L(s) = 1 | + (−0.965 + 0.258i)2-s + (0.866 − 0.499i)4-s + (1.38 + 1.75i)5-s + (2.58 + 0.559i)7-s + (−0.707 + 0.707i)8-s + (−1.79 − 1.33i)10-s + (1.83 + 3.17i)11-s + (−0.830 − 0.830i)13-s + (−2.64 + 0.128i)14-s + (0.500 − 0.866i)16-s + (0.761 + 0.204i)17-s + (−1.09 + 1.89i)19-s + (2.07 + 0.830i)20-s + (−2.59 − 2.59i)22-s + (−1.21 − 4.54i)23-s + ⋯ |
L(s) = 1 | + (−0.683 + 0.183i)2-s + (0.433 − 0.249i)4-s + (0.618 + 0.785i)5-s + (0.977 + 0.211i)7-s + (−0.249 + 0.249i)8-s + (−0.566 − 0.423i)10-s + (0.553 + 0.958i)11-s + (−0.230 − 0.230i)13-s + (−0.706 + 0.0343i)14-s + (0.125 − 0.216i)16-s + (0.184 + 0.0494i)17-s + (−0.251 + 0.434i)19-s + (0.464 + 0.185i)20-s + (−0.553 − 0.553i)22-s + (−0.253 − 0.947i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.415 - 0.909i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.415 - 0.909i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.11895 + 0.718815i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.11895 + 0.718815i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.965 - 0.258i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-1.38 - 1.75i)T \) |
| 7 | \( 1 + (-2.58 - 0.559i)T \) |
good | 11 | \( 1 + (-1.83 - 3.17i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (0.830 + 0.830i)T + 13iT^{2} \) |
| 17 | \( 1 + (-0.761 - 0.204i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (1.09 - 1.89i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.21 + 4.54i)T + (-19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + 2.62iT - 29T^{2} \) |
| 31 | \( 1 + (-0.0359 + 0.0207i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (0.248 - 0.0664i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 - 8.98iT - 41T^{2} \) |
| 43 | \( 1 + (0.474 - 0.474i)T - 43iT^{2} \) |
| 47 | \( 1 + (1.65 + 6.18i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (-7.64 - 2.04i)T + (45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (-5.35 - 9.27i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.72 - 0.996i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.71 - 6.39i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + 8.11T + 71T^{2} \) |
| 73 | \( 1 + (-2.55 + 9.52i)T + (-63.2 - 36.5i)T^{2} \) |
| 79 | \( 1 + (-11.6 - 6.70i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (9.73 + 9.73i)T + 83iT^{2} \) |
| 89 | \( 1 + (-0.715 + 1.23i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-3.16 + 3.16i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.45612897138695716532854253621, −10.02106485879510028842970428651, −9.042681039788405842859403938540, −8.114518748398371002886658356577, −7.27116531589033467485942275279, −6.43613326959905081781959683431, −5.47495489696348953566040548193, −4.27590059466530035268071266758, −2.60421717837181026570780493793, −1.62668413371298413934532213010,
1.00997864481205690381397040070, 2.11812145018474310328442749794, 3.74503714177167090812220135948, 4.98175804794313969375416628431, 5.87996569575860188447119562288, 7.03370907012087561112172117896, 8.075506810752672509835089316340, 8.768943740054739811227734676489, 9.420983861385756235340484917872, 10.39793800840927833232814698556