 0.807365i \(0.299107\pi\)
\(422\) 10.7938 2.89219i 0.525433 0.140789i
\(423\) 0 0
\(424\) −6.85354 + 3.95689i −0.332837 + 0.192164i
\(425\) −1.88743 + 3.46040i −0.0915536 + 0.167854i
\(426\) 0 0
\(427\) 3.90386 + 3.54190i 0.188921 + 0.171405i
\(428\) 3.23107 3.23107i 0.156179 0.156179i
\(429\) 0 0
\(430\) 1.48539 0.213921i 0.0716320 0.0103162i
\(431\) 0.779037 + 1.34933i 0.0375249 + 0.0649950i 0.884178 0.467150i \(-0.154719\pi\)
−0.846653 + 0.532145i \(0.821386\pi\)
\(432\) 0 0
\(433\) −6.28166 6.28166i −0.301877 0.301877i 0.539871 0.841748i \(-0.318473\pi\)
−0.841748 + 0.539871i \(0.818473\pi\)
\(434\) −0.0923749 + 0.0594930i −0.00443414 + 0.00285575i
\(435\) 0 0
\(436\) 9.05131 15.6773i 0.433479 0.750808i
\(437\) 9.95068 + 2.66628i 0.476006 + 0.127545i
\(438\) 0 0
\(439\) −11.9571 + 20.7103i −0.570681 + 0.988449i 0.425815 + 0.904810i \(0.359988\pi\)
−0.996496 + 0.0836389i \(0.973346\pi\)
\(440\) −3.23320 7.54538i −0.154137 0.359712i
\(441\) 0 0
\(442\) 0.654772 + 0.654772i 0.0311443 + 0.0311443i
\(443\) −3.32895 12.4238i −0.158163 0.590272i −0.998814 0.0486946i \(-0.984494\pi\)
0.840651 0.541578i \(-0.182173\pi\)
\(444\) 0 0
\(445\) 3.16550 0.455884i 0.150059 0.0216110i
\(446\) 0.914645 + 0.528070i 0.0433097 + 0.0250049i
\(447\) 0 0
\(448\) 0.559876 2.58583i 0.0264517 0.122169i
\(449\) 17.8932i 0.844435i −0.906495 0.422217i \(-0.861252\pi\)
0.906495 0.422217i \(-0.138748\pi\)
\(450\) 0 0
\(451\) −28.5510 + 16.4839i −1.34441 + 0.776197i
\(452\) −0.556592 + 2.07723i −0.0261799 + 0.0977046i
\(453\) 0 0
\(454\) −3.12036 −0.146446
\(455\) 2.26490 6.56966i 0.106180 0.307990i
\(456\) 0 0
\(457\) −33.0454 + 8.85449i −1.54580 + 0.414196i −0.928134 0.372246i \(-0.878588\pi\)
−0.617665 + 0.786442i \(0.711921\pi\)
\(458\) 2.17973 8.13485i 0.101852 0.380116i
\(459\) 0 0
\(460\) 1.24674 10.4480i 0.0581295 0.487140i
\(461\) 23.3471i 1.08738i −0.839286 0.543690i \(-0.817027\pi\)
0.839286 0.543690i \(-0.182973\pi\)
\(462\) 0 0
\(463\) 3.98510 3.98510i 0.185203 0.185203i −0.608415 0.793619i \(-0.708195\pi\)
0.793619 + 0.608415i \(0.208195\pi\)
\(464\) −2.27103 1.31118i −0.105430 0.0608700i
\(465\) 0 0
\(466\) −11.3985 19.7427i −0.528023 0.914563i
\(467\) 1.26454 + 4.71932i 0.0585159 + 0.218384i 0.988992 0.147968i \(-0.0472732\pi\)
−0.930476 + 0.366352i \(0.880607\pi\)
\(468\) 0 0
\(469\) −8.01347 + 15.5812i −0.370028 + 0.719473i
\(470\) −5.31581 + 13.2872i −0.245200 + 0.612895i
\(471\) 0 0
\(472\) −10.3473 2.77255i −0.476273 0.127617i
\(473\) −2.37990 0.637693i −0.109428 0.0293212i
\(474\) 0 0
\(475\) −7.92561 7.55000i −0.363652 0.346418i
\(476\) 2.08327 0.101272i 0.0954867 0.00464182i
\(477\) 0 0
\(478\) 6.21090 + 23.1794i 0.284080 + 1.06020i
\(479\) −8.55572 14.8189i −0.390921 0.677094i 0.601651 0.798759i \(-0.294510\pi\)
−0.992571 + 0.121665i \(0.961177\pi\)
\(480\) 0 0
\(481\) 0.261359 + 0.150896i 0.0119170 + 0.00688026i
\(482\) 17.5274 17.5274i 0.798350 0.798350i
\(483\) 0 0
\(484\) 2.47728i 0.112604i
\(485\) 9.94416 + 1.18662i 0.451541 + 0.0538815i
\(486\) 0 0
\(487\) 0.0337240 0.125860i 0.00152818 0.00570325i −0.965158 0.261670i \(-0.915727\pi\)
0.966686 + 0.255966i \(0.0823936\pi\)
\(488\) −1.92443 + 0.515649i −0.0871147 + 0.0233423i
\(489\) 0 0
\(490\) −7.53138 13.7215i −0.340233 0.619872i
\(491\) −26.9895 −1.21802 −0.609011 0.793162i \(-0.708433\pi\)
−0.609011 + 0.793162i \(0.708433\pi\)
\(492\) 0 0
\(493\) 0.535055 1.99685i 0.0240977 0.0899337i
\(494\) −2.22698 + 1.28575i −0.100197 + 0.0578486i
\(495\) 0 0
\(496\) 0.0415289i 0.00186470i
\(497\) −20.9912 4.54495i −0.941584 0.203869i
\(498\) 0 0
\(499\) 0.0833977 + 0.0481497i 0.00373339 + 0.00215548i 0.501866 0.864946i \(-0.332647\pi\)
−0.498132 + 0.867101i \(0.665981\pi\)
\(500\) −6.47886 + 9.11177i −0.289743 + 0.407491i
\(501\) 0 0
\(502\) −2.87698 10.7370i −0.128406 0.479217i
\(503\) −13.6334 13.6334i −0.607883 0.607883i 0.334509 0.942392i \(-0.391429\pi\)
−0.942392 + 0.334509i \(0.891429\pi\)
\(504\) 0 0
\(505\) 0.149286 + 0.0597245i 0.00664312 + 0.00265771i
\(506\) −8.63753 + 14.9606i −0.383985 + 0.665081i
\(507\) 0 0
\(508\) −18.1036 4.85084i −0.803217 0.215221i
\(509\) −6.16366 + 10.6758i −0.273199 + 0.473195i −0.969679 0.244381i \(-0.921415\pi\)
0.696480 + 0.717576i \(0.254749\pi\)
\(510\) 0 0
\(511\) 11.9376 23.2111i 0.528087 1.02680i
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) −12.6466 21.9046i −0.557818 0.966169i
\(515\) −29.6840 22.2104i −1.30803 0.978706i
\(516\) 0 0
\(517\) 16.6140 16.6140i 0.730684 0.730684i
\(518\) 0.647288 0.207611i 0.0284402 0.00912189i
\(519\) 0 0
\(520\) 1.62409 + 2.06420i 0.0712210 + 0.0905214i
\(521\) −14.1415 + 8.16461i −0.619551 + 0.357698i −0.776694 0.629878i \(-0.783105\pi\)
0.157143 + 0.987576i \(0.449772\pi\)
\(522\) 0 0
\(523\) −26.4703 + 7.09270i −1.15747 + 0.310142i −0.785953 0.618286i \(-0.787827\pi\)
−0.371512 + 0.928428i \(0.621161\pi\)
\(524\) −14.1946 −0.620095
\(525\) 0 0
\(526\) −11.3461 −0.494714
\(527\) 0.0316231 0.00847337i 0.00137752 0.000369106i
\(528\) 0 0
\(529\) 0.742186 0.428501i 0.0322689 0.0186305i
\(530\) −10.9420 13.9073i −0.475292 0.604092i
\(531\) 0 0
\(532\) −1.22570 + 5.66098i −0.0531407 + 0.245435i
\(533\) 7.45881 7.45881i 0.323077 0.323077i
\(534\) 0 0
\(535\) 8.18098 + 6.12123i 0.353695 + 0.264644i
\(536\) −3.31118 5.73513i −0.143021 0.247720i
\(537\) 0 0
\(538\) 5.70417 + 5.70417i 0.245924 + 0.245924i
\(539\) 2.49258 + 25.5768i 0.107363 + 1.10167i
\(540\) 0 0
\(541\) 20.5773 35.6410i 0.884689 1.53233i 0.0386200 0.999254i \(-0.487704\pi\)
0.846069 0.533073i \(-0.178963\pi\)
\(542\) −8.11330 2.17395i −0.348496 0.0933793i
\(543\) 0 0
\(544\) −0.394167 + 0.682717i −0.0168998 + 0.0292712i
\(545\) 37.5826 + 15.0356i 1.60986 + 0.644056i
\(546\) 0 0
\(547\) 8.06541 + 8.06541i 0.344852 + 0.344852i 0.858188 0.513336i \(-0.171590\pi\)
−0.513336 + 0.858188i \(0.671590\pi\)
\(548\) −4.90887 18.3201i −0.209696 0.782597i
\(549\) 0 0
\(550\) 15.6691 9.56087i 0.668134 0.407677i
\(551\) 4.97180 + 2.87047i 0.211806 + 0.122286i
\(552\) 0 0
\(553\) 26.2788 + 23.8423i 1.11749 + 1.01388i
\(554\) 5.68000i 0.241320i
\(555\) 0 0
\(556\) −7.13350 + 4.11853i −0.302528 + 0.174665i
\(557\) 6.64049 24.7826i 0.281367 1.05007i −0.670087 0.742282i \(-0.733743\pi\)
0.951454 0.307792i \(-0.0995901\pi\)
\(558\) 0 0
\(559\) 0.788333 0.0333429
\(560\) 5.90151 + 0.414924i 0.249384 + 0.0175337i
\(561\) 0 0
\(562\) 7.02834 1.88324i 0.296473 0.0794396i
\(563\) 3.31584 12.3749i 0.139746 0.521539i −0.860187 0.509978i \(-0.829653\pi\)
0.999933 0.0115606i \(-0.00367993\pi\)
\(564\) 0 0
\(565\) −4.77480 0.569768i −0.200877 0.0239703i
\(566\) 7.71000i 0.324076i
\(567\) 0 0
\(568\) 5.74013 5.74013i 0.240850 0.240850i
\(569\) −29.8291 17.2218i −1.25050 0.721977i −0.279292 0.960206i \(-0.590100\pi\)
−0.971209 + 0.238229i \(0.923433\pi\)
\(570\) 0 0
\(571\) 4.11985 + 7.13579i 0.172410 + 0.298623i 0.939262 0.343201i \(-0.111511\pi\)
−0.766852 + 0.641824i \(0.778178\pi\)
\(572\) −1.11607 4.16524i −0.0466654 0.174158i
\(573\) 0 0
\(574\) −1.15364 23.7315i −0.0481520 0.990534i
\(575\) 23.5212 0.570889i 0.980904 0.0238077i
\(576\) 0 0
\(577\) −3.39649 0.910086i −0.141398 0.0378874i 0.187426 0.982279i \(-0.439985\pi\)
−0.328824 + 0.944391i \(0.606652\pi\)
\(578\) 15.8204 + 4.23908i 0.658044 + 0.176322i
\(579\) 0 0
\(580\) 2.17808 5.44425i 0.0904397 0.226060i
\(581\) −19.7132 30.6088i −0.817843 1.26987i
\(582\) 0 0
\(583\) 7.51937 + 28.0627i 0.311421 + 1.16224i
\(584\) 4.93262 + 8.54355i 0.204113 + 0.353535i
\(585\) 0 0
\(586\) −4.10531 2.37020i −0.169589 0.0979122i
\(587\) −5.37485 + 5.37485i −0.221844 + 0.221844i −0.809275 0.587431i \(-0.800139\pi\)
0.587431 + 0.809275i \(0.300139\pi\)
\(588\) 0 0
\(589\) 0.0909162i 0.00374613i
\(590\) 2.83818 23.7847i 0.116846 0.979201i
\(591\) 0 0
\(592\) −0.0664979 + 0.248174i −0.00273305 + 0.0101999i
\(593\) −0.709668 + 0.190155i −0.0291426 + 0.00780872i −0.273361 0.961912i \(-0.588135\pi\)
0.244218 + 0.969720i \(0.421469\pi\)
\(594\) 0 0
\(595\) 0.888166 + 4.57849i 0.0364113 + 0.187700i
\(596\) 4.84185 0.198330
\(597\) 0 0
\(598\) 1.43057 5.33897i 0.0585005 0.218327i
\(599\) 7.23778 4.17873i 0.295727 0.170738i −0.344794 0.938678i \(-0.612051\pi\)
0.640522 + 0.767940i \(0.278718\pi\)
\(600\) 0 0
\(601\) 39.9236i 1.62852i −0.580501 0.814259i \(-0.697143\pi\)
0.580501 0.814259i \(-0.302857\pi\)
\(602\) 1.19315 1.31508i 0.0486290 0.0535985i
\(603\) 0 0
\(604\) −8.69995 5.02292i −0.353996 0.204380i
\(605\) −5.48280 + 0.789613i −0.222908 + 0.0321024i
\(606\) 0 0
\(607\) 8.91623 + 33.2758i 0.361899 + 1.35062i 0.871577 + 0.490259i \(0.163098\pi\)
−0.509678 + 0.860365i \(0.670235\pi\)
\(608\) −1.54802 1.54802i −0.0627804 0.0627804i
\(609\) 0 0
\(610\) −1.75465 4.09485i −0.0710436 0.165796i
\(611\) −3.75885 + 6.51051i −0.152067 + 0.263387i
\(612\) 0 0
\(613\) 31.6042 + 8.46832i 1.27648 + 0.342032i 0.832510 0.554009i \(-0.186903\pi\)
0.443971 + 0.896041i \(0.353569\pi\)
\(614\) −0.753393 + 1.30491i −0.0304044 + 0.0526620i
\(615\) 0 0
\(616\) −8.63753 4.44231i −0.348016 0.178986i
\(617\) 15.5005 + 15.5005i 0.624025 + 0.624025i 0.946558 0.322533i \(-0.104534\pi\)
−0.322533 + 0.946558i \(0.604534\pi\)
\(618\) 0 0
\(619\) −4.31138 7.46752i −0.173289 0.300145i 0.766279 0.642508i \(-0.222106\pi\)
−0.939568 + 0.342363i \(0.888773\pi\)
\(620\) 0.0919131 0.0132370i 0.00369132 0.000531611i
\(621\) 0 0
\(622\) 9.76397 9.76397i 0.391500 0.391500i
\(623\) 2.54269 2.80254i 0.101871 0.112281i
\(624\) 0 0
\(625\) −22.2316 11.4349i −0.889263 0.457397i
\(626\) −20.2191 + 11.6735i −0.808119 + 0.466568i
\(627\) 0 0
\(628\) 23.6523 6.33762i 0.943830 0.252898i
\(629\) −0.202545 −0.00807600
\(630\) 0 0
\(631\) −4.13675 −0.164682 −0.0823408 0.996604i \(-0.526240\pi\)
−0.0823408 + 0.996604i \(0.526240\pi\)
\(632\) −12.9543 + 3.47109i −0.515294 + 0.138073i
\(633\) 0 0
\(634\) −11.4219 + 6.59442i −0.453620 + 0.261898i
\(635\) 4.96567 41.6136i 0.197057 1.65139i
\(636\) 0 0
\(637\) −2.88840 7.69827i −0.114443 0.305017i
\(638\) −6.80736 + 6.80736i −0.269506 + 0.269506i
\(639\) 0 0
\(640\) −1.33961 + 1.79038i −0.0529527 + 0.0707709i
\(641\) 5.42807 + 9.40169i 0.214396 + 0.371345i 0.953086 0.302701i \(-0.0978884\pi\)
−0.738690 + 0.674046i \(0.764555\pi\)
\(642\) 0 0
\(643\) 8.06230 + 8.06230i 0.317946 + 0.317946i 0.847978 0.530032i \(-0.177820\pi\)
−0.530032 + 0.847978i \(0.677820\pi\)
\(644\) −6.74114 10.4670i −0.265638 0.412457i
\(645\) 0 0
\(646\) 0.862920 1.49462i 0.0339511 0.0588051i
\(647\) 10.0715 + 2.69865i 0.395951 + 0.106095i 0.451300 0.892372i \(-0.350960\pi\)
−0.0553490 + 0.998467i \(0.517627\pi\)
\(648\) 0 0
\(649\) −19.6632 + 34.0577i −0.771848 + 1.33688i
\(650\) −4.05090 + 4.25243i −0.158889 + 0.166794i
\(651\) 0 0
\(652\) −15.5320 15.5320i −0.608279 0.608279i
\(653\) 1.72009 + 6.41946i 0.0673123 + 0.251213i 0.991380 0.131015i \(-0.0418236\pi\)
−0.924068 + 0.382228i \(0.875157\pi\)
\(654\) 0 0
\(655\) −4.52442 31.4160i −0.176784 1.22753i
\(656\) 7.77713 + 4.49013i 0.303646 + 0.175310i
\(657\) 0 0
\(658\) 5.17163 + 16.1241i 0.201611 + 0.628582i
\(659\) 22.0345i 0.858343i 0.903223 + 0.429172i \(0.141194\pi\)
−0.903223 + 0.429172i \(0.858806\pi\)
\(660\) 0 0
\(661\) −9.94278 + 5.74047i −0.386729 + 0.223278i −0.680742 0.732523i \(-0.738343\pi\)
0.294013 + 0.955802i \(0.405009\pi\)
\(662\) −4.94240 + 18.4453i −0.192092 + 0.716897i
\(663\) 0 0
\(664\) 13.7608 0.534021
\(665\) −12.9197 0.908362i −0.501006 0.0352248i
\(666\) 0 0
\(667\) −11.9194 + 3.19379i −0.461521 + 0.123664i
\(668\) −1.15158 + 4.29774i −0.0445558 + 0.166285i
\(669\) 0 0
\(670\) 11.6378 9.15644i 0.449607 0.353744i
\(671\) 7.31407i 0.282356i
\(672\) 0 0
\(673\) −15.2073 + 15.2073i −0.586198 + 0.586198i −0.936600 0.350402i \(-0.886045\pi\)
0.350402 + 0.936600i \(0.386045\pi\)
\(674\) −0.597952 0.345228i −0.0230322 0.0132977i
\(675\) 0 0
\(676\) −5.81014 10.0635i −0.223467 0.387056i
\(677\) 1.48523 + 5.54296i 0.0570821 + 0.213033i 0.988576 0.150724i \(-0.0481604\pi\)
−0.931494 + 0.363757i \(0.881494\pi\)
\(678\) 0 0
\(679\) 9.96224 6.41606i 0.382316 0.246226i
\(680\) −1.63665 0.654772i −0.0627626 0.0251094i
\(681\) 0 0
\(682\) −0.147264 0.0394591i −0.00563901 0.00151097i
\(683\) 18.7685 + 5.02900i 0.718157 + 0.192430i 0.599349 0.800488i \(-0.295426\pi\)
0.118808 + 0.992917i \(0.462093\pi\)
\(684\) 0 0
\(685\) 38.9821 16.7039i 1.48943 0.638222i
\(686\) −17.2137 6.83301i −0.657220 0.260886i
\(687\) 0 0
\(688\) 0.173704 + 0.648273i 0.00662241 + 0.0247152i
\(689\) −4.64782 8.05027i −0.177068 0.306691i
\(690\) 0 0
\(691\) 19.0914 + 11.0224i 0.726270 + 0.419312i 0.817056 0.576558i \(-0.195605\pi\)
−0.0907861 + 0.995870i \(0.528938\pi\)
\(692\) 3.69572 3.69572i 0.140490 0.140490i
\(693\) 0 0
\(694\) 3.80998i 0.144625i
\(695\) −11.3890 14.4754i −0.432010 0.549082i
\(696\) 0 0
\(697\) −1.83229 + 6.83821i −0.0694031 + 0.259016i
\(698\) −7.64340 + 2.04804i −0.289307 + 0.0775196i
\(699\) 0 0
\(700\) 0.962736 + 13.1937i 0.0363880 + 0.498674i
\(701\) 18.0270 0.680870 0.340435 0.940268i \(-0.389426\pi\)
0.340435 + 0.940268i \(0.389426\pi\)
\(702\) 0 0
\(703\) 0.145579 0.543308i 0.00549062 0.0204913i
\(704\) 3.17930 1.83557i 0.119824 0.0691807i
\(705\) 0 0
\(706\) 25.7787i 0.970196i
\(707\) 0.181158 0.0581046i 0.00681316 0.00218525i
\(708\) 0 0
\(709\) 37.0614 + 21.3974i 1.39187 + 0.803597i 0.993522 0.113637i \(-0.0362500\pi\)
0.398349 + 0.917234i \(0.369583\pi\)
\(710\) 14.5339 + 10.8746i 0.545446 + 0.408117i
\(711\) 0 0
\(712\) 0.370178 + 1.38152i 0.0138730 + 0.0517748i
\(713\) −0.138183 0.138183i −0.00517498 0.00517498i
\(714\) 0 0
\(715\) 8.86292 3.79777i 0.331454 0.142029i
\(716\) 6.28428 10.8847i 0.234854 0.406780i
\(717\) 0 0
\(718\) −10.0326 2.68822i −0.374413 0.100324i
\(719\) −2.72691 + 4.72315i −0.101697 + 0.176144i −0.912384 0.409336i \(-0.865760\pi\)
0.810687 + 0.585480i \(0.199094\pi\)
\(720\) 0 0
\(721\) −43.8142 + 2.12990i −1.63172 + 0.0793217i
\(722\) −10.0461 10.0461i −0.373876 0.373876i
\(723\) 0 0
\(724\) 5.83712 + 10.1102i 0.216935 + 0.375742i
\(725\) 12.7436 + 3.08528i 0.473287 + 0.114584i
\(726\) 0 0
\(727\) −16.6781 + 16.6781i −0.618555 + 0.618555i −0.945161 0.326606i \(-0.894095\pi\)
0.326606 + 0.945161i \(0.394095\pi\)
\(728\) 3.03736 + 0.657639i 0.112572 + 0.0243737i
\(729\) 0 0
\(730\) −17.3366 + 13.6402i −0.641658 + 0.504848i
\(731\) −0.458200 + 0.264542i −0.0169471 + 0.00978443i
\(732\) 0 0
\(733\) −32.8405 + 8.79960i −1.21299 + 0.325021i −0.807936 0.589271i \(-0.799415\pi\)
−0.405057 + 0.914291i \(0.632748\pi\)
\(734\) 8.68601 0.320607
\(735\) 0 0
\(736\) 4.70563 0.173452
\(737\) −23.4832 + 6.29231i −0.865016 + 0.231780i
\(738\) 0 0
\(739\) −25.0733 + 14.4761i −0.922335 + 0.532510i −0.884379 0.466769i \(-0.845418\pi\)
−0.0379557 + 0.999279i \(0.512085\pi\)
\(740\) −0.570462 0.0680721i −0.0209706 0.00250238i
\(741\) 0 0
\(742\) −20.4637 4.43074i −0.751247 0.162658i
\(743\) −34.0351 + 34.0351i −1.24863 + 1.24863i −0.292300 + 0.956327i \(0.594421\pi\)
−0.956327 + 0.292300i \(0.905579\pi\)
\(744\) 0 0
\(745\) 1.54330 + 10.7162i 0.0565422 + 0.392609i
\(746\) −6.65477 11.5264i −0.243649 0.422012i
\(747\) 0 0
\(748\) 2.04643 + 2.04643i 0.0748247 + 0.0748247i
\(749\) 12.0753 0.587006i 0.441221 0.0214487i
\(750\) 0 0
\(751\) 9.30569 16.1179i 0.339569 0.588151i −0.644782 0.764366i \(-0.723052\pi\)
0.984352 + 0.176215i \(0.0563853\pi\)
\(752\) −6.18205 1.65648i −0.225436 0.0604055i
\(753\) 0 0
\(754\) 1.54013 2.66759i 0.0560883 0.0971478i
\(755\) 8.34385 20.8560i 0.303664 0.759029i
\(756\) 0 0
\(757\) 29.7422 + 29.7422i 1.08100 + 1.08100i 0.996416 + 0.0845825i \(0.0269557\pi\)
0.0845825 + 0.996416i \(0.473044\pi\)
\(758\) 6.55984 + 24.4816i 0.238264 + 0.889213i
\(759\) 0 0
\(760\) 2.93271 3.91954i 0.106380 0.142177i
\(761\) −17.6474 10.1887i −0.639718 0.369341i 0.144788 0.989463i \(-0.453750\pi\)
−0.784506 + 0.620122i \(0.787083\pi\)
\(762\) 0 0
\(763\) 45.6066 14.6278i 1.65107 0.529563i
\(764\) 15.5034i 0.560894i
\(765\) 0 0
\(766\) 15.9357 9.20046i 0.575779 0.332426i
\(767\) 3.25668 12.1541i 0.117592 0.438859i
\(768\) 0 0
\(769\) −40.9728 −1.47752 −0.738759 0.673970i \(-0.764588\pi\)
−0.738759 + 0.673970i \(0.764588\pi\)
\(770\) 7.07873 20.5328i 0.255100 0.739951i
\(771\) 0 0
\(772\) −8.69132 + 2.32883i −0.312808 + 0.0838165i
\(773\) −6.39265 + 23.8577i −0.229928 + 0.858101i 0.750443 + 0.660936i \(0.229840\pi\)
−0.980370 + 0.197166i \(0.936826\pi\)
\(774\) 0 0
\(775\) 0.0585931 + 0.199206i 0.00210473 + 0.00715569i
\(776\) 4.47871i 0.160776i
\(777\) 0 0
\(778\) 15.8091 15.8091i 0.566784 0.566784i
\(779\) −17.0259 9.82991i −0.610017 0.352193i
\(780\) 0 0
\(781\) −14.9007 25.8088i −0.533190 0.923513i
\(782\) 0.960117 + 3.58321i 0.0343337 + 0.128135i
\(783\) 0 0
\(784\) 5.69411 4.07150i 0.203361 0.145411i
\(785\) 21.5656 + 50.3280i 0.769710 + 1.79628i
\(786\) 0 0
\(787\) 7.92843 + 2.12442i 0.282618 + 0.0757273i 0.397343 0.917670i \(-0.369932\pi\)
−0.114725 + 0.993397i \(0.536599\pi\)
\(788\) −16.6588 4.46372i −0.593446 0.159013i
\(789\) 0 0
\(790\) −11.8114 27.5645i −0.420231 0.980701i
\(791\) −4.78348 + 3.08075i −0.170081 + 0.109539i
\(792\) 0 0
\(793\) −0.605689 2.26046i −0.0215086 0.0802713i
\(794\) 7.89197 + 13.6693i 0.280076 + 0.485105i
\(795\) 0 0
\(796\) −7.56140 4.36557i −0.268007 0.154734i
\(797\) 11.7928 11.7928i 0.417722 0.417722i −0.466696 0.884418i \(-0.654556\pi\)
0.884418 + 0.466696i \(0.154556\pi\)
\(798\) 0 0
\(799\) 5.04544i 0.178495i
\(800\) −4.38951 2.39420i −0.155193 0.0846477i
\(801\) 0 0
\(802\) −3.61585 + 13.4945i −0.127680 + 0.476508i
\(803\) 34.9827 9.37358i 1.23451 0.330786i
\(804\) 0 0
\(805\) 21.0172 18.2560i 0.740760 0.643439i
\(806\) 0.0487805 0.00171822
\(807\) 0 0
\(808\) −0.0186109 + 0.0694570i −0.000654730 + 0.00244349i
\(809\) −28.8498 + 16.6564i −1.01430 + 0.585609i −0.912449 0.409191i \(-0.865811\pi\)
−0.101855 + 0.994799i \(0.532478\pi\)
\(810\) 0 0
\(811\) 55.2368i 1.93963i 0.243850 + 0.969813i \(0.421590\pi\)
−0.243850 + 0.969813i \(0.578410\pi\)
\(812\) −2.11900 6.60661i −0.0743623 0.231847i
\(813\) 0 0
\(814\) 0.816852 + 0.471610i 0.0286307 + 0.0165299i
\(815\) 29.4252 39.3266i 1.03072 1.37755i
\(816\) 0 0
\(817\) −0.380278 1.41922i −0.0133042 0.0496521i
\(818\) −0.221580 0.221580i −0.00774737 0.00774737i
\(819\) 0 0
\(820\) −7.45881 + 18.6438i −0.260473 + 0.651070i
\(821\) 9.31457 16.1333i 0.325081 0.563056i −0.656448 0.754371i \(-0.727942\pi\)
0.981529 + 0.191315i \(0.0612752\pi\)
\(822\) 0 0
\(823\) 16.3139 + 4.37130i 0.568668 + 0.152374i 0.531685 0.846942i \(-0.321559\pi\)
0.0369821 + 0.999316i \(0.488226\pi\)
\(824\) 8.28988 14.3585i 0.288792 0.500202i
\(825\) 0 0
\(826\) −15.3461 23.8280i −0.533960 0.829081i
\(827\) 5.62716 + 5.62716i 0.195675 + 0.195675i 0.798143 0.602468i \(-0.205816\pi\)
−0.602468 + 0.798143i \(0.705816\pi\)
\(828\) 0 0
\(829\) −3.29757 5.71155i −0.114529 0.198370i 0.803062 0.595895i \(-0.203203\pi\)
−0.917591 + 0.397525i \(0.869869\pi\)
\(830\) 4.38613 + 30.4558i 0.152245 + 1.05714i
\(831\) 0 0
\(832\) −0.830578 + 0.830578i −0.0287951 + 0.0287951i
\(833\) 4.26213 + 3.50517i 0.147674 + 0.121447i
\(834\) 0 0
\(835\) −9.87896 1.17884i −0.341875 0.0407953i
\(836\) −6.96021 + 4.01848i −0.240724 + 0.138982i
\(837\) 0 0
\(838\) −30.5478 + 8.18525i −1.05526 + 0.282755i
\(839\) 46.0930 1.59131 0.795654 0.605752i \(-0.207128\pi\)
0.795654 + 0.605752i \(0.207128\pi\)
\(840\) 0 0
\(841\) 22.1232 0.762870
\(842\) −23.3887 + 6.26698i −0.806027 + 0.215974i
\(843\) 0 0
\(844\) −9.67744 + 5.58727i −0.333111 + 0.192322i
\(845\) 20.4208 16.0668i 0.702499 0.552716i
\(846\) 0 0
\(847\) −4.40407 + 4.85413i −0.151326 + 0.166790i
\(848\) 5.59589 5.59589i 0.192164 0.192164i
\(849\) 0 0
\(850\) 0.927496 3.83099i 0.0318128 0.131402i
\(851\) 0.604505 + 1.04703i 0.0207222 + 0.0358918i
\(852\) 0 0
\(853\) −14.9594 14.9594i −0.512200 0.512200i 0.403000 0.915200i \(-0.367968\pi\)
−0.915200 + 0.403000i \(0.867968\pi\)
\(854\) −4.68755 2.41082i −0.160405 0.0824967i
\(855\) 0 0
\(856\) −2.28471 + 3.95723i −0.0780897 + 0.135255i
\(857\) −11.6491 3.12136i −0.397924 0.106623i 0.0543068 0.998524i \(-0.482705\pi\)
−0.452231 + 0.891901i \(0.649372\pi\)
\(858\) 0 0
\(859\) 2.90061 5.02401i 0.0989677 0.171417i −0.812290 0.583254i \(-0.801779\pi\)
0.911258 + 0.411837i \(0.135113\pi\)
\(860\) −1.37941 + 0.591080i −0.0470376 + 0.0201557i
\(861\) 0 0
\(862\) −1.10172 1.10172i −0.0375249 0.0375249i
\(863\) 0.778623 + 2.90586i 0.0265046 + 0.0989167i 0.977911 0.209021i \(-0.0670278\pi\)
−0.951406 + 0.307938i \(0.900361\pi\)
\(864\) 0 0
\(865\) 9.35746 + 7.00150i 0.318163 + 0.238058i
\(866\) 7.69343 + 4.44180i 0.261433 + 0.150939i
\(867\) 0 0
\(868\) 0.0738294 0.0813742i 0.00250593 0.00276202i
\(869\) 49.2347i 1.67017i
\(870\) 0 0
\(871\) 6.73657 3.88936i 0.228260 0.131786i
\(872\) −4.68530 + 17.4858i −0.158664 + 0.592143i
\(873\) 0 0
\(874\) −10.3017 −0.348460
\(875\) −28.8938 + 6.33614i −0.976790 + 0.214201i
\(876\) 0 0
\(877\) −33.8582 + 9.07228i −1.14331 + 0.306349i −0.780282 0.625428i \(-0.784924\pi\)
−0.363030 + 0.931778i \(0.618258\pi\)
\(878\) 6.18945 23.0994i 0.208884 0.779565i
\(879\) 0 0
\(880\) 5.07592 + 6.45147i 0.171109 + 0.217479i
\(881\) 23.7116i 0.798864i 0.916763 + 0.399432i \(0.130793\pi\)
−0.916763 + 0.399432i \(0.869207\pi\)
\(882\) 0 0
\(883\) −7.95370 + 7.95370i −0.267663 + 0.267663i −0.828158 0.560495i \(-0.810611\pi\)
0.560495 + 0.828158i \(0.310611\pi\)
\(884\) −0.801929 0.462994i −0.0269718 0.0155722i
\(885\) 0 0
\(886\) 6.43103 + 11.1389i 0.216055 + 0.374218i
\(887\) 5.27738 + 19.6954i 0.177197 + 0.661308i 0.996167 + 0.0874718i \(0.0278788\pi\)
−0.818970 + 0.573836i \(0.805455\pi\)
\(888\) 0 0
\(889\) −26.8495 41.6893i −0.900503 1.39821i
\(890\) −2.93964 + 1.25964i −0.0985371 + 0.0422233i
\(891\) 0 0
\(892\) −1.02015 0.273349i −0.0341573 0.00915241i
\(893\) 13.5339 + 3.62640i 0.452895 + 0.121353i
\(894\) 0 0
\(895\) 26.0934 + 10.4392i 0.872207 + 0.348943i
\(896\) 0.128464 + 2.64263i 0.00429168 + 0.0882841i
\(897\) 0 0
\(898\) 4.63111 + 17.2836i 0.154542 + 0.576760i
\(899\) −0.0544519 0.0943134i −0.00181607 0.00314553i
\(900\) 0 0
\(901\) 5.40287 + 3.11935i 0.179996 + 0.103921i
\(902\) 23.3118 23.3118i 0.776197 0.776197i
\(903\) 0 0
\(904\) 2.15051i 0.0715247i
\(905\) −20.5157 + 16.1415i −0.681964 + 0.536560i
\(906\) 0 0
\(907\) −1.68614 + 6.29276i −0.0559874 + 0.208948i −0.988253 0.152827i \(-0.951162\pi\)
0.932266 + 0.361775i \(0.117829\pi\)
\(908\) 3.01404 0.807609i 0.100024 0.0268014i
\(909\) 0 0
\(910\) −0.487376 + 6.93200i −0.0161563 + 0.229794i
\(911\) 24.2528 0.803531 0.401765 0.915743i \(-0.368397\pi\)
0.401765 + 0.915743i \(0.368397\pi\)
\(912\) 0 0
\(913\) 13.0749 48.7964i 0.432718 1.61492i
\(914\) 29.6277 17.1056i 0.979997 0.565802i
\(915\) 0 0
\(916\) 8.42181i 0.278264i
\(917\) −27.8138 25.2350i −0.918493 0.833333i
\(918\) 0 0
\(919\) 31.2542 + 18.0446i 1.03098 + 0.595236i 0.917265 0.398277i \(-0.130392\pi\)
0.113714 + 0.993513i \(0.463725\pi\)
\(920\) 1.49988 + 10.4147i 0.0494497 + 0.343361i
\(921\) 0 0
\(922\) 6.04266 + 22.5515i 0.199004 + 0.742695i
\(923\) 6.74244 + 6.74244i 0.221930 + 0.221930i
\(924\) 0 0
\(925\) −0.0311706 1.28426i −0.00102488 0.0422263i
\(926\) −2.81789 + 4.88073i −0.0926017 + 0.160391i
\(927\) 0 0
\(928\) 2.53301 + 0.678717i 0.0831500 + 0.0222800i
\(929\) −21.2041 + 36.7266i −0.695685 + 1.20496i 0.274264 + 0.961654i \(0.411566\pi\)
−0.969949 + 0.243307i \(0.921768\pi\)
\(930\) 0 0
\(931\) −12.4657 + 8.91344i −0.408547 + 0.292126i
\(932\) 16.1198 + 16.1198i 0.528023 + 0.528023i
\(933\) 0 0
\(934\) −2.44290 4.23123i −0.0799342 0.138450i
\(935\) −3.87694 + 5.18150i −0.126789 + 0.169453i
\(936\) 0 0
\(937\) −4.06709 + 4.06709i −0.132866 + 0.132866i −0.770412 0.637546i \(-0.779950\pi\)
0.637546 + 0.770412i \(0.279950\pi\)
\(938\) 3.70770 17.1243i 0.121061 0.559129i
\(939\) 0 0
\(940\) 1.69569 14.2103i 0.0553073 0.463489i
\(941\) 17.4071 10.0500i 0.567455 0.327621i −0.188677 0.982039i \(-0.560420\pi\)
0.756132 + 0.654419i \(0.227087\pi\)
\(942\) 0 0
\(943\) 40.8179 10.9371i 1.32921 0.356162i
\(944\) 10.7123 0.348656
\(945\) 0 0
\(946\) 2.46386 0.0801069
\(947\) −56.9449 + 15.2583i −1.85046 + 0.495830i −0.999565 0.0295030i \(-0.990608\pi\)
−0.850897 + 0.525333i \(0.823941\pi\)
\(948\) 0 0
\(949\) −10.0354 + 5.79393i −0.325762 + 0.188079i
\(950\) 9.60964 + 5.24144i 0.311778 + 0.170055i
\(951\) 0 0
\(952\) −1.98608 + 0.637013i −0.0643691 + 0.0206457i
\(953\) 31.1044 31.1044i 1.00757 1.00757i 0.00759828 0.999971i \(-0.497581\pi\)
0.999971 0.00759828i \(-0.00241863\pi\)
\(954\) 0 0
\(955\) 34.3127 4.94158i 1.11033 0.159906i
\(956\) −11.9985 20.7821i −0.388060 0.672140i
\(957\) 0 0
\(958\) 12.0996 + 12.0996i 0.390921 + 0.390921i
\(959\) 22.9505 44.6245i 0.741111 1.44100i
\(960\) 0 0
\(961\) −15.4991 + 26.8453i −0.499972 + 0.865977i
\(962\) −0.291508 0.0781094i −0.00939861 0.00251835i
\(963\) 0 0
\(964\) −12.3937 + 21.4666i −0.399175 + 0.691391i
\(965\) −7.92454 18.4936i −0.255100 0.595331i
\(966\) 0 0
\(967\) −21.5036 21.5036i −0.691510 0.691510i 0.271054 0.962564i \(-0.412628\pi\)
−0.962564 + 0.271054i \(0.912628\pi\)
\(968\) −0.641168 2.39287i −0.0206079 0.0769098i
\(969\) 0 0
\(970\) −9.91244 + 1.42755i −0.318269 + 0.0458360i
\(971\) 45.3034 + 26.1559i 1.45385 + 0.839384i 0.998697 0.0510273i \(-0.0162496\pi\)
0.455158 + 0.890411i \(0.349583\pi\)
\(972\) 0 0
\(973\) −21.2997 4.61174i −0.682836 0.147845i
\(974\) 0.130300i 0.00417507i
\(975\) 0 0
\(976\) 1.72539 0.996157i 0.0552285 0.0318862i
\(977\) −14.6477 + 54.6658i −0.468620 + 1.74891i 0.175979 + 0.984394i \(0.443691\pi\)
−0.644599 + 0.764520i \(0.722976\pi\)
\(978\) 0 0
\(979\) 5.25068 0.167813
\(980\) 10.8261 + 11.3046i 0.345828 + 0.361113i
\(981\) 0 0
\(982\) 26.0699 6.98541i 0.831924 0.222913i
\(983\) −4.00621 + 14.9514i −0.127778 + 0.476875i −0.999923 0.0123723i \(-0.996062\pi\)
0.872145 + 0.489247i \(0.162728\pi\)
\(984\) 0 0
\(985\) 4.56939 38.2926i 0.145593 1.22010i
\(986\) 2.06729i 0.0658361i
\(987\) 0 0
\(988\) 1.81832 1.81832i 0.0578486 0.0578486i
\(989\) 2.73504 + 1.57907i 0.0869691 + 0.0502116i
\(990\) 0 0
\(991\) 26.8648 + 46.5311i 0.853388 + 1.47811i 0.878133 + 0.478417i \(0.158789\pi\)
−0.0247453 + 0.999694i \(0.507877\pi\)
\(992\) 0.0107485 + 0.0401138i 0.000341264 + 0.00127362i
\(993\) 0 0
\(994\) 21.4523 1.04284i 0.680424 0.0330769i
\(995\) 7.25190 18.1266i 0.229901 0.574653i
\(996\) 0 0
\(997\) 37.2167 + 9.97217i 1.17866 + 0.315822i 0.794396 0.607400i \(-0.207787\pi\)
0.384267 + 0.923222i \(0.374454\pi\)
\(998\) −0.0930180 0.0249241i −0.00294443 0.000788959i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.2.bv.c.397.1 16
3.2 odd 2 70.2.k.a.47.3 yes 16
5.3 odd 4 inner 630.2.bv.c.523.4 16
7.3 odd 6 inner 630.2.bv.c.577.4 16
12.11 even 2 560.2.ci.c.257.4 16
15.2 even 4 350.2.o.c.243.4 16
15.8 even 4 70.2.k.a.33.1 yes 16
15.14 odd 2 350.2.o.c.257.2 16
21.2 odd 6 490.2.g.c.97.1 16
21.5 even 6 490.2.g.c.97.4 16
21.11 odd 6 490.2.l.c.227.2 16
21.17 even 6 70.2.k.a.17.1 yes 16
21.20 even 2 490.2.l.c.117.4 16
35.3 even 12 inner 630.2.bv.c.73.1 16
60.23 odd 4 560.2.ci.c.33.4 16
84.59 odd 6 560.2.ci.c.17.4 16
105.17 odd 12 350.2.o.c.143.2 16
105.23 even 12 490.2.g.c.293.4 16
105.38 odd 12 70.2.k.a.3.3 16
105.53 even 12 490.2.l.c.423.4 16
105.59 even 6 350.2.o.c.157.4 16
105.68 odd 12 490.2.g.c.293.1 16
105.83 odd 4 490.2.l.c.313.2 16
420.143 even 12 560.2.ci.c.353.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.2.k.a.3.3 16 105.38 odd 12
70.2.k.a.17.1 yes 16 21.17 even 6
70.2.k.a.33.1 yes 16 15.8 even 4
70.2.k.a.47.3 yes 16 3.2 odd 2
350.2.o.c.143.2 16 105.17 odd 12
350.2.o.c.157.4 16 105.59 even 6
350.2.o.c.243.4 16 15.2 even 4
350.2.o.c.257.2 16 15.14 odd 2
490.2.g.c.97.1 16 21.2 odd 6
490.2.g.c.97.4 16 21.5 even 6
490.2.g.c.293.1 16 105.68 odd 12
490.2.g.c.293.4 16 105.23 even 12
490.2.l.c.117.4 16 21.20 even 2
490.2.l.c.227.2 16 21.11 odd 6
490.2.l.c.313.2 16 105.83 odd 4
490.2.l.c.423.4 16 105.53 even 12
560.2.ci.c.17.4 16 84.59 odd 6
560.2.ci.c.33.4 16 60.23 odd 4
560.2.ci.c.257.4 16 12.11 even 2
560.2.ci.c.353.4 16 420.143 even 12
630.2.bv.c.73.1 16 35.3 even 12 inner
630.2.bv.c.397.1 16 1.1 even 1 trivial
630.2.bv.c.523.4 16 5.3 odd 4 inner
630.2.bv.c.577.4 16 7.3 odd 6 inner