Properties

Label 630.2.bv.a.577.3
Level $630$
Weight $2$
Character 630.577
Analytic conductor $5.031$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [630,2,Mod(73,630)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(630, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 9, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("630.73"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 630.bv (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,-12,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.03057532734\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 12 x^{14} - 48 x^{13} + 67 x^{12} - 24 x^{11} + 118 x^{10} - 176 x^{9} + 351 x^{8} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 577.3
Root \(0.339278 - 0.0446668i\) of defining polynomial
Character \(\chi\) \(=\) 630.577
Dual form 630.2.bv.a.523.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.258819 - 0.965926i) q^{2} +(-0.866025 - 0.500000i) q^{4} +(-2.23385 + 0.0994727i) q^{5} +(2.52756 - 0.781940i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(-0.482081 + 2.18348i) q^{10} +(1.31272 - 2.27370i) q^{11} +(1.21865 + 1.21865i) q^{13} +(-0.101115 - 2.64382i) q^{14} +(0.500000 + 0.866025i) q^{16} +(-1.95935 - 7.31238i) q^{17} +(-2.32616 - 4.02903i) q^{19} +(1.98431 + 1.03078i) q^{20} +(-1.85647 - 1.85647i) q^{22} +(-4.95766 - 1.32840i) q^{23} +(4.98021 - 0.444415i) q^{25} +(1.49254 - 0.861717i) q^{26} +(-2.57990 - 0.586601i) q^{28} +5.99410i q^{29} +(-8.66177 - 5.00088i) q^{31} +(0.965926 - 0.258819i) q^{32} -7.57033 q^{34} +(-5.56842 + 1.99816i) q^{35} +(1.02429 - 3.82271i) q^{37} +(-4.49380 + 1.20411i) q^{38} +(1.50924 - 1.64991i) q^{40} -5.59423i q^{41} +(-0.545731 + 0.545731i) q^{43} +(-2.27370 + 1.31272i) q^{44} +(-2.56627 + 4.44492i) q^{46} +(6.12372 + 1.64085i) q^{47} +(5.77714 - 3.95280i) q^{49} +(0.859701 - 4.92554i) q^{50} +(-0.446058 - 1.66471i) q^{52} +(2.22057 + 8.28728i) q^{53} +(-2.70626 + 5.20970i) q^{55} +(-1.23434 + 2.34017i) q^{56} +(5.78985 + 1.55139i) q^{58} +(3.86022 - 6.68609i) q^{59} +(4.16543 - 2.40491i) q^{61} +(-7.07231 + 7.07231i) q^{62} -1.00000i q^{64} +(-2.84351 - 2.60107i) q^{65} +(2.47605 - 0.663456i) q^{67} +(-1.95935 + 7.31238i) q^{68} +(0.488864 + 5.89585i) q^{70} +8.36973 q^{71} +(-13.1877 + 3.53363i) q^{73} +(-3.42734 - 1.97878i) q^{74} +4.65232i q^{76} +(1.54009 - 6.77339i) q^{77} +(7.78980 - 4.49744i) q^{79} +(-1.20307 - 1.88484i) q^{80} +(-5.40361 - 1.44789i) q^{82} +(7.99504 + 7.99504i) q^{83} +(5.10428 + 16.1399i) q^{85} +(0.385890 + 0.668382i) q^{86} +(0.679515 + 2.53598i) q^{88} +(0.0812661 + 0.140757i) q^{89} +(4.03313 + 2.12731i) q^{91} +(3.62926 + 3.62926i) q^{92} +(3.16987 - 5.49038i) q^{94} +(5.59708 + 8.76887i) q^{95} +(-4.35278 + 4.35278i) q^{97} +(-2.32288 - 6.60335i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 12 q^{5} - 8 q^{7} + 8 q^{10} - 4 q^{11} - 16 q^{13} - 16 q^{14} + 8 q^{16} + 12 q^{17} - 8 q^{19} + 8 q^{20} + 4 q^{22} - 32 q^{23} - 32 q^{25} + 12 q^{26} - 8 q^{28} - 24 q^{31} + 16 q^{34} - 4 q^{35}+ \cdots + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.258819 0.965926i 0.183013 0.683013i
\(3\) 0 0
\(4\) −0.866025 0.500000i −0.433013 0.250000i
\(5\) −2.23385 + 0.0994727i −0.999010 + 0.0444856i
\(6\) 0 0
\(7\) 2.52756 0.781940i 0.955329 0.295546i
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) 0 0
\(10\) −0.482081 + 2.18348i −0.152447 + 0.690478i
\(11\) 1.31272 2.27370i 0.395800 0.685546i −0.597403 0.801942i \(-0.703801\pi\)
0.993203 + 0.116395i \(0.0371339\pi\)
\(12\) 0 0
\(13\) 1.21865 + 1.21865i 0.337993 + 0.337993i 0.855612 0.517618i \(-0.173181\pi\)
−0.517618 + 0.855612i \(0.673181\pi\)
\(14\) −0.101115 2.64382i −0.0270242 0.706590i
\(15\) 0 0
\(16\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(17\) −1.95935 7.31238i −0.475211 1.77351i −0.620589 0.784136i \(-0.713106\pi\)
0.145377 0.989376i \(-0.453560\pi\)
\(18\) 0 0
\(19\) −2.32616 4.02903i −0.533658 0.924322i −0.999227 0.0393108i \(-0.987484\pi\)
0.465569 0.885011i \(-0.345850\pi\)
\(20\) 1.98431 + 1.03078i 0.443705 + 0.230490i
\(21\) 0 0
\(22\) −1.85647 1.85647i −0.395800 0.395800i
\(23\) −4.95766 1.32840i −1.03374 0.276991i −0.298225 0.954496i \(-0.596395\pi\)
−0.735518 + 0.677505i \(0.763061\pi\)
\(24\) 0 0
\(25\) 4.98021 0.444415i 0.996042 0.0888830i
\(26\) 1.49254 0.861717i 0.292711 0.168997i
\(27\) 0 0
\(28\) −2.57990 0.586601i −0.487556 0.110857i
\(29\) 5.99410i 1.11308i 0.830822 + 0.556538i \(0.187871\pi\)
−0.830822 + 0.556538i \(0.812129\pi\)
\(30\) 0 0
\(31\) −8.66177 5.00088i −1.55570 0.898184i −0.997660 0.0683700i \(-0.978220\pi\)
−0.558040 0.829814i \(-0.688447\pi\)
\(32\) 0.965926 0.258819i 0.170753 0.0457532i
\(33\) 0 0
\(34\) −7.57033 −1.29830
\(35\) −5.56842 + 1.99816i −0.941235 + 0.337751i
\(36\) 0 0
\(37\) 1.02429 3.82271i 0.168392 0.628449i −0.829191 0.558966i \(-0.811198\pi\)
0.997583 0.0694832i \(-0.0221350\pi\)
\(38\) −4.49380 + 1.20411i −0.728990 + 0.195332i
\(39\) 0 0
\(40\) 1.50924 1.64991i 0.238631 0.260874i
\(41\) 5.59423i 0.873671i −0.899541 0.436836i \(-0.856099\pi\)
0.899541 0.436836i \(-0.143901\pi\)
\(42\) 0 0
\(43\) −0.545731 + 0.545731i −0.0832233 + 0.0832233i −0.747493 0.664270i \(-0.768743\pi\)
0.664270 + 0.747493i \(0.268743\pi\)
\(44\) −2.27370 + 1.31272i −0.342773 + 0.197900i
\(45\) 0 0
\(46\) −2.56627 + 4.44492i −0.378376 + 0.655367i
\(47\) 6.12372 + 1.64085i 0.893237 + 0.239342i 0.676109 0.736801i \(-0.263665\pi\)
0.217127 + 0.976143i \(0.430331\pi\)
\(48\) 0 0
\(49\) 5.77714 3.95280i 0.825306 0.564686i
\(50\) 0.859701 4.92554i 0.121580 0.696576i
\(51\) 0 0
\(52\) −0.446058 1.66471i −0.0618571 0.230854i
\(53\) 2.22057 + 8.28728i 0.305019 + 1.13835i 0.932929 + 0.360060i \(0.117244\pi\)
−0.627910 + 0.778286i \(0.716089\pi\)
\(54\) 0 0
\(55\) −2.70626 + 5.20970i −0.364912 + 0.702475i
\(56\) −1.23434 + 2.34017i −0.164946 + 0.312719i
\(57\) 0 0
\(58\) 5.78985 + 1.55139i 0.760245 + 0.203707i
\(59\) 3.86022 6.68609i 0.502557 0.870455i −0.497438 0.867499i \(-0.665726\pi\)
0.999996 0.00295539i \(-0.000940731\pi\)
\(60\) 0 0
\(61\) 4.16543 2.40491i 0.533328 0.307917i −0.209042 0.977907i \(-0.567035\pi\)
0.742371 + 0.669989i \(0.233701\pi\)
\(62\) −7.07231 + 7.07231i −0.898184 + 0.898184i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −2.84351 2.60107i −0.352694 0.322623i
\(66\) 0 0
\(67\) 2.47605 0.663456i 0.302498 0.0810541i −0.104377 0.994538i \(-0.533285\pi\)
0.406875 + 0.913484i \(0.366618\pi\)
\(68\) −1.95935 + 7.31238i −0.237606 + 0.886756i
\(69\) 0 0
\(70\) 0.488864 + 5.89585i 0.0584305 + 0.704688i
\(71\) 8.36973 0.993304 0.496652 0.867950i \(-0.334563\pi\)
0.496652 + 0.867950i \(0.334563\pi\)
\(72\) 0 0
\(73\) −13.1877 + 3.53363i −1.54350 + 0.413581i −0.927396 0.374081i \(-0.877958\pi\)
−0.616108 + 0.787662i \(0.711291\pi\)
\(74\) −3.42734 1.97878i −0.398421 0.230028i
\(75\) 0 0
\(76\) 4.65232i 0.533658i
\(77\) 1.54009 6.77339i 0.175509 0.771899i
\(78\) 0 0
\(79\) 7.78980 4.49744i 0.876421 0.506002i 0.00694408 0.999976i \(-0.497790\pi\)
0.869477 + 0.493974i \(0.164456\pi\)
\(80\) −1.20307 1.88484i −0.134508 0.210731i
\(81\) 0 0
\(82\) −5.40361 1.44789i −0.596729 0.159893i
\(83\) 7.99504 + 7.99504i 0.877570 + 0.877570i 0.993283 0.115713i \(-0.0369152\pi\)
−0.115713 + 0.993283i \(0.536915\pi\)
\(84\) 0 0
\(85\) 5.10428 + 16.1399i 0.553637 + 1.75062i
\(86\) 0.385890 + 0.668382i 0.0416116 + 0.0720734i
\(87\) 0 0
\(88\) 0.679515 + 2.53598i 0.0724365 + 0.270337i
\(89\) 0.0812661 + 0.140757i 0.00861419 + 0.0149202i 0.870300 0.492521i \(-0.163925\pi\)
−0.861686 + 0.507442i \(0.830591\pi\)
\(90\) 0 0
\(91\) 4.03313 + 2.12731i 0.422787 + 0.223002i
\(92\) 3.62926 + 3.62926i 0.378376 + 0.378376i
\(93\) 0 0
\(94\) 3.16987 5.49038i 0.326947 0.566289i
\(95\) 5.59708 + 8.76887i 0.574248 + 0.899667i
\(96\) 0 0
\(97\) −4.35278 + 4.35278i −0.441958 + 0.441958i −0.892670 0.450711i \(-0.851170\pi\)
0.450711 + 0.892670i \(0.351170\pi\)
\(98\) −2.32288 6.60335i −0.234647 0.667039i
\(99\) 0 0
\(100\) −4.53520 2.10523i −0.453520 0.210523i
\(101\) 6.64586 + 3.83699i 0.661287 + 0.381795i 0.792767 0.609524i \(-0.208640\pi\)
−0.131480 + 0.991319i \(0.541973\pi\)
\(102\) 0 0
\(103\) −1.05286 + 3.92931i −0.103741 + 0.387167i −0.998199 0.0599847i \(-0.980895\pi\)
0.894458 + 0.447151i \(0.147561\pi\)
\(104\) −1.72343 −0.168997
\(105\) 0 0
\(106\) 8.57963 0.833327
\(107\) 0.729112 2.72108i 0.0704859 0.263057i −0.921686 0.387937i \(-0.873188\pi\)
0.992172 + 0.124880i \(0.0398545\pi\)
\(108\) 0 0
\(109\) −10.5314 6.08031i −1.00872 0.582388i −0.0979069 0.995196i \(-0.531215\pi\)
−0.910818 + 0.412808i \(0.864548\pi\)
\(110\) 4.33175 + 3.96241i 0.413016 + 0.377801i
\(111\) 0 0
\(112\) 1.94096 + 1.79796i 0.183404 + 0.169892i
\(113\) −1.63875 + 1.63875i −0.154161 + 0.154161i −0.779973 0.625813i \(-0.784767\pi\)
0.625813 + 0.779973i \(0.284767\pi\)
\(114\) 0 0
\(115\) 11.2068 + 2.47430i 1.04504 + 0.230730i
\(116\) 2.99705 5.19104i 0.278269 0.481976i
\(117\) 0 0
\(118\) −5.45917 5.45917i −0.502557 0.502557i
\(119\) −10.6702 16.9504i −0.978137 1.55384i
\(120\) 0 0
\(121\) 2.05352 + 3.55681i 0.186684 + 0.323346i
\(122\) −1.24487 4.64593i −0.112706 0.420623i
\(123\) 0 0
\(124\) 5.00088 + 8.66177i 0.449092 + 0.777850i
\(125\) −11.0809 + 1.48815i −0.991102 + 0.133105i
\(126\) 0 0
\(127\) 6.79622 + 6.79622i 0.603067 + 0.603067i 0.941125 0.338058i \(-0.109770\pi\)
−0.338058 + 0.941125i \(0.609770\pi\)
\(128\) −0.965926 0.258819i −0.0853766 0.0228766i
\(129\) 0 0
\(130\) −3.24839 + 2.07342i −0.284903 + 0.181851i
\(131\) 3.66846 2.11799i 0.320515 0.185050i −0.331107 0.943593i \(-0.607422\pi\)
0.651622 + 0.758544i \(0.274089\pi\)
\(132\) 0 0
\(133\) −9.02997 8.36470i −0.782998 0.725311i
\(134\) 2.56340i 0.221444i
\(135\) 0 0
\(136\) 6.55610 + 3.78517i 0.562181 + 0.324575i
\(137\) −7.98108 + 2.13852i −0.681870 + 0.182706i −0.583096 0.812403i \(-0.698159\pi\)
−0.0987740 + 0.995110i \(0.531492\pi\)
\(138\) 0 0
\(139\) 9.35059 0.793106 0.396553 0.918012i \(-0.370206\pi\)
0.396553 + 0.918012i \(0.370206\pi\)
\(140\) 5.82148 + 1.05375i 0.492005 + 0.0890582i
\(141\) 0 0
\(142\) 2.16624 8.08453i 0.181787 0.678439i
\(143\) 4.37060 1.17110i 0.365488 0.0979322i
\(144\) 0 0
\(145\) −0.596249 13.3899i −0.0495158 1.11197i
\(146\) 13.6529i 1.12992i
\(147\) 0 0
\(148\) −2.79841 + 2.79841i −0.230028 + 0.230028i
\(149\) 4.12068 2.37908i 0.337579 0.194902i −0.321622 0.946868i \(-0.604228\pi\)
0.659201 + 0.751967i \(0.270895\pi\)
\(150\) 0 0
\(151\) −1.07557 + 1.86294i −0.0875286 + 0.151604i −0.906466 0.422279i \(-0.861230\pi\)
0.818937 + 0.573883i \(0.194564\pi\)
\(152\) 4.49380 + 1.20411i 0.364495 + 0.0976661i
\(153\) 0 0
\(154\) −6.14399 3.24069i −0.495097 0.261142i
\(155\) 19.8466 + 10.3096i 1.59412 + 0.828089i
\(156\) 0 0
\(157\) 0.984635 + 3.67471i 0.0785824 + 0.293274i 0.994022 0.109182i \(-0.0348233\pi\)
−0.915439 + 0.402456i \(0.868157\pi\)
\(158\) −2.32805 8.68839i −0.185209 0.691211i
\(159\) 0 0
\(160\) −2.13199 + 0.674247i −0.168549 + 0.0533039i
\(161\) −13.5695 + 0.518978i −1.06943 + 0.0409012i
\(162\) 0 0
\(163\) −4.30925 1.15466i −0.337526 0.0904399i 0.0860750 0.996289i \(-0.472568\pi\)
−0.423601 + 0.905849i \(0.639234\pi\)
\(164\) −2.79711 + 4.84474i −0.218418 + 0.378311i
\(165\) 0 0
\(166\) 9.79189 5.65335i 0.759998 0.438785i
\(167\) −16.1327 + 16.1327i −1.24839 + 1.24839i −0.291956 + 0.956432i \(0.594306\pi\)
−0.956432 + 0.291956i \(0.905694\pi\)
\(168\) 0 0
\(169\) 10.0298i 0.771521i
\(170\) 16.9110 0.753042i 1.29702 0.0577557i
\(171\) 0 0
\(172\) 0.745483 0.199752i 0.0568425 0.0152309i
\(173\) 3.20476 11.9603i 0.243653 0.909327i −0.730402 0.683017i \(-0.760667\pi\)
0.974055 0.226309i \(-0.0726660\pi\)
\(174\) 0 0
\(175\) 12.2403 5.01751i 0.925279 0.379288i
\(176\) 2.62544 0.197900
\(177\) 0 0
\(178\) 0.156994 0.0420664i 0.0117672 0.00315301i
\(179\) 17.5544 + 10.1350i 1.31208 + 0.757528i 0.982440 0.186580i \(-0.0597403\pi\)
0.329637 + 0.944108i \(0.393074\pi\)
\(180\) 0 0
\(181\) 7.52637i 0.559431i −0.960083 0.279715i \(-0.909760\pi\)
0.960083 0.279715i \(-0.0902401\pi\)
\(182\) 3.09867 3.34512i 0.229689 0.247957i
\(183\) 0 0
\(184\) 4.44492 2.56627i 0.327684 0.189188i
\(185\) −1.90786 + 8.64126i −0.140269 + 0.635318i
\(186\) 0 0
\(187\) −19.1982 5.14415i −1.40391 0.376178i
\(188\) −4.48288 4.48288i −0.326947 0.326947i
\(189\) 0 0
\(190\) 9.91871 3.13681i 0.719579 0.227568i
\(191\) 2.16395 + 3.74807i 0.156578 + 0.271201i 0.933632 0.358233i \(-0.116621\pi\)
−0.777055 + 0.629433i \(0.783287\pi\)
\(192\) 0 0
\(193\) 5.50458 + 20.5434i 0.396228 + 1.47874i 0.819678 + 0.572825i \(0.194153\pi\)
−0.423449 + 0.905920i \(0.639181\pi\)
\(194\) 3.07788 + 5.33105i 0.220979 + 0.382747i
\(195\) 0 0
\(196\) −6.97955 + 0.534660i −0.498539 + 0.0381900i
\(197\) 14.1314 + 14.1314i 1.00682 + 1.00682i 0.999977 + 0.00684089i \(0.00217754\pi\)
0.00684089 + 0.999977i \(0.497822\pi\)
\(198\) 0 0
\(199\) 0.422034 0.730985i 0.0299172 0.0518182i −0.850679 0.525685i \(-0.823809\pi\)
0.880596 + 0.473867i \(0.157142\pi\)
\(200\) −3.20729 + 3.83579i −0.226790 + 0.271231i
\(201\) 0 0
\(202\) 5.42632 5.42632i 0.381795 0.381795i
\(203\) 4.68703 + 15.1505i 0.328965 + 1.06335i
\(204\) 0 0
\(205\) 0.556473 + 12.4967i 0.0388657 + 0.872806i
\(206\) 3.52293 + 2.03396i 0.245454 + 0.141713i
\(207\) 0 0
\(208\) −0.446058 + 1.66471i −0.0309285 + 0.115427i
\(209\) −12.2144 −0.844888
\(210\) 0 0
\(211\) 22.1844 1.52724 0.763619 0.645667i \(-0.223421\pi\)
0.763619 + 0.645667i \(0.223421\pi\)
\(212\) 2.22057 8.28728i 0.152509 0.569173i
\(213\) 0 0
\(214\) −2.43966 1.40854i −0.166771 0.0962855i
\(215\) 1.16480 1.27337i 0.0794386 0.0868431i
\(216\) 0 0
\(217\) −25.8036 5.86704i −1.75166 0.398280i
\(218\) −8.59885 + 8.59885i −0.582388 + 0.582388i
\(219\) 0 0
\(220\) 4.94854 3.15860i 0.333630 0.212953i
\(221\) 6.52348 11.2990i 0.438817 0.760053i
\(222\) 0 0
\(223\) 10.7632 + 10.7632i 0.720757 + 0.720757i 0.968759 0.248002i \(-0.0797741\pi\)
−0.248002 + 0.968759i \(0.579774\pi\)
\(224\) 2.23906 1.40948i 0.149603 0.0941747i
\(225\) 0 0
\(226\) 1.15877 + 2.00705i 0.0770804 + 0.133507i
\(227\) −0.967615 3.61119i −0.0642229 0.239683i 0.926351 0.376661i \(-0.122928\pi\)
−0.990574 + 0.136978i \(0.956261\pi\)
\(228\) 0 0
\(229\) 7.59088 + 13.1478i 0.501619 + 0.868830i 0.999998 + 0.00187073i \(0.000595471\pi\)
−0.498379 + 0.866959i \(0.666071\pi\)
\(230\) 5.29053 10.1846i 0.348847 0.671551i
\(231\) 0 0
\(232\) −4.23847 4.23847i −0.278269 0.278269i
\(233\) −1.17170 0.313957i −0.0767607 0.0205680i 0.220234 0.975447i \(-0.429318\pi\)
−0.296995 + 0.954879i \(0.595984\pi\)
\(234\) 0 0
\(235\) −13.8427 3.05627i −0.903000 0.199369i
\(236\) −6.68609 + 3.86022i −0.435227 + 0.251279i
\(237\) 0 0
\(238\) −19.1345 + 5.91955i −1.24030 + 0.383707i
\(239\) 16.1593i 1.04526i −0.852560 0.522630i \(-0.824951\pi\)
0.852560 0.522630i \(-0.175049\pi\)
\(240\) 0 0
\(241\) −21.8384 12.6084i −1.40674 0.812180i −0.411665 0.911335i \(-0.635053\pi\)
−0.995072 + 0.0991549i \(0.968386\pi\)
\(242\) 3.96710 1.06298i 0.255015 0.0683311i
\(243\) 0 0
\(244\) −4.80982 −0.307917
\(245\) −12.5121 + 9.40466i −0.799368 + 0.600842i
\(246\) 0 0
\(247\) 2.07520 7.74476i 0.132042 0.492787i
\(248\) 9.66095 2.58864i 0.613471 0.164379i
\(249\) 0 0
\(250\) −1.43049 + 11.0884i −0.0904722 + 0.701295i
\(251\) 2.07559i 0.131010i −0.997852 0.0655051i \(-0.979134\pi\)
0.997852 0.0655051i \(-0.0208659\pi\)
\(252\) 0 0
\(253\) −9.52841 + 9.52841i −0.599046 + 0.599046i
\(254\) 8.32363 4.80565i 0.522271 0.301533i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −4.34881 1.16526i −0.271271 0.0726869i 0.120619 0.992699i \(-0.461512\pi\)
−0.391890 + 0.920012i \(0.628179\pi\)
\(258\) 0 0
\(259\) −0.400169 10.4631i −0.0248653 0.650143i
\(260\) 1.16202 + 3.67435i 0.0720655 + 0.227873i
\(261\) 0 0
\(262\) −1.09635 4.09164i −0.0677328 0.252782i
\(263\) −5.79744 21.6364i −0.357486 1.33415i −0.877327 0.479892i \(-0.840676\pi\)
0.519842 0.854263i \(-0.325991\pi\)
\(264\) 0 0
\(265\) −5.78479 18.2917i −0.355357 1.12365i
\(266\) −10.4168 + 6.55734i −0.638695 + 0.402056i
\(267\) 0 0
\(268\) −2.47605 0.663456i −0.151249 0.0405270i
\(269\) −5.86211 + 10.1535i −0.357419 + 0.619068i −0.987529 0.157438i \(-0.949677\pi\)
0.630110 + 0.776506i \(0.283010\pi\)
\(270\) 0 0
\(271\) 20.8254 12.0235i 1.26505 0.730377i 0.291004 0.956722i \(-0.406011\pi\)
0.974047 + 0.226344i \(0.0726775\pi\)
\(272\) 5.35303 5.35303i 0.324575 0.324575i
\(273\) 0 0
\(274\) 8.26262i 0.499163i
\(275\) 5.52716 11.9069i 0.333300 0.718013i
\(276\) 0 0
\(277\) 26.2705 7.03917i 1.57844 0.422943i 0.640000 0.768375i \(-0.278934\pi\)
0.938444 + 0.345433i \(0.112268\pi\)
\(278\) 2.42011 9.03197i 0.145149 0.541702i
\(279\) 0 0
\(280\) 2.52455 5.35039i 0.150871 0.319747i
\(281\) −22.1913 −1.32382 −0.661910 0.749583i \(-0.730254\pi\)
−0.661910 + 0.749583i \(0.730254\pi\)
\(282\) 0 0
\(283\) 10.7244 2.87361i 0.637502 0.170818i 0.0744302 0.997226i \(-0.476286\pi\)
0.563072 + 0.826408i \(0.309620\pi\)
\(284\) −7.24840 4.18486i −0.430113 0.248326i
\(285\) 0 0
\(286\) 4.52478i 0.267556i
\(287\) −4.37435 14.1398i −0.258210 0.834643i
\(288\) 0 0
\(289\) −34.9094 + 20.1550i −2.05350 + 1.18559i
\(290\) −13.0880 2.88964i −0.768555 0.169685i
\(291\) 0 0
\(292\) 13.1877 + 3.53363i 0.771752 + 0.206790i
\(293\) −6.51580 6.51580i −0.380657 0.380657i 0.490682 0.871339i \(-0.336748\pi\)
−0.871339 + 0.490682i \(0.836748\pi\)
\(294\) 0 0
\(295\) −7.95808 + 15.3197i −0.463337 + 0.891950i
\(296\) 1.97878 + 3.42734i 0.115014 + 0.199210i
\(297\) 0 0
\(298\) −1.23150 4.59602i −0.0713389 0.266240i
\(299\) −4.42280 7.66052i −0.255777 0.443019i
\(300\) 0 0
\(301\) −0.952640 + 1.80610i −0.0549093 + 0.104102i
\(302\) 1.52108 + 1.52108i 0.0875286 + 0.0875286i
\(303\) 0 0
\(304\) 2.32616 4.02903i 0.133414 0.231081i
\(305\) −9.06574 + 5.78657i −0.519103 + 0.331338i
\(306\) 0 0
\(307\) −20.6010 + 20.6010i −1.17576 + 1.17576i −0.194947 + 0.980814i \(0.562454\pi\)
−0.980814 + 0.194947i \(0.937546\pi\)
\(308\) −4.72045 + 5.09588i −0.268973 + 0.290365i
\(309\) 0 0
\(310\) 15.0950 16.5020i 0.857339 0.937251i
\(311\) −28.4631 16.4332i −1.61399 0.931840i −0.988432 0.151665i \(-0.951537\pi\)
−0.625562 0.780175i \(-0.715130\pi\)
\(312\) 0 0
\(313\) −5.74141 + 21.4272i −0.324523 + 1.21114i 0.590267 + 0.807208i \(0.299023\pi\)
−0.914790 + 0.403930i \(0.867644\pi\)
\(314\) 3.80434 0.214691
\(315\) 0 0
\(316\) −8.99488 −0.506002
\(317\) 3.71781 13.8751i 0.208813 0.779301i −0.779440 0.626476i \(-0.784496\pi\)
0.988253 0.152824i \(-0.0488368\pi\)
\(318\) 0 0
\(319\) 13.6288 + 7.86858i 0.763065 + 0.440556i
\(320\) 0.0994727 + 2.23385i 0.00556069 + 0.124876i
\(321\) 0 0
\(322\) −3.01076 + 13.2415i −0.167783 + 0.737918i
\(323\) −24.9040 + 24.9040i −1.38570 + 1.38570i
\(324\) 0 0
\(325\) 6.61073 + 5.52756i 0.366697 + 0.306614i
\(326\) −2.23063 + 3.86356i −0.123543 + 0.213983i
\(327\) 0 0
\(328\) 3.95571 + 3.95571i 0.218418 + 0.218418i
\(329\) 16.7611 0.641044i 0.924071 0.0353419i
\(330\) 0 0
\(331\) 1.44533 + 2.50339i 0.0794427 + 0.137599i 0.903010 0.429620i \(-0.141353\pi\)
−0.823567 + 0.567219i \(0.808019\pi\)
\(332\) −2.92639 10.9214i −0.160606 0.599391i
\(333\) 0 0
\(334\) 11.4076 + 19.7585i 0.624194 + 1.08114i
\(335\) −5.46514 + 1.72836i −0.298593 + 0.0944306i
\(336\) 0 0
\(337\) −23.4453 23.4453i −1.27715 1.27715i −0.942257 0.334891i \(-0.891301\pi\)
−0.334891 0.942257i \(-0.608699\pi\)
\(338\) −9.68802 2.59590i −0.526959 0.141198i
\(339\) 0 0
\(340\) 3.64951 16.5297i 0.197923 0.896448i
\(341\) −22.7410 + 13.1295i −1.23149 + 0.711003i
\(342\) 0 0
\(343\) 11.5112 14.5083i 0.621547 0.783377i
\(344\) 0.771781i 0.0416116i
\(345\) 0 0
\(346\) −10.7233 6.19112i −0.576490 0.332837i
\(347\) −10.9516 + 2.93447i −0.587912 + 0.157531i −0.540499 0.841345i \(-0.681765\pi\)
−0.0474135 + 0.998875i \(0.515098\pi\)
\(348\) 0 0
\(349\) 6.80786 0.364417 0.182208 0.983260i \(-0.441675\pi\)
0.182208 + 0.983260i \(0.441675\pi\)
\(350\) −1.67853 13.1218i −0.0897211 0.701392i
\(351\) 0 0
\(352\) 0.679515 2.53598i 0.0362183 0.135168i
\(353\) 26.8765 7.20154i 1.43049 0.383299i 0.541299 0.840830i \(-0.317933\pi\)
0.889194 + 0.457531i \(0.151266\pi\)
\(354\) 0 0
\(355\) −18.6967 + 0.832559i −0.992320 + 0.0441877i
\(356\) 0.162532i 0.00861419i
\(357\) 0 0
\(358\) 14.3331 14.3331i 0.757528 0.757528i
\(359\) 11.8979 6.86927i 0.627948 0.362546i −0.152009 0.988379i \(-0.548574\pi\)
0.779957 + 0.625833i \(0.215241\pi\)
\(360\) 0 0
\(361\) −1.32204 + 2.28984i −0.0695809 + 0.120518i
\(362\) −7.26992 1.94797i −0.382098 0.102383i
\(363\) 0 0
\(364\) −2.42914 3.85887i −0.127322 0.202260i
\(365\) 29.1079 9.20544i 1.52358 0.481835i
\(366\) 0 0
\(367\) 6.52689 + 24.3587i 0.340701 + 1.27151i 0.897555 + 0.440903i \(0.145342\pi\)
−0.556854 + 0.830610i \(0.687992\pi\)
\(368\) −1.32840 4.95766i −0.0692477 0.258436i
\(369\) 0 0
\(370\) 7.85302 + 4.07937i 0.408259 + 0.212077i
\(371\) 12.0928 + 19.2103i 0.627827 + 0.997348i
\(372\) 0 0
\(373\) −25.9391 6.95037i −1.34308 0.359876i −0.485502 0.874235i \(-0.661363\pi\)
−0.857575 + 0.514359i \(0.828030\pi\)
\(374\) −9.93774 + 17.2127i −0.513868 + 0.890046i
\(375\) 0 0
\(376\) −5.49038 + 3.16987i −0.283145 + 0.163474i
\(377\) −7.30472 + 7.30472i −0.376212 + 0.376212i
\(378\) 0 0
\(379\) 3.51982i 0.180801i −0.995905 0.0904005i \(-0.971185\pi\)
0.995905 0.0904005i \(-0.0288147\pi\)
\(380\) −0.462779 10.3926i −0.0237401 0.533129i
\(381\) 0 0
\(382\) 4.18042 1.12014i 0.213889 0.0573114i
\(383\) −2.31980 + 8.65762i −0.118536 + 0.442384i −0.999527 0.0307499i \(-0.990210\pi\)
0.880991 + 0.473133i \(0.156877\pi\)
\(384\) 0 0
\(385\) −2.76656 + 15.2840i −0.140997 + 0.778943i
\(386\) 21.2681 1.08252
\(387\) 0 0
\(388\) 5.94601 1.59323i 0.301863 0.0808840i
\(389\) 27.3119 + 15.7685i 1.38477 + 0.799497i 0.992720 0.120447i \(-0.0384329\pi\)
0.392049 + 0.919944i \(0.371766\pi\)
\(390\) 0 0
\(391\) 38.8551i 1.96499i
\(392\) −1.29000 + 6.88011i −0.0651548 + 0.347498i
\(393\) 0 0
\(394\) 17.3073 9.99238i 0.871930 0.503409i
\(395\) −16.9539 + 10.8215i −0.853043 + 0.544489i
\(396\) 0 0
\(397\) −6.00656 1.60945i −0.301461 0.0807762i 0.104918 0.994481i \(-0.466542\pi\)
−0.406379 + 0.913705i \(0.633209\pi\)
\(398\) −0.596847 0.596847i −0.0299172 0.0299172i
\(399\) 0 0
\(400\) 2.87498 + 4.09078i 0.143749 + 0.204539i
\(401\) −10.2570 17.7657i −0.512211 0.887176i −0.999900 0.0141584i \(-0.995493\pi\)
0.487688 0.873018i \(-0.337840\pi\)
\(402\) 0 0
\(403\) −4.46136 16.6500i −0.222236 0.829396i
\(404\) −3.83699 6.64586i −0.190897 0.330644i
\(405\) 0 0
\(406\) 15.8473 0.606094i 0.786489 0.0300799i
\(407\) −7.34708 7.34708i −0.364181 0.364181i
\(408\) 0 0
\(409\) 12.8256 22.2145i 0.634184 1.09844i −0.352504 0.935810i \(-0.614670\pi\)
0.986687 0.162628i \(-0.0519970\pi\)
\(410\) 12.2149 + 2.69687i 0.603251 + 0.133189i
\(411\) 0 0
\(412\) 2.87646 2.87646i 0.141713 0.141713i
\(413\) 4.52881 19.9180i 0.222848 0.980099i
\(414\) 0 0
\(415\) −18.6551 17.0645i −0.915740 0.837662i
\(416\) 1.49254 + 0.861717i 0.0731777 + 0.0422492i
\(417\) 0 0
\(418\) −3.16132 + 11.7982i −0.154625 + 0.577069i
\(419\) −1.54146 −0.0753054 −0.0376527 0.999291i \(-0.511988\pi\)
−0.0376527 + 0.999291i \(0.511988\pi\)
\(420\) 0 0
\(421\) −20.0850 −0.978884 −0.489442 0.872036i \(-0.662800\pi\)
−0.489442 + 0.872036i \(0.662800\pi\)
\(422\) 5.74175 21.4285i 0.279504 1.04312i
\(423\) 0 0
\(424\) −7.43018 4.28981i −0.360841 0.208332i
\(425\) −13.0077 35.5464i −0.630966 1.72425i
\(426\) 0 0
\(427\) 8.64788 9.33568i 0.418500 0.451785i
\(428\) −1.99197 + 1.99197i −0.0962855 + 0.0962855i
\(429\) 0 0
\(430\) −0.928509 1.45468i −0.0447767 0.0701510i
\(431\) 10.9503 18.9665i 0.527457 0.913583i −0.472030 0.881582i \(-0.656479\pi\)
0.999488 0.0320007i \(-0.0101879\pi\)
\(432\) 0 0
\(433\) −5.51584 5.51584i −0.265074 0.265074i 0.562038 0.827112i \(-0.310018\pi\)
−0.827112 + 0.562038i \(0.810018\pi\)
\(434\) −12.3456 + 23.4058i −0.592606 + 1.12352i
\(435\) 0 0
\(436\) 6.08031 + 10.5314i 0.291194 + 0.504362i
\(437\) 6.18014 + 23.0646i 0.295636 + 1.10333i
\(438\) 0 0
\(439\) 2.62203 + 4.54150i 0.125143 + 0.216754i 0.921789 0.387692i \(-0.126728\pi\)
−0.796646 + 0.604446i \(0.793394\pi\)
\(440\) −1.77020 5.59742i −0.0843909 0.266847i
\(441\) 0 0
\(442\) −9.22560 9.22560i −0.438817 0.438817i
\(443\) 1.25609 + 0.336567i 0.0596784 + 0.0159908i 0.288535 0.957469i \(-0.406832\pi\)
−0.228856 + 0.973460i \(0.573499\pi\)
\(444\) 0 0
\(445\) −0.195538 0.306347i −0.00926940 0.0145222i
\(446\) 13.1822 7.61073i 0.624194 0.360378i
\(447\) 0 0
\(448\) −0.781940 2.52756i −0.0369432 0.119416i
\(449\) 22.3625i 1.05535i 0.849445 + 0.527676i \(0.176937\pi\)
−0.849445 + 0.527676i \(0.823063\pi\)
\(450\) 0 0
\(451\) −12.7196 7.34366i −0.598942 0.345799i
\(452\) 2.23858 0.599825i 0.105294 0.0282134i
\(453\) 0 0
\(454\) −3.73858 −0.175460
\(455\) −9.22104 4.35090i −0.432289 0.203973i
\(456\) 0 0
\(457\) 0.853971 3.18706i 0.0399471 0.149085i −0.943072 0.332589i \(-0.892078\pi\)
0.983019 + 0.183505i \(0.0587443\pi\)
\(458\) 14.6644 3.92933i 0.685225 0.183605i
\(459\) 0 0
\(460\) −8.46825 7.74622i −0.394834 0.361169i
\(461\) 6.97417i 0.324819i −0.986723 0.162410i \(-0.948073\pi\)
0.986723 0.162410i \(-0.0519266\pi\)
\(462\) 0 0
\(463\) 16.6658 16.6658i 0.774527 0.774527i −0.204367 0.978894i \(-0.565514\pi\)
0.978894 + 0.204367i \(0.0655136\pi\)
\(464\) −5.19104 + 2.99705i −0.240988 + 0.139135i
\(465\) 0 0
\(466\) −0.606518 + 1.05052i −0.0280964 + 0.0486644i
\(467\) 11.0696 + 2.96609i 0.512240 + 0.137254i 0.505675 0.862724i \(-0.331244\pi\)
0.00656516 + 0.999978i \(0.497910\pi\)
\(468\) 0 0
\(469\) 5.73959 3.61305i 0.265030 0.166835i
\(470\) −6.53489 + 12.5800i −0.301432 + 0.580273i
\(471\) 0 0
\(472\) 1.99819 + 7.45736i 0.0919744 + 0.343253i
\(473\) 0.524436 + 1.95722i 0.0241136 + 0.0899932i
\(474\) 0 0
\(475\) −13.3753 19.0316i −0.613702 0.873231i
\(476\) 0.765475 + 20.0146i 0.0350855 + 0.917367i
\(477\) 0 0
\(478\) −15.6087 4.18234i −0.713926 0.191296i
\(479\) 5.05860 8.76174i 0.231133 0.400334i −0.727009 0.686628i \(-0.759090\pi\)
0.958142 + 0.286294i \(0.0924234\pi\)
\(480\) 0 0
\(481\) 5.90680 3.41029i 0.269327 0.155496i
\(482\) −17.8310 + 17.8310i −0.812180 + 0.812180i
\(483\) 0 0
\(484\) 4.10705i 0.186684i
\(485\) 9.29050 10.1565i 0.421860 0.461182i
\(486\) 0 0
\(487\) 35.6908 9.56331i 1.61730 0.433355i 0.667095 0.744972i \(-0.267537\pi\)
0.950208 + 0.311617i \(0.100871\pi\)
\(488\) −1.24487 + 4.64593i −0.0563528 + 0.210311i
\(489\) 0 0
\(490\) 5.84583 + 14.5199i 0.264088 + 0.655940i
\(491\) 8.00737 0.361368 0.180684 0.983541i \(-0.442169\pi\)
0.180684 + 0.983541i \(0.442169\pi\)
\(492\) 0 0
\(493\) 43.8311 11.7445i 1.97405 0.528946i
\(494\) −6.94376 4.00898i −0.312415 0.180373i
\(495\) 0 0
\(496\) 10.0018i 0.449092i
\(497\) 21.1550 6.54463i 0.948932 0.293567i
\(498\) 0 0
\(499\) −10.3636 + 5.98341i −0.463937 + 0.267854i −0.713698 0.700453i \(-0.752981\pi\)
0.249761 + 0.968307i \(0.419648\pi\)
\(500\) 10.3404 + 4.25165i 0.462436 + 0.190140i
\(501\) 0 0
\(502\) −2.00487 0.537203i −0.0894816 0.0239765i
\(503\) 20.3121 + 20.3121i 0.905670 + 0.905670i 0.995919 0.0902493i \(-0.0287664\pi\)
−0.0902493 + 0.995919i \(0.528766\pi\)
\(504\) 0 0
\(505\) −15.2276 7.91019i −0.677617 0.351999i
\(506\) 6.73760 + 11.6699i 0.299523 + 0.518789i
\(507\) 0 0
\(508\) −2.48759 9.28381i −0.110369 0.411902i
\(509\) 14.7797 + 25.5992i 0.655098 + 1.13466i 0.981869 + 0.189559i \(0.0607060\pi\)
−0.326771 + 0.945103i \(0.605961\pi\)
\(510\) 0 0
\(511\) −30.5696 + 19.2435i −1.35232 + 0.851281i
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) −2.25111 + 3.89904i −0.0992922 + 0.171979i
\(515\) 1.96107 8.88224i 0.0864150 0.391398i
\(516\) 0 0
\(517\) 11.7695 11.7695i 0.517624 0.517624i
\(518\) −10.2101 2.32151i −0.448607 0.102001i
\(519\) 0 0
\(520\) 3.84990 0.171435i 0.168829 0.00751791i
\(521\) 7.64664 + 4.41479i 0.335005 + 0.193415i 0.658061 0.752964i \(-0.271377\pi\)
−0.323056 + 0.946380i \(0.604710\pi\)
\(522\) 0 0
\(523\) 10.6856 39.8792i 0.467249 1.74380i −0.182076 0.983284i \(-0.558282\pi\)
0.649325 0.760511i \(-0.275052\pi\)
\(524\) −4.23598 −0.185050
\(525\) 0 0
\(526\) −22.3996 −0.976669
\(527\) −19.5969 + 73.1366i −0.853654 + 3.18588i
\(528\) 0 0
\(529\) 2.89515 + 1.67152i 0.125876 + 0.0726746i
\(530\) −19.1656 + 0.853439i −0.832502 + 0.0370710i
\(531\) 0 0
\(532\) 3.63784 + 11.7590i 0.157720 + 0.509818i
\(533\) 6.81741 6.81741i 0.295295 0.295295i
\(534\) 0 0
\(535\) −1.35806 + 6.15103i −0.0587139 + 0.265932i
\(536\) −1.28170 + 2.21997i −0.0553610 + 0.0958880i
\(537\) 0 0
\(538\) 8.29027 + 8.29027i 0.357419 + 0.357419i
\(539\) −1.40372 18.3244i −0.0604625 0.789288i
\(540\) 0 0
\(541\) 12.7674 + 22.1137i 0.548911 + 0.950742i 0.998349 + 0.0574309i \(0.0182909\pi\)
−0.449438 + 0.893311i \(0.648376\pi\)
\(542\) −6.22384 23.2277i −0.267337 0.997714i
\(543\) 0 0
\(544\) −3.78517 6.55610i −0.162288 0.281090i
\(545\) 24.1304 + 12.5349i 1.03363 + 0.536937i
\(546\) 0 0
\(547\) 22.6183 + 22.6183i 0.967087 + 0.967087i 0.999475 0.0323883i \(-0.0103113\pi\)
−0.0323883 + 0.999475i \(0.510311\pi\)
\(548\) 7.98108 + 2.13852i 0.340935 + 0.0913532i
\(549\) 0 0
\(550\) −10.0706 8.42056i −0.429414 0.359054i
\(551\) 24.1504 13.9432i 1.02884 0.594002i
\(552\) 0 0
\(553\) 16.1725 17.4587i 0.687723 0.742420i
\(554\) 27.1973i 1.15550i
\(555\) 0 0
\(556\) −8.09784 4.67529i −0.343425 0.198277i
\(557\) −16.9420 + 4.53960i −0.717856 + 0.192349i −0.599215 0.800588i \(-0.704520\pi\)
−0.118641 + 0.992937i \(0.537854\pi\)
\(558\) 0 0
\(559\) −1.33011 −0.0562578
\(560\) −4.51467 3.82331i −0.190780 0.161565i
\(561\) 0 0
\(562\) −5.74352 + 21.4351i −0.242276 + 0.904186i
\(563\) −15.0854 + 4.04211i −0.635772 + 0.170355i −0.562288 0.826942i \(-0.690079\pi\)
−0.0734847 + 0.997296i \(0.523412\pi\)
\(564\) 0 0
\(565\) 3.49772 3.82374i 0.147150 0.160866i
\(566\) 11.1028i 0.466684i
\(567\) 0 0
\(568\) −5.91829 + 5.91829i −0.248326 + 0.248326i
\(569\) −15.5107 + 8.95511i −0.650243 + 0.375418i −0.788549 0.614972i \(-0.789167\pi\)
0.138307 + 0.990389i \(0.455834\pi\)
\(570\) 0 0
\(571\) 10.2340 17.7258i 0.428278 0.741800i −0.568442 0.822723i \(-0.692454\pi\)
0.996720 + 0.0809234i \(0.0257869\pi\)
\(572\) −4.37060 1.17110i −0.182744 0.0489661i
\(573\) 0 0
\(574\) −14.7901 + 0.565661i −0.617327 + 0.0236102i
\(575\) −25.2805 4.41246i −1.05427 0.184012i
\(576\) 0 0
\(577\) 6.62634 + 24.7298i 0.275858 + 1.02952i 0.955264 + 0.295754i \(0.0955708\pi\)
−0.679406 + 0.733763i \(0.737762\pi\)
\(578\) 10.4330 + 38.9364i 0.433955 + 1.61954i
\(579\) 0 0
\(580\) −6.17860 + 11.8942i −0.256553 + 0.493878i
\(581\) 26.4596 + 13.9563i 1.09773 + 0.579006i
\(582\) 0 0
\(583\) 21.7578 + 5.82998i 0.901116 + 0.241453i
\(584\) 6.82646 11.8238i 0.282481 0.489271i
\(585\) 0 0
\(586\) −7.98019 + 4.60737i −0.329659 + 0.190329i
\(587\) 26.2627 26.2627i 1.08398 1.08398i 0.0878438 0.996134i \(-0.472002\pi\)
0.996134 0.0878438i \(-0.0279977\pi\)
\(588\) 0 0
\(589\) 46.5313i 1.91729i
\(590\) 12.7380 + 11.6520i 0.524416 + 0.479703i
\(591\) 0 0
\(592\) 3.82271 1.02429i 0.157112 0.0420981i
\(593\) 2.49114 9.29705i 0.102299 0.381784i −0.895726 0.444606i \(-0.853344\pi\)
0.998025 + 0.0628225i \(0.0200102\pi\)
\(594\) 0 0
\(595\) 25.5218 + 36.8033i 1.04629 + 1.50879i
\(596\) −4.75815 −0.194902
\(597\) 0 0
\(598\) −8.54420 + 2.28941i −0.349398 + 0.0936210i
\(599\) −3.36700 1.94394i −0.137572 0.0794273i 0.429634 0.903003i \(-0.358642\pi\)
−0.567206 + 0.823576i \(0.691976\pi\)
\(600\) 0 0
\(601\) 36.4068i 1.48506i −0.669811 0.742531i \(-0.733625\pi\)
0.669811 0.742531i \(-0.266375\pi\)
\(602\) 1.49800 + 1.38763i 0.0610538 + 0.0565557i
\(603\) 0 0
\(604\) 1.86294 1.07557i 0.0758020 0.0437643i
\(605\) −4.94108 7.74112i −0.200883 0.314721i
\(606\) 0 0
\(607\) 6.68399 + 1.79097i 0.271295 + 0.0726932i 0.391902 0.920007i \(-0.371817\pi\)
−0.120607 + 0.992700i \(0.538484\pi\)
\(608\) −3.28969 3.28969i −0.133414 0.133414i
\(609\) 0 0
\(610\) 3.24301 + 10.2545i 0.131306 + 0.415193i
\(611\) 5.46307 + 9.46231i 0.221012 + 0.382804i
\(612\) 0 0
\(613\) 11.5346 + 43.0478i 0.465880 + 1.73869i 0.653957 + 0.756532i \(0.273108\pi\)
−0.188077 + 0.982154i \(0.560225\pi\)
\(614\) 14.5671 + 25.2310i 0.587881 + 1.01824i
\(615\) 0 0
\(616\) 3.70050 + 5.87851i 0.149098 + 0.236852i
\(617\) −8.27627 8.27627i −0.333190 0.333190i 0.520607 0.853797i \(-0.325706\pi\)
−0.853797 + 0.520607i \(0.825706\pi\)
\(618\) 0 0
\(619\) −5.79761 + 10.0418i −0.233026 + 0.403612i −0.958697 0.284429i \(-0.908196\pi\)
0.725671 + 0.688042i \(0.241529\pi\)
\(620\) −12.0328 18.8517i −0.483250 0.757102i
\(621\) 0 0
\(622\) −23.2400 + 23.2400i −0.931840 + 0.931840i
\(623\) 0.315469 + 0.292227i 0.0126390 + 0.0117078i
\(624\) 0 0
\(625\) 24.6050 4.42656i 0.984200 0.177062i
\(626\) 19.2111 + 11.0915i 0.767831 + 0.443307i
\(627\) 0 0
\(628\) 0.984635 3.67471i 0.0392912 0.146637i
\(629\) −29.9600 −1.19458
\(630\) 0 0
\(631\) 2.25813 0.0898949 0.0449474 0.998989i \(-0.485688\pi\)
0.0449474 + 0.998989i \(0.485688\pi\)
\(632\) −2.32805 + 8.68839i −0.0926047 + 0.345606i
\(633\) 0 0
\(634\) −12.4400 7.18226i −0.494057 0.285244i
\(635\) −15.8578 14.5057i −0.629298 0.575642i
\(636\) 0 0
\(637\) 11.8574 + 2.22323i 0.469808 + 0.0880875i
\(638\) 11.1279 11.1279i 0.440556 0.440556i
\(639\) 0 0
\(640\) 2.18348 + 0.482081i 0.0863097 + 0.0190559i
\(641\) 9.61246 16.6493i 0.379669 0.657607i −0.611345 0.791364i \(-0.709371\pi\)
0.991014 + 0.133758i \(0.0427044\pi\)
\(642\) 0 0
\(643\) 15.5634 + 15.5634i 0.613760 + 0.613760i 0.943924 0.330163i \(-0.107104\pi\)
−0.330163 + 0.943924i \(0.607104\pi\)
\(644\) 12.0110 + 6.33531i 0.473301 + 0.249646i
\(645\) 0 0
\(646\) 17.6098 + 30.5011i 0.692848 + 1.20005i
\(647\) 2.55828 + 9.54764i 0.100577 + 0.375357i 0.997806 0.0662082i \(-0.0210902\pi\)
−0.897229 + 0.441565i \(0.854423\pi\)
\(648\) 0 0
\(649\) −10.1348 17.5539i −0.397825 0.689053i
\(650\) 7.05019 4.95484i 0.276531 0.194345i
\(651\) 0 0
\(652\) 3.15459 + 3.15459i 0.123543 + 0.123543i
\(653\) −9.61337 2.57589i −0.376200 0.100803i 0.0657640 0.997835i \(-0.479052\pi\)
−0.441964 + 0.897033i \(0.645718\pi\)
\(654\) 0 0
\(655\) −7.98413 + 5.09619i −0.311966 + 0.199125i
\(656\) 4.84474 2.79711i 0.189155 0.109209i
\(657\) 0 0
\(658\) 3.71890 16.3559i 0.144978 0.637620i
\(659\) 16.2333i 0.632360i −0.948699 0.316180i \(-0.897600\pi\)
0.948699 0.316180i \(-0.102400\pi\)
\(660\) 0 0
\(661\) −8.77097 5.06392i −0.341151 0.196964i 0.319630 0.947543i \(-0.396441\pi\)
−0.660781 + 0.750579i \(0.729775\pi\)
\(662\) 2.79217 0.748160i 0.108521 0.0290780i
\(663\) 0 0
\(664\) −11.3067 −0.438785
\(665\) 21.0037 + 17.7873i 0.814489 + 0.689761i
\(666\) 0 0
\(667\) 7.96256 29.7167i 0.308312 1.15064i
\(668\) 22.0377 5.90499i 0.852665 0.228471i
\(669\) 0 0
\(670\) 0.254988 + 5.72626i 0.00985105 + 0.221225i
\(671\) 12.6279i 0.487495i
\(672\) 0 0
\(673\) 15.2038 15.2038i 0.586062 0.586062i −0.350501 0.936563i \(-0.613989\pi\)
0.936563 + 0.350501i \(0.113989\pi\)
\(674\) −28.7145 + 16.5783i −1.10604 + 0.638574i
\(675\) 0 0
\(676\) −5.01489 + 8.68604i −0.192880 + 0.334078i
\(677\) −11.6492 3.12140i −0.447716 0.119965i 0.0279145 0.999610i \(-0.491113\pi\)
−0.475630 + 0.879645i \(0.657780\pi\)
\(678\) 0 0
\(679\) −7.59832 + 14.4056i −0.291597 + 0.552834i
\(680\) −15.0219 7.80336i −0.576063 0.299245i
\(681\) 0 0
\(682\) 6.79634 + 25.3643i 0.260245 + 0.971248i
\(683\) −3.03256 11.3177i −0.116038 0.433058i 0.883325 0.468761i \(-0.155300\pi\)
−0.999362 + 0.0357033i \(0.988633\pi\)
\(684\) 0 0
\(685\) 17.6158 5.57105i 0.673067 0.212859i
\(686\) −11.0347 14.8740i −0.421305 0.567893i
\(687\) 0 0
\(688\) −0.745483 0.199752i −0.0284213 0.00761546i
\(689\) −7.39321 + 12.8054i −0.281659 + 0.487848i
\(690\) 0 0
\(691\) −24.8579 + 14.3517i −0.945639 + 0.545965i −0.891723 0.452581i \(-0.850503\pi\)
−0.0539153 + 0.998546i \(0.517170\pi\)
\(692\) −8.75557 + 8.75557i −0.332837 + 0.332837i
\(693\) 0 0
\(694\) 11.3379i 0.430382i
\(695\) −20.8878 + 0.930128i −0.792321 + 0.0352818i
\(696\) 0 0
\(697\) −40.9071 + 10.9610i −1.54947 + 0.415178i
\(698\) 1.76200 6.57589i 0.0666929 0.248901i
\(699\) 0 0
\(700\) −13.1092 1.77485i −0.495479 0.0670829i
\(701\) −47.8761 −1.80825 −0.904127 0.427264i \(-0.859477\pi\)
−0.904127 + 0.427264i \(0.859477\pi\)
\(702\) 0 0
\(703\) −17.7844 + 4.76533i −0.670753 + 0.179728i
\(704\) −2.27370 1.31272i −0.0856933 0.0494751i
\(705\) 0 0
\(706\) 27.8246i 1.04719i
\(707\) 19.7981 + 4.50156i 0.744585 + 0.169299i
\(708\) 0 0
\(709\) −22.0830 + 12.7496i −0.829343 + 0.478822i −0.853628 0.520883i \(-0.825603\pi\)
0.0242844 + 0.999705i \(0.492269\pi\)
\(710\) −4.03488 + 18.2752i −0.151427 + 0.685854i
\(711\) 0 0
\(712\) −0.156994 0.0420664i −0.00588360 0.00157651i
\(713\) 36.2989 + 36.2989i 1.35941 + 1.35941i
\(714\) 0 0
\(715\) −9.64679 + 3.05082i −0.360770 + 0.114094i
\(716\) −10.1350 17.5544i −0.378764 0.656038i
\(717\) 0 0
\(718\) −3.55579 13.2704i −0.132701 0.495247i
\(719\) 16.0438 + 27.7887i 0.598333 + 1.03634i 0.993067 + 0.117548i \(0.0375033\pi\)
−0.394734 + 0.918795i \(0.629163\pi\)
\(720\) 0 0
\(721\) 0.411329 + 10.7549i 0.0153187 + 0.400532i
\(722\) 1.86964 + 1.86964i 0.0695809 + 0.0695809i
\(723\) 0 0
\(724\) −3.76319 + 6.51803i −0.139858 + 0.242241i
\(725\) 2.66387 + 29.8519i 0.0989336 + 1.10867i
\(726\) 0 0
\(727\) 11.3772 11.3772i 0.421956 0.421956i −0.463921 0.885877i \(-0.653558\pi\)
0.885877 + 0.463921i \(0.153558\pi\)
\(728\) −4.35609 + 1.34762i −0.161447 + 0.0499462i
\(729\) 0 0
\(730\) −1.35809 30.4986i −0.0502652 1.12880i
\(731\) 5.05987 + 2.92132i 0.187146 + 0.108049i
\(732\) 0 0
\(733\) 5.43607 20.2877i 0.200786 0.749343i −0.789907 0.613226i \(-0.789871\pi\)
0.990693 0.136116i \(-0.0434620\pi\)
\(734\) 25.2180 0.930812
\(735\) 0 0
\(736\) −5.13255 −0.189188
\(737\) 1.74187 6.50073i 0.0641625 0.239458i
\(738\) 0 0
\(739\) 31.8347 + 18.3797i 1.17106 + 0.676110i 0.953929 0.300033i \(-0.0969977\pi\)
0.217128 + 0.976143i \(0.430331\pi\)
\(740\) 5.97289 6.52962i 0.219568 0.240033i
\(741\) 0 0
\(742\) 21.6855 6.70876i 0.796101 0.246286i
\(743\) 17.1637 17.1637i 0.629676 0.629676i −0.318310 0.947987i \(-0.603115\pi\)
0.947987 + 0.318310i \(0.103115\pi\)
\(744\) 0 0
\(745\) −8.96835 + 5.72441i −0.328575 + 0.209726i
\(746\) −13.4271 + 23.2564i −0.491600 + 0.851477i
\(747\) 0 0
\(748\) 14.0541 + 14.0541i 0.513868 + 0.513868i
\(749\) −0.284849 7.44782i −0.0104081 0.272138i
\(750\) 0 0
\(751\) −15.1318 26.2091i −0.552168 0.956384i −0.998118 0.0613255i \(-0.980467\pi\)
0.445949 0.895058i \(-0.352866\pi\)
\(752\) 1.64085 + 6.12372i 0.0598355 + 0.223309i
\(753\) 0 0
\(754\) 5.16522 + 8.94642i 0.188106 + 0.325809i
\(755\) 2.21735 4.26853i 0.0806978 0.155348i
\(756\) 0 0
\(757\) −1.48321 1.48321i −0.0539082 0.0539082i 0.679639 0.733547i \(-0.262137\pi\)
−0.733547 + 0.679639i \(0.762137\pi\)
\(758\) −3.39988 0.910996i −0.123489 0.0330889i
\(759\) 0 0
\(760\) −10.1583 2.24279i −0.368479 0.0813547i
\(761\) −5.99246 + 3.45975i −0.217226 + 0.125416i −0.604665 0.796480i \(-0.706693\pi\)
0.387439 + 0.921895i \(0.373360\pi\)
\(762\) 0 0
\(763\) −31.3732 7.13342i −1.13579 0.258247i
\(764\) 4.32789i 0.156578i
\(765\) 0 0
\(766\) 7.76221 + 4.48151i 0.280460 + 0.161924i
\(767\) 12.8523 3.44376i 0.464069 0.124347i
\(768\) 0 0
\(769\) 16.5757 0.597736 0.298868 0.954294i \(-0.403391\pi\)
0.298868 + 0.954294i \(0.403391\pi\)
\(770\) 14.0471 + 6.62807i 0.506224 + 0.238859i
\(771\) 0 0
\(772\) 5.50458 20.5434i 0.198114 0.739372i
\(773\) 6.48331 1.73720i 0.233189 0.0624827i −0.140332 0.990104i \(-0.544817\pi\)
0.373521 + 0.927622i \(0.378150\pi\)
\(774\) 0 0
\(775\) −45.3599 21.0560i −1.62938 0.756354i
\(776\) 6.15577i 0.220979i
\(777\) 0 0
\(778\) 22.3001 22.3001i 0.799497 0.799497i
\(779\) −22.5393 + 13.0131i −0.807554 + 0.466241i
\(780\) 0 0
\(781\) 10.9871 19.0303i 0.393150 0.680956i
\(782\) 37.5311 + 10.0564i 1.34211 + 0.359617i
\(783\) 0 0
\(784\) 6.31180 + 3.02675i 0.225421 + 0.108098i
\(785\) −2.56506 8.11082i −0.0915511 0.289488i
\(786\) 0 0
\(787\) 3.88207 + 14.4881i 0.138381 + 0.516444i 0.999961 + 0.00882263i \(0.00280837\pi\)
−0.861580 + 0.507621i \(0.830525\pi\)
\(788\) −5.17244 19.3038i −0.184260 0.687669i
\(789\) 0 0
\(790\) 6.06478 + 19.1770i 0.215775 + 0.682288i
\(791\) −2.86064 + 5.42345i −0.101713 + 0.192836i
\(792\) 0 0
\(793\) 8.00696 + 2.14546i 0.284335 + 0.0761874i
\(794\) −3.10923 + 5.38534i −0.110342 + 0.191118i
\(795\) 0 0
\(796\) −0.730985 + 0.422034i −0.0259091 + 0.0149586i
\(797\) 29.9616 29.9616i 1.06130 1.06130i 0.0633012 0.997994i \(-0.479837\pi\)
0.997994 0.0633012i \(-0.0201629\pi\)
\(798\) 0 0
\(799\) 47.9940i 1.69790i
\(800\) 4.69549 1.71825i 0.166011 0.0607491i
\(801\) 0 0
\(802\) −19.8151 + 5.30943i −0.699694 + 0.187482i
\(803\) −9.27735 + 34.6236i −0.327391 + 1.22184i
\(804\) 0 0
\(805\) 30.2607 2.50912i 1.06655 0.0884348i
\(806\) −17.2374 −0.607160
\(807\) 0 0
\(808\) −7.41249 + 1.98617i −0.260771 + 0.0698732i
\(809\) −7.51129 4.33664i −0.264083 0.152468i 0.362113 0.932134i \(-0.382056\pi\)
−0.626196 + 0.779666i \(0.715389\pi\)
\(810\) 0 0
\(811\) 21.4366i 0.752741i −0.926469 0.376370i \(-0.877172\pi\)
0.926469 0.376370i \(-0.122828\pi\)
\(812\) 3.51614 15.4642i 0.123392 0.542687i
\(813\) 0 0
\(814\) −8.99830 + 5.19517i −0.315390 + 0.182091i
\(815\) 9.74108 + 2.15069i 0.341215 + 0.0753353i
\(816\) 0 0
\(817\) 3.46822 + 0.929308i 0.121338 + 0.0325124i
\(818\) −18.1381 18.1381i −0.634184 0.634184i
\(819\) 0 0
\(820\) 5.76642 11.1007i 0.201372 0.387653i
\(821\) 9.59996 + 16.6276i 0.335041 + 0.580308i 0.983493 0.180948i \(-0.0579165\pi\)
−0.648452 + 0.761256i \(0.724583\pi\)
\(822\) 0 0
\(823\) 2.61193 + 9.74786i 0.0910462 + 0.339789i 0.996390 0.0848897i \(-0.0270538\pi\)
−0.905344 + 0.424679i \(0.860387\pi\)
\(824\) −2.03396 3.52293i −0.0708564 0.122727i
\(825\) 0 0
\(826\) −18.0671 9.52964i −0.628636 0.331579i
\(827\) 2.93550 + 2.93550i 0.102077 + 0.102077i 0.756301 0.654224i \(-0.227005\pi\)
−0.654224 + 0.756301i \(0.727005\pi\)
\(828\) 0 0
\(829\) 0.316112 0.547523i 0.0109790 0.0190162i −0.860484 0.509478i \(-0.829839\pi\)
0.871463 + 0.490462i \(0.163172\pi\)
\(830\) −21.3113 + 13.6028i −0.739726 + 0.472160i
\(831\) 0 0
\(832\) 1.21865 1.21865i 0.0422492 0.0422492i
\(833\) −40.2238 34.4997i −1.39367 1.19534i
\(834\) 0 0
\(835\) 34.4334 37.6429i 1.19162 1.30269i
\(836\) 10.5780 + 6.10720i 0.365847 + 0.211222i
\(837\) 0 0
\(838\) −0.398960 + 1.48894i −0.0137818 + 0.0514345i
\(839\) 7.93406 0.273914 0.136957 0.990577i \(-0.456268\pi\)
0.136957 + 0.990577i \(0.456268\pi\)
\(840\) 0 0
\(841\) −6.92921 −0.238938
\(842\) −5.19839 + 19.4006i −0.179148 + 0.668590i
\(843\) 0 0
\(844\) −19.2123 11.0922i −0.661313 0.381809i
\(845\) 0.997689 + 22.4051i 0.0343215 + 0.770757i
\(846\) 0 0
\(847\) 7.97162 + 7.38432i 0.273908 + 0.253728i
\(848\) −6.06671 + 6.06671i −0.208332 + 0.208332i
\(849\) 0 0
\(850\) −37.7018 + 3.36437i −1.29316 + 0.115397i
\(851\) −10.1562 + 17.5910i −0.348149 + 0.603012i
\(852\) 0 0
\(853\) −13.0203 13.0203i −0.445806 0.445806i 0.448152 0.893957i \(-0.352082\pi\)
−0.893957 + 0.448152i \(0.852082\pi\)
\(854\) −6.77934 10.7695i −0.231984 0.368523i
\(855\) 0 0
\(856\) 1.40854 + 2.43966i 0.0481428 + 0.0833857i
\(857\) 2.95372 + 11.0234i 0.100897 + 0.376553i 0.997847 0.0655783i \(-0.0208892\pi\)
−0.896950 + 0.442131i \(0.854223\pi\)
\(858\) 0 0
\(859\) −6.44883 11.1697i −0.220031 0.381106i 0.734786 0.678299i \(-0.237283\pi\)
−0.954817 + 0.297194i \(0.903949\pi\)
\(860\) −1.64543 + 0.520371i −0.0561087 + 0.0177445i
\(861\) 0 0
\(862\) −15.4861 15.4861i −0.527457 0.527457i
\(863\) −12.2574 3.28437i −0.417248 0.111801i 0.0440862 0.999028i \(-0.485962\pi\)
−0.461334 + 0.887226i \(0.652629\pi\)
\(864\) 0 0
\(865\) −5.96924 + 27.0364i −0.202960 + 0.919266i
\(866\) −6.75549 + 3.90028i −0.229561 + 0.132537i
\(867\) 0 0
\(868\) 19.4130 + 17.9828i 0.658921 + 0.610375i
\(869\) 23.6156i 0.801103i
\(870\) 0 0
\(871\) 3.82597 + 2.20892i 0.129638 + 0.0748465i
\(872\) 11.7462 3.14740i 0.397778 0.106584i
\(873\) 0 0
\(874\) 23.8782 0.807694
\(875\) −26.8439 + 12.4260i −0.907490 + 0.420074i
\(876\) 0 0
\(877\) −6.75617 + 25.2144i −0.228140 + 0.851429i 0.752983 + 0.658040i \(0.228614\pi\)
−0.981122 + 0.193388i \(0.938052\pi\)
\(878\) 5.06538 1.35726i 0.170948 0.0458055i
\(879\) 0 0
\(880\) −5.86486 + 0.261160i −0.197704 + 0.00880370i
\(881\) 34.2689i 1.15455i −0.816551 0.577274i \(-0.804116\pi\)
0.816551 0.577274i \(-0.195884\pi\)
\(882\) 0 0
\(883\) −33.0880 + 33.0880i −1.11350 + 1.11350i −0.120827 + 0.992674i \(0.538555\pi\)
−0.992674 + 0.120827i \(0.961445\pi\)
\(884\) −11.2990 + 6.52348i −0.380027 + 0.219409i
\(885\) 0 0
\(886\) 0.650198 1.12618i 0.0218438 0.0378346i
\(887\) 18.3463 + 4.91587i 0.616008 + 0.165059i 0.553312 0.832974i \(-0.313364\pi\)
0.0626958 + 0.998033i \(0.480030\pi\)
\(888\) 0 0
\(889\) 22.4921 + 11.8636i 0.754361 + 0.397893i
\(890\) −0.346518 + 0.109587i −0.0116153 + 0.00367336i
\(891\) 0 0
\(892\) −3.93960 14.7028i −0.131908 0.492286i
\(893\) −7.63374 28.4895i −0.255453 0.953365i
\(894\) 0 0
\(895\) −40.2221 20.8940i −1.34448 0.698410i
\(896\) −2.64382 + 0.101115i −0.0883238 + 0.00337802i
\(897\) 0 0
\(898\) 21.6005 + 5.78785i 0.720819 + 0.193143i
\(899\) 29.9757 51.9195i 0.999747 1.73161i
\(900\) 0 0
\(901\) 56.2489 32.4753i 1.87392 1.08191i
\(902\) −10.3855 + 10.3855i −0.345799 + 0.345799i
\(903\) 0 0
\(904\) 2.31755i 0.0770804i
\(905\) 0.748669 + 16.8128i 0.0248866 + 0.558877i
\(906\) 0 0
\(907\) −54.6185 + 14.6350i −1.81358 + 0.485947i −0.995959 0.0898120i \(-0.971373\pi\)
−0.817620 + 0.575759i \(0.804707\pi\)
\(908\) −0.967615 + 3.61119i −0.0321114 + 0.119842i
\(909\) 0 0
\(910\) −6.58923 + 7.78074i −0.218431 + 0.257929i
\(911\) 18.6286 0.617193 0.308596 0.951193i \(-0.400141\pi\)
0.308596 + 0.951193i \(0.400141\pi\)
\(912\) 0 0
\(913\) 28.6736 7.68307i 0.948958 0.254272i
\(914\) −2.85744 1.64975i −0.0945158 0.0545687i
\(915\) 0 0
\(916\) 15.1818i 0.501619i
\(917\) 7.61613 8.22187i 0.251507 0.271510i
\(918\) 0 0
\(919\) −38.3850 + 22.1616i −1.26620 + 0.731043i −0.974268 0.225395i \(-0.927633\pi\)
−0.291936 + 0.956438i \(0.594300\pi\)
\(920\) −9.67402 + 6.17483i −0.318943 + 0.203578i
\(921\) 0 0
\(922\) −6.73653 1.80505i −0.221856 0.0594461i
\(923\) 10.1998 + 10.1998i 0.335730 + 0.335730i
\(924\) 0 0
\(925\) 3.40232 19.4931i 0.111867 0.640929i
\(926\) −11.7845 20.4114i −0.387264 0.670760i
\(927\) 0 0
\(928\) 1.55139 + 5.78985i 0.0509268 + 0.190061i
\(929\) −7.02379 12.1656i −0.230443 0.399139i 0.727496 0.686112i \(-0.240684\pi\)
−0.957939 + 0.286973i \(0.907351\pi\)
\(930\) 0 0
\(931\) −29.3645 14.0814i −0.962383 0.461499i
\(932\) 0.857745 + 0.857745i 0.0280964 + 0.0280964i
\(933\) 0 0
\(934\) 5.73005 9.92473i 0.187493 0.324747i
\(935\) 43.3978 + 9.58159i 1.41926 + 0.313351i
\(936\) 0 0
\(937\) 24.1561 24.1561i 0.789145 0.789145i −0.192209 0.981354i \(-0.561565\pi\)
0.981354 + 0.192209i \(0.0615652\pi\)
\(938\) −2.00442 6.47915i −0.0654468 0.211552i
\(939\) 0 0
\(940\) 10.4600 + 9.56817i 0.341168 + 0.312079i
\(941\) −45.3271 26.1696i −1.47762 0.853106i −0.477942 0.878391i \(-0.658617\pi\)
−0.999680 + 0.0252856i \(0.991950\pi\)
\(942\) 0 0
\(943\) −7.43137 + 27.7343i −0.241999 + 0.903152i
\(944\) 7.72043 0.251279
\(945\) 0 0
\(946\) 2.02627 0.0658796
\(947\) 10.0914 37.6614i 0.327925 1.22383i −0.583414 0.812175i \(-0.698283\pi\)
0.911339 0.411657i \(-0.135050\pi\)
\(948\) 0 0
\(949\) −20.3775 11.7649i −0.661481 0.381906i
\(950\) −21.8449 + 7.99383i −0.708743 + 0.259354i
\(951\) 0 0
\(952\) 19.5307 + 4.44076i 0.632994 + 0.143926i
\(953\) −1.45944 + 1.45944i −0.0472759 + 0.0472759i −0.730350 0.683074i \(-0.760643\pi\)
0.683074 + 0.730350i \(0.260643\pi\)
\(954\) 0 0
\(955\) −5.20677 8.15738i −0.168487 0.263967i
\(956\) −8.07967 + 13.9944i −0.261315 + 0.452611i
\(957\) 0 0
\(958\) −7.15393 7.15393i −0.231133 0.231133i
\(959\) −18.5005 + 11.6460i −0.597412 + 0.376068i
\(960\) 0 0
\(961\) 34.5175 + 59.7861i 1.11347 + 1.92858i
\(962\) −1.76530 6.58818i −0.0569155 0.212411i
\(963\) 0 0
\(964\) 12.6084 + 21.8384i 0.406090 + 0.703369i
\(965\) −14.3399 45.3434i −0.461619 1.45965i
\(966\) 0 0
\(967\) 11.2656 + 11.2656i 0.362279 + 0.362279i 0.864651 0.502373i \(-0.167539\pi\)
−0.502373 + 0.864651i \(0.667539\pi\)
\(968\) −3.96710 1.06298i −0.127508 0.0341655i
\(969\) 0 0
\(970\) −7.40584 11.6026i −0.237787 0.372538i
\(971\) 8.48873 4.90097i 0.272416 0.157280i −0.357569 0.933887i \(-0.616394\pi\)
0.629985 + 0.776607i \(0.283061\pi\)
\(972\) 0 0
\(973\) 23.6342 7.31160i 0.757677 0.234399i
\(974\) 36.9498i 1.18395i
\(975\) 0 0
\(976\) 4.16543 + 2.40491i 0.133332 + 0.0769793i
\(977\) −47.6370 + 12.7643i −1.52404 + 0.408366i −0.921071 0.389395i \(-0.872684\pi\)
−0.602973 + 0.797762i \(0.706017\pi\)
\(978\) 0 0
\(979\) 0.426719 0.0136380
\(980\) 15.5381 1.88863i 0.496347 0.0603300i
\(981\) 0 0
\(982\) 2.07246 7.73453i 0.0661349 0.246819i
\(983\) 5.77152 1.54648i 0.184083 0.0493249i −0.165600 0.986193i \(-0.552956\pi\)
0.349683 + 0.936868i \(0.386289\pi\)
\(984\) 0 0
\(985\) −32.9731 30.1617i −1.05061 0.961032i
\(986\) 45.3773i 1.44511i
\(987\) 0 0
\(988\) −5.66956 + 5.66956i −0.180373 + 0.180373i
\(989\) 3.43050 1.98060i 0.109084 0.0629794i
\(990\) 0 0
\(991\) −6.52086 + 11.2945i −0.207142 + 0.358780i −0.950813 0.309765i \(-0.899749\pi\)
0.743671 + 0.668546i \(0.233083\pi\)
\(992\) −9.66095 2.58864i −0.306736 0.0821895i
\(993\) 0 0
\(994\) −0.846306 22.1280i −0.0268432 0.701859i
\(995\) −0.870050 + 1.67490i −0.0275824 + 0.0530977i
\(996\) 0 0
\(997\) 5.49854 + 20.5208i 0.174141 + 0.649901i 0.996696 + 0.0812171i \(0.0258807\pi\)
−0.822556 + 0.568684i \(0.807453\pi\)
\(998\) 3.09724 + 11.5591i 0.0980414 + 0.365896i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.2.bv.a.577.3 16
3.2 odd 2 210.2.u.a.157.2 yes 16
5.3 odd 4 630.2.bv.b.73.2 16
7.5 odd 6 630.2.bv.b.397.2 16
15.2 even 4 1050.2.bc.g.493.1 16
15.8 even 4 210.2.u.b.73.3 yes 16
15.14 odd 2 1050.2.bc.h.157.3 16
21.5 even 6 210.2.u.b.187.3 yes 16
21.11 odd 6 1470.2.m.d.97.2 16
21.17 even 6 1470.2.m.e.97.3 16
35.33 even 12 inner 630.2.bv.a.523.3 16
105.38 odd 12 1470.2.m.d.1273.2 16
105.47 odd 12 1050.2.bc.h.943.3 16
105.53 even 12 1470.2.m.e.1273.3 16
105.68 odd 12 210.2.u.a.103.2 16
105.89 even 6 1050.2.bc.g.607.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
210.2.u.a.103.2 16 105.68 odd 12
210.2.u.a.157.2 yes 16 3.2 odd 2
210.2.u.b.73.3 yes 16 15.8 even 4
210.2.u.b.187.3 yes 16 21.5 even 6
630.2.bv.a.523.3 16 35.33 even 12 inner
630.2.bv.a.577.3 16 1.1 even 1 trivial
630.2.bv.b.73.2 16 5.3 odd 4
630.2.bv.b.397.2 16 7.5 odd 6
1050.2.bc.g.493.1 16 15.2 even 4
1050.2.bc.g.607.1 16 105.89 even 6
1050.2.bc.h.157.3 16 15.14 odd 2
1050.2.bc.h.943.3 16 105.47 odd 12
1470.2.m.d.97.2 16 21.11 odd 6
1470.2.m.d.1273.2 16 105.38 odd 12
1470.2.m.e.97.3 16 21.17 even 6
1470.2.m.e.1273.3 16 105.53 even 12