Properties

Label 1470.2.m.e.1273.3
Level $1470$
Weight $2$
Character 1470.1273
Analytic conductor $11.738$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1470,2,Mod(97,1470)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1470, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1470.97"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1470.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.7380090971\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 12 x^{14} - 48 x^{13} + 67 x^{12} - 24 x^{11} + 118 x^{10} - 176 x^{9} + 351 x^{8} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1273.3
Root \(0.339278 + 0.0446668i\) of defining polynomial
Character \(\chi\) \(=\) 1470.1273
Dual form 1470.2.m.e.97.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} +(-0.707107 + 0.707107i) q^{3} -1.00000i q^{4} +(1.03078 + 1.98431i) q^{5} -1.00000i q^{6} +(0.707107 + 0.707107i) q^{8} -1.00000i q^{9} +(-2.13199 - 0.674247i) q^{10} +2.62544 q^{11} +(0.707107 + 0.707107i) q^{12} +(-1.21865 + 1.21865i) q^{13} +(-2.13199 - 0.674247i) q^{15} -1.00000 q^{16} +(-5.35303 - 5.35303i) q^{17} +(0.707107 + 0.707107i) q^{18} -4.65232 q^{19} +(1.98431 - 1.03078i) q^{20} +(-1.85647 + 1.85647i) q^{22} +(-3.62926 - 3.62926i) q^{23} -1.00000 q^{24} +(-2.87498 + 4.09078i) q^{25} -1.72343i q^{26} +(0.707107 + 0.707107i) q^{27} +5.99410i q^{29} +(1.98431 - 1.03078i) q^{30} +10.0018i q^{31} +(0.707107 - 0.707107i) q^{32} +(-1.85647 + 1.85647i) q^{33} +7.57033 q^{34} -1.00000 q^{36} +(2.79841 - 2.79841i) q^{37} +(3.28969 - 3.28969i) q^{38} -1.72343i q^{39} +(-0.674247 + 2.13199i) q^{40} +5.59423i q^{41} +(-0.545731 - 0.545731i) q^{43} -2.62544i q^{44} +(1.98431 - 1.03078i) q^{45} +5.13255 q^{46} +(-4.48288 - 4.48288i) q^{47} +(0.707107 - 0.707107i) q^{48} +(-0.859701 - 4.92554i) q^{50} +7.57033 q^{51} +(1.21865 + 1.21865i) q^{52} +(-6.06671 - 6.06671i) q^{53} -1.00000 q^{54} +(2.70626 + 5.20970i) q^{55} +(3.28969 - 3.28969i) q^{57} +(-4.23847 - 4.23847i) q^{58} -7.72043 q^{59} +(-0.674247 + 2.13199i) q^{60} +4.80982i q^{61} +(-7.07231 - 7.07231i) q^{62} +1.00000i q^{64} +(-3.67435 - 1.16202i) q^{65} -2.62544i q^{66} +(-1.81260 + 1.81260i) q^{67} +(-5.35303 + 5.35303i) q^{68} +5.13255 q^{69} -8.36973 q^{71} +(0.707107 - 0.707107i) q^{72} +(-9.65407 + 9.65407i) q^{73} +3.95756i q^{74} +(-0.859701 - 4.92554i) q^{75} +4.65232i q^{76} +(1.21865 + 1.21865i) q^{78} -8.99488i q^{79} +(-1.03078 - 1.98431i) q^{80} -1.00000 q^{81} +(-3.95571 - 3.95571i) q^{82} +(7.99504 - 7.99504i) q^{83} +(5.10428 - 16.1399i) q^{85} +0.771781 q^{86} +(-4.23847 - 4.23847i) q^{87} +(1.85647 + 1.85647i) q^{88} -0.162532 q^{89} +(-0.674247 + 2.13199i) q^{90} +(-3.62926 + 3.62926i) q^{92} +(-7.07231 - 7.07231i) q^{93} +6.33974 q^{94} +(-4.79552 - 9.23165i) q^{95} +1.00000i q^{96} +(4.35278 + 4.35278i) q^{97} -2.62544i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{10} - 8 q^{11} + 16 q^{13} + 4 q^{15} - 16 q^{16} - 24 q^{17} - 16 q^{19} + 8 q^{20} + 4 q^{22} + 8 q^{23} - 16 q^{24} + 16 q^{25} + 8 q^{30} + 4 q^{33} - 16 q^{34} - 16 q^{36} + 16 q^{37} - 8 q^{38}+ \cdots - 44 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1470\mathbb{Z}\right)^\times\).

\(n\) \(491\) \(1081\) \(1177\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) −0.707107 + 0.707107i −0.408248 + 0.408248i
\(4\) 1.00000i 0.500000i
\(5\) 1.03078 + 1.98431i 0.460979 + 0.887411i
\(6\) 1.00000i 0.408248i
\(7\) 0 0
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 1.00000i 0.333333i
\(10\) −2.13199 0.674247i −0.674195 0.213216i
\(11\) 2.62544 0.791601 0.395800 0.918337i \(-0.370467\pi\)
0.395800 + 0.918337i \(0.370467\pi\)
\(12\) 0.707107 + 0.707107i 0.204124 + 0.204124i
\(13\) −1.21865 + 1.21865i −0.337993 + 0.337993i −0.855612 0.517618i \(-0.826819\pi\)
0.517618 + 0.855612i \(0.326819\pi\)
\(14\) 0 0
\(15\) −2.13199 0.674247i −0.550478 0.174090i
\(16\) −1.00000 −0.250000
\(17\) −5.35303 5.35303i −1.29830 1.29830i −0.929514 0.368788i \(-0.879773\pi\)
−0.368788 0.929514i \(-0.620227\pi\)
\(18\) 0.707107 + 0.707107i 0.166667 + 0.166667i
\(19\) −4.65232 −1.06732 −0.533658 0.845701i \(-0.679183\pi\)
−0.533658 + 0.845701i \(0.679183\pi\)
\(20\) 1.98431 1.03078i 0.443705 0.230490i
\(21\) 0 0
\(22\) −1.85647 + 1.85647i −0.395800 + 0.395800i
\(23\) −3.62926 3.62926i −0.756753 0.756753i 0.218977 0.975730i \(-0.429728\pi\)
−0.975730 + 0.218977i \(0.929728\pi\)
\(24\) −1.00000 −0.204124
\(25\) −2.87498 + 4.09078i −0.574996 + 0.818156i
\(26\) 1.72343i 0.337993i
\(27\) 0.707107 + 0.707107i 0.136083 + 0.136083i
\(28\) 0 0
\(29\) 5.99410i 1.11308i 0.830822 + 0.556538i \(0.187871\pi\)
−0.830822 + 0.556538i \(0.812129\pi\)
\(30\) 1.98431 1.03078i 0.362284 0.188194i
\(31\) 10.0018i 1.79637i 0.439620 + 0.898184i \(0.355113\pi\)
−0.439620 + 0.898184i \(0.644887\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) −1.85647 + 1.85647i −0.323170 + 0.323170i
\(34\) 7.57033 1.29830
\(35\) 0 0
\(36\) −1.00000 −0.166667
\(37\) 2.79841 2.79841i 0.460057 0.460057i −0.438617 0.898674i \(-0.644532\pi\)
0.898674 + 0.438617i \(0.144532\pi\)
\(38\) 3.28969 3.28969i 0.533658 0.533658i
\(39\) 1.72343i 0.275970i
\(40\) −0.674247 + 2.13199i −0.106608 + 0.337098i
\(41\) 5.59423i 0.873671i 0.899541 + 0.436836i \(0.143901\pi\)
−0.899541 + 0.436836i \(0.856099\pi\)
\(42\) 0 0
\(43\) −0.545731 0.545731i −0.0832233 0.0832233i 0.664270 0.747493i \(-0.268743\pi\)
−0.747493 + 0.664270i \(0.768743\pi\)
\(44\) 2.62544i 0.395800i
\(45\) 1.98431 1.03078i 0.295804 0.153660i
\(46\) 5.13255 0.756753
\(47\) −4.48288 4.48288i −0.653895 0.653895i 0.300034 0.953929i \(-0.403002\pi\)
−0.953929 + 0.300034i \(0.903002\pi\)
\(48\) 0.707107 0.707107i 0.102062 0.102062i
\(49\) 0 0
\(50\) −0.859701 4.92554i −0.121580 0.696576i
\(51\) 7.57033 1.06006
\(52\) 1.21865 + 1.21865i 0.168997 + 0.168997i
\(53\) −6.06671 6.06671i −0.833327 0.833327i 0.154643 0.987970i \(-0.450577\pi\)
−0.987970 + 0.154643i \(0.950577\pi\)
\(54\) −1.00000 −0.136083
\(55\) 2.70626 + 5.20970i 0.364912 + 0.702475i
\(56\) 0 0
\(57\) 3.28969 3.28969i 0.435730 0.435730i
\(58\) −4.23847 4.23847i −0.556538 0.556538i
\(59\) −7.72043 −1.00511 −0.502557 0.864544i \(-0.667607\pi\)
−0.502557 + 0.864544i \(0.667607\pi\)
\(60\) −0.674247 + 2.13199i −0.0870450 + 0.275239i
\(61\) 4.80982i 0.615835i 0.951413 + 0.307917i \(0.0996320\pi\)
−0.951413 + 0.307917i \(0.900368\pi\)
\(62\) −7.07231 7.07231i −0.898184 0.898184i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −3.67435 1.16202i −0.455747 0.144131i
\(66\) 2.62544i 0.323170i
\(67\) −1.81260 + 1.81260i −0.221444 + 0.221444i −0.809106 0.587662i \(-0.800048\pi\)
0.587662 + 0.809106i \(0.300048\pi\)
\(68\) −5.35303 + 5.35303i −0.649151 + 0.649151i
\(69\) 5.13255 0.617886
\(70\) 0 0
\(71\) −8.36973 −0.993304 −0.496652 0.867950i \(-0.665437\pi\)
−0.496652 + 0.867950i \(0.665437\pi\)
\(72\) 0.707107 0.707107i 0.0833333 0.0833333i
\(73\) −9.65407 + 9.65407i −1.12992 + 1.12992i −0.139734 + 0.990189i \(0.544625\pi\)
−0.990189 + 0.139734i \(0.955375\pi\)
\(74\) 3.95756i 0.460057i
\(75\) −0.859701 4.92554i −0.0992697 0.568752i
\(76\) 4.65232i 0.533658i
\(77\) 0 0
\(78\) 1.21865 + 1.21865i 0.137985 + 0.137985i
\(79\) 8.99488i 1.01200i −0.862532 0.506002i \(-0.831123\pi\)
0.862532 0.506002i \(-0.168877\pi\)
\(80\) −1.03078 1.98431i −0.115245 0.221853i
\(81\) −1.00000 −0.111111
\(82\) −3.95571 3.95571i −0.436836 0.436836i
\(83\) 7.99504 7.99504i 0.877570 0.877570i −0.115713 0.993283i \(-0.536915\pi\)
0.993283 + 0.115713i \(0.0369152\pi\)
\(84\) 0 0
\(85\) 5.10428 16.1399i 0.553637 1.75062i
\(86\) 0.771781 0.0832233
\(87\) −4.23847 4.23847i −0.454411 0.454411i
\(88\) 1.85647 + 1.85647i 0.197900 + 0.197900i
\(89\) −0.162532 −0.0172284 −0.00861419 0.999963i \(-0.502742\pi\)
−0.00861419 + 0.999963i \(0.502742\pi\)
\(90\) −0.674247 + 2.13199i −0.0710719 + 0.224732i
\(91\) 0 0
\(92\) −3.62926 + 3.62926i −0.378376 + 0.378376i
\(93\) −7.07231 7.07231i −0.733364 0.733364i
\(94\) 6.33974 0.653895
\(95\) −4.79552 9.23165i −0.492010 0.947147i
\(96\) 1.00000i 0.102062i
\(97\) 4.35278 + 4.35278i 0.441958 + 0.441958i 0.892670 0.450711i \(-0.148830\pi\)
−0.450711 + 0.892670i \(0.648830\pi\)
\(98\) 0 0
\(99\) 2.62544i 0.263867i
\(100\) 4.09078 + 2.87498i 0.409078 + 0.287498i
\(101\) 7.67397i 0.763589i 0.924247 + 0.381795i \(0.124694\pi\)
−0.924247 + 0.381795i \(0.875306\pi\)
\(102\) −5.35303 + 5.35303i −0.530029 + 0.530029i
\(103\) 2.87646 2.87646i 0.283426 0.283426i −0.551048 0.834474i \(-0.685772\pi\)
0.834474 + 0.551048i \(0.185772\pi\)
\(104\) −1.72343 −0.168997
\(105\) 0 0
\(106\) 8.57963 0.833327
\(107\) −1.99197 + 1.99197i −0.192571 + 0.192571i −0.796806 0.604235i \(-0.793479\pi\)
0.604235 + 0.796806i \(0.293479\pi\)
\(108\) 0.707107 0.707107i 0.0680414 0.0680414i
\(109\) 12.1606i 1.16478i −0.812911 0.582388i \(-0.802119\pi\)
0.812911 0.582388i \(-0.197881\pi\)
\(110\) −5.59742 1.77020i −0.533693 0.168782i
\(111\) 3.95756i 0.375635i
\(112\) 0 0
\(113\) 1.63875 + 1.63875i 0.154161 + 0.154161i 0.779973 0.625813i \(-0.215233\pi\)
−0.625813 + 0.779973i \(0.715233\pi\)
\(114\) 4.65232i 0.435730i
\(115\) 3.46061 10.9425i 0.322703 1.02040i
\(116\) 5.99410 0.556538
\(117\) 1.21865 + 1.21865i 0.112664 + 0.112664i
\(118\) 5.45917 5.45917i 0.502557 0.502557i
\(119\) 0 0
\(120\) −1.03078 1.98431i −0.0940970 0.181142i
\(121\) −4.10705 −0.373368
\(122\) −3.40106 3.40106i −0.307917 0.307917i
\(123\) −3.95571 3.95571i −0.356675 0.356675i
\(124\) 10.0018 0.898184
\(125\) −11.0809 1.48815i −0.991102 0.133105i
\(126\) 0 0
\(127\) 6.79622 6.79622i 0.603067 0.603067i −0.338058 0.941125i \(-0.609770\pi\)
0.941125 + 0.338058i \(0.109770\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 0.771781 0.0679515
\(130\) 3.41983 1.77648i 0.299939 0.155808i
\(131\) 4.23598i 0.370099i −0.982729 0.185050i \(-0.940755\pi\)
0.982729 0.185050i \(-0.0592446\pi\)
\(132\) 1.85647 + 1.85647i 0.161585 + 0.161585i
\(133\) 0 0
\(134\) 2.56340i 0.221444i
\(135\) −0.674247 + 2.13199i −0.0580300 + 0.183493i
\(136\) 7.57033i 0.649151i
\(137\) −5.84256 + 5.84256i −0.499163 + 0.499163i −0.911177 0.412014i \(-0.864825\pi\)
0.412014 + 0.911177i \(0.364825\pi\)
\(138\) −3.62926 + 3.62926i −0.308943 + 0.308943i
\(139\) −9.35059 −0.793106 −0.396553 0.918012i \(-0.629794\pi\)
−0.396553 + 0.918012i \(0.629794\pi\)
\(140\) 0 0
\(141\) 6.33974 0.533903
\(142\) 5.91829 5.91829i 0.496652 0.496652i
\(143\) −3.19950 + 3.19950i −0.267556 + 0.267556i
\(144\) 1.00000i 0.0833333i
\(145\) −11.8942 + 6.17860i −0.987756 + 0.513105i
\(146\) 13.6529i 1.12992i
\(147\) 0 0
\(148\) −2.79841 2.79841i −0.230028 0.230028i
\(149\) 4.75815i 0.389803i 0.980823 + 0.194902i \(0.0624387\pi\)
−0.980823 + 0.194902i \(0.937561\pi\)
\(150\) 4.09078 + 2.87498i 0.334011 + 0.234741i
\(151\) 2.15114 0.175057 0.0875286 0.996162i \(-0.472103\pi\)
0.0875286 + 0.996162i \(0.472103\pi\)
\(152\) −3.28969 3.28969i −0.266829 0.266829i
\(153\) −5.35303 + 5.35303i −0.432767 + 0.432767i
\(154\) 0 0
\(155\) −19.8466 + 10.3096i −1.59412 + 0.828089i
\(156\) −1.72343 −0.137985
\(157\) −2.69007 2.69007i −0.214691 0.214691i 0.591566 0.806257i \(-0.298510\pi\)
−0.806257 + 0.591566i \(0.798510\pi\)
\(158\) 6.36034 + 6.36034i 0.506002 + 0.506002i
\(159\) 8.57963 0.680409
\(160\) 2.13199 + 0.674247i 0.168549 + 0.0533039i
\(161\) 0 0
\(162\) 0.707107 0.707107i 0.0555556 0.0555556i
\(163\) 3.15459 + 3.15459i 0.247086 + 0.247086i 0.819774 0.572687i \(-0.194099\pi\)
−0.572687 + 0.819774i \(0.694099\pi\)
\(164\) 5.59423 0.436836
\(165\) −5.59742 1.77020i −0.435759 0.137810i
\(166\) 11.3067i 0.877570i
\(167\) −16.1327 16.1327i −1.24839 1.24839i −0.956432 0.291956i \(-0.905694\pi\)
−0.291956 0.956432i \(-0.594306\pi\)
\(168\) 0 0
\(169\) 10.0298i 0.771521i
\(170\) 7.80336 + 15.0219i 0.598490 + 1.15213i
\(171\) 4.65232i 0.355772i
\(172\) −0.545731 + 0.545731i −0.0416116 + 0.0416116i
\(173\) 8.75557 8.75557i 0.665673 0.665673i −0.291038 0.956711i \(-0.594001\pi\)
0.956711 + 0.291038i \(0.0940006\pi\)
\(174\) 5.99410 0.454411
\(175\) 0 0
\(176\) −2.62544 −0.197900
\(177\) 5.45917 5.45917i 0.410336 0.410336i
\(178\) 0.114928 0.114928i 0.00861419 0.00861419i
\(179\) 20.2701i 1.51506i −0.652803 0.757528i \(-0.726407\pi\)
0.652803 0.757528i \(-0.273593\pi\)
\(180\) −1.03078 1.98431i −0.0768299 0.147902i
\(181\) 7.52637i 0.559431i −0.960083 0.279715i \(-0.909760\pi\)
0.960083 0.279715i \(-0.0902401\pi\)
\(182\) 0 0
\(183\) −3.40106 3.40106i −0.251413 0.251413i
\(184\) 5.13255i 0.378376i
\(185\) 8.43748 + 2.66837i 0.620336 + 0.196183i
\(186\) 10.0018 0.733364
\(187\) −14.0541 14.0541i −1.02774 1.02774i
\(188\) −4.48288 + 4.48288i −0.326947 + 0.326947i
\(189\) 0 0
\(190\) 9.91871 + 3.13681i 0.719579 + 0.227568i
\(191\) 4.32789 0.313155 0.156578 0.987666i \(-0.449954\pi\)
0.156578 + 0.987666i \(0.449954\pi\)
\(192\) −0.707107 0.707107i −0.0510310 0.0510310i
\(193\) 15.0388 + 15.0388i 1.08252 + 1.08252i 0.996274 + 0.0862422i \(0.0274859\pi\)
0.0862422 + 0.996274i \(0.472514\pi\)
\(194\) −6.15577 −0.441958
\(195\) 3.41983 1.77648i 0.244899 0.127217i
\(196\) 0 0
\(197\) −14.1314 + 14.1314i −1.00682 + 1.00682i −0.00684089 + 0.999977i \(0.502178\pi\)
−0.999977 + 0.00684089i \(0.997822\pi\)
\(198\) 1.85647 + 1.85647i 0.131933 + 0.131933i
\(199\) 0.844069 0.0598345 0.0299172 0.999552i \(-0.490476\pi\)
0.0299172 + 0.999552i \(0.490476\pi\)
\(200\) −4.92554 + 0.859701i −0.348288 + 0.0607901i
\(201\) 2.56340i 0.180808i
\(202\) −5.42632 5.42632i −0.381795 0.381795i
\(203\) 0 0
\(204\) 7.57033i 0.530029i
\(205\) −11.1007 + 5.76642i −0.775305 + 0.402744i
\(206\) 4.06792i 0.283426i
\(207\) −3.62926 + 3.62926i −0.252251 + 0.252251i
\(208\) 1.21865 1.21865i 0.0844983 0.0844983i
\(209\) −12.2144 −0.844888
\(210\) 0 0
\(211\) 22.1844 1.52724 0.763619 0.645667i \(-0.223421\pi\)
0.763619 + 0.645667i \(0.223421\pi\)
\(212\) −6.06671 + 6.06671i −0.416664 + 0.416664i
\(213\) 5.91829 5.91829i 0.405515 0.405515i
\(214\) 2.81707i 0.192571i
\(215\) 0.520371 1.64543i 0.0354890 0.112217i
\(216\) 1.00000i 0.0680414i
\(217\) 0 0
\(218\) 8.59885 + 8.59885i 0.582388 + 0.582388i
\(219\) 13.6529i 0.922578i
\(220\) 5.20970 2.70626i 0.351238 0.182456i
\(221\) 13.0470 0.877634
\(222\) −2.79841 2.79841i −0.187817 0.187817i
\(223\) −10.7632 + 10.7632i −0.720757 + 0.720757i −0.968759 0.248002i \(-0.920226\pi\)
0.248002 + 0.968759i \(0.420226\pi\)
\(224\) 0 0
\(225\) 4.09078 + 2.87498i 0.272719 + 0.191665i
\(226\) −2.31755 −0.154161
\(227\) −2.64357 2.64357i −0.175460 0.175460i 0.613913 0.789373i \(-0.289594\pi\)
−0.789373 + 0.613913i \(0.789594\pi\)
\(228\) −3.28969 3.28969i −0.217865 0.217865i
\(229\) 15.1818 1.00324 0.501619 0.865089i \(-0.332738\pi\)
0.501619 + 0.865089i \(0.332738\pi\)
\(230\) 5.29053 + 10.1846i 0.348847 + 0.671551i
\(231\) 0 0
\(232\) −4.23847 + 4.23847i −0.278269 + 0.278269i
\(233\) −0.857745 0.857745i −0.0561928 0.0561928i 0.678452 0.734645i \(-0.262651\pi\)
−0.734645 + 0.678452i \(0.762651\pi\)
\(234\) −1.72343 −0.112664
\(235\) 4.27456 13.5163i 0.278841 0.881705i
\(236\) 7.72043i 0.502557i
\(237\) 6.36034 + 6.36034i 0.413149 + 0.413149i
\(238\) 0 0
\(239\) 16.1593i 1.04526i −0.852560 0.522630i \(-0.824951\pi\)
0.852560 0.522630i \(-0.175049\pi\)
\(240\) 2.13199 + 0.674247i 0.137620 + 0.0435225i
\(241\) 25.2169i 1.62436i 0.583407 + 0.812180i \(0.301719\pi\)
−0.583407 + 0.812180i \(0.698281\pi\)
\(242\) 2.90412 2.90412i 0.186684 0.186684i
\(243\) 0.707107 0.707107i 0.0453609 0.0453609i
\(244\) 4.80982 0.307917
\(245\) 0 0
\(246\) 5.59423 0.356675
\(247\) 5.66956 5.66956i 0.360745 0.360745i
\(248\) −7.07231 + 7.07231i −0.449092 + 0.449092i
\(249\) 11.3067i 0.716533i
\(250\) 8.88763 6.78307i 0.562103 0.428999i
\(251\) 2.07559i 0.131010i 0.997852 + 0.0655051i \(0.0208659\pi\)
−0.997852 + 0.0655051i \(0.979134\pi\)
\(252\) 0 0
\(253\) −9.52841 9.52841i −0.599046 0.599046i
\(254\) 9.61130i 0.603067i
\(255\) 7.80336 + 15.0219i 0.488665 + 0.940707i
\(256\) 1.00000 0.0625000
\(257\) 3.18355 + 3.18355i 0.198584 + 0.198584i 0.799393 0.600809i \(-0.205155\pi\)
−0.600809 + 0.799393i \(0.705155\pi\)
\(258\) −0.545731 + 0.545731i −0.0339757 + 0.0339757i
\(259\) 0 0
\(260\) −1.16202 + 3.67435i −0.0720655 + 0.227873i
\(261\) 5.99410 0.371025
\(262\) 2.99529 + 2.99529i 0.185050 + 0.185050i
\(263\) 15.8389 + 15.8389i 0.976669 + 0.976669i 0.999734 0.0230649i \(-0.00734243\pi\)
−0.0230649 + 0.999734i \(0.507342\pi\)
\(264\) −2.62544 −0.161585
\(265\) 5.78479 18.2917i 0.355357 1.12365i
\(266\) 0 0
\(267\) 0.114928 0.114928i 0.00703346 0.00703346i
\(268\) 1.81260 + 1.81260i 0.110722 + 0.110722i
\(269\) 11.7242 0.714838 0.357419 0.933944i \(-0.383657\pi\)
0.357419 + 0.933944i \(0.383657\pi\)
\(270\) −1.03078 1.98431i −0.0627313 0.120761i
\(271\) 24.0471i 1.46075i 0.683044 + 0.730377i \(0.260656\pi\)
−0.683044 + 0.730377i \(0.739344\pi\)
\(272\) 5.35303 + 5.35303i 0.324575 + 0.324575i
\(273\) 0 0
\(274\) 8.26262i 0.499163i
\(275\) −7.54810 + 10.7401i −0.455167 + 0.647653i
\(276\) 5.13255i 0.308943i
\(277\) −19.2314 + 19.2314i −1.15550 + 1.15550i −0.170068 + 0.985432i \(0.554399\pi\)
−0.985432 + 0.170068i \(0.945601\pi\)
\(278\) 6.61186 6.61186i 0.396553 0.396553i
\(279\) 10.0018 0.598789
\(280\) 0 0
\(281\) 22.1913 1.32382 0.661910 0.749583i \(-0.269746\pi\)
0.661910 + 0.749583i \(0.269746\pi\)
\(282\) −4.48288 + 4.48288i −0.266951 + 0.266951i
\(283\) 7.85084 7.85084i 0.466684 0.466684i −0.434155 0.900838i \(-0.642953\pi\)
0.900838 + 0.434155i \(0.142953\pi\)
\(284\) 8.36973i 0.496652i
\(285\) 9.91871 + 3.13681i 0.587534 + 0.185809i
\(286\) 4.52478i 0.267556i
\(287\) 0 0
\(288\) −0.707107 0.707107i −0.0416667 0.0416667i
\(289\) 40.3099i 2.37117i
\(290\) 4.04150 12.7794i 0.237325 0.750430i
\(291\) −6.15577 −0.360857
\(292\) 9.65407 + 9.65407i 0.564961 + 0.564961i
\(293\) −6.51580 + 6.51580i −0.380657 + 0.380657i −0.871339 0.490682i \(-0.836748\pi\)
0.490682 + 0.871339i \(0.336748\pi\)
\(294\) 0 0
\(295\) −7.95808 15.3197i −0.463337 0.891950i
\(296\) 3.95756 0.230028
\(297\) 1.85647 + 1.85647i 0.107723 + 0.107723i
\(298\) −3.36452 3.36452i −0.194902 0.194902i
\(299\) 8.84561 0.511555
\(300\) −4.92554 + 0.859701i −0.284376 + 0.0496349i
\(301\) 0 0
\(302\) −1.52108 + 1.52108i −0.0875286 + 0.0875286i
\(303\) −5.42632 5.42632i −0.311734 0.311734i
\(304\) 4.65232 0.266829
\(305\) −9.54418 + 4.95787i −0.546498 + 0.283887i
\(306\) 7.57033i 0.432767i
\(307\) 20.6010 + 20.6010i 1.17576 + 1.17576i 0.980814 + 0.194947i \(0.0624536\pi\)
0.194947 + 0.980814i \(0.437546\pi\)
\(308\) 0 0
\(309\) 4.06792i 0.231416i
\(310\) 6.74366 21.3237i 0.383014 1.21110i
\(311\) 32.8663i 1.86368i −0.362870 0.931840i \(-0.618203\pi\)
0.362870 0.931840i \(-0.381797\pi\)
\(312\) 1.21865 1.21865i 0.0689926 0.0689926i
\(313\) 15.6858 15.6858i 0.886615 0.886615i −0.107582 0.994196i \(-0.534311\pi\)
0.994196 + 0.107582i \(0.0343107\pi\)
\(314\) 3.80434 0.214691
\(315\) 0 0
\(316\) −8.99488 −0.506002
\(317\) −10.1572 + 10.1572i −0.570488 + 0.570488i −0.932265 0.361777i \(-0.882170\pi\)
0.361777 + 0.932265i \(0.382170\pi\)
\(318\) −6.06671 + 6.06671i −0.340204 + 0.340204i
\(319\) 15.7372i 0.881112i
\(320\) −1.98431 + 1.03078i −0.110926 + 0.0576224i
\(321\) 2.81707i 0.157234i
\(322\) 0 0
\(323\) 24.9040 + 24.9040i 1.38570 + 1.38570i
\(324\) 1.00000i 0.0555556i
\(325\) −1.48164 8.48884i −0.0821865 0.470876i
\(326\) −4.46126 −0.247086
\(327\) 8.59885 + 8.59885i 0.475518 + 0.475518i
\(328\) −3.95571 + 3.95571i −0.218418 + 0.218418i
\(329\) 0 0
\(330\) 5.20970 2.70626i 0.286784 0.148975i
\(331\) −2.89067 −0.158885 −0.0794427 0.996839i \(-0.525314\pi\)
−0.0794427 + 0.996839i \(0.525314\pi\)
\(332\) −7.99504 7.99504i −0.438785 0.438785i
\(333\) −2.79841 2.79841i −0.153352 0.153352i
\(334\) 22.8151 1.24839
\(335\) −5.46514 1.72836i −0.298593 0.0944306i
\(336\) 0 0
\(337\) −23.4453 + 23.4453i −1.27715 + 1.27715i −0.334891 + 0.942257i \(0.608699\pi\)
−0.942257 + 0.334891i \(0.891301\pi\)
\(338\) −7.09212 7.09212i −0.385761 0.385761i
\(339\) −2.31755 −0.125872
\(340\) −16.1399 5.10428i −0.875308 0.276818i
\(341\) 26.2590i 1.42201i
\(342\) −3.28969 3.28969i −0.177886 0.177886i
\(343\) 0 0
\(344\) 0.771781i 0.0416116i
\(345\) 5.29053 + 10.1846i 0.284833 + 0.548319i
\(346\) 12.3822i 0.665673i
\(347\) −8.01712 + 8.01712i −0.430382 + 0.430382i −0.888758 0.458376i \(-0.848431\pi\)
0.458376 + 0.888758i \(0.348431\pi\)
\(348\) −4.23847 + 4.23847i −0.227206 + 0.227206i
\(349\) −6.80786 −0.364417 −0.182208 0.983260i \(-0.558325\pi\)
−0.182208 + 0.983260i \(0.558325\pi\)
\(350\) 0 0
\(351\) −1.72343 −0.0919901
\(352\) 1.85647 1.85647i 0.0989501 0.0989501i
\(353\) −19.6750 + 19.6750i −1.04719 + 1.04719i −0.0483634 + 0.998830i \(0.515401\pi\)
−0.998830 + 0.0483634i \(0.984599\pi\)
\(354\) 7.72043i 0.410336i
\(355\) −8.62736 16.6081i −0.457893 0.881469i
\(356\) 0.162532i 0.00861419i
\(357\) 0 0
\(358\) 14.3331 + 14.3331i 0.757528 + 0.757528i
\(359\) 13.7385i 0.725092i 0.931966 + 0.362546i \(0.118092\pi\)
−0.931966 + 0.362546i \(0.881908\pi\)
\(360\) 2.13199 + 0.674247i 0.112366 + 0.0355360i
\(361\) 2.64408 0.139162
\(362\) 5.32195 + 5.32195i 0.279715 + 0.279715i
\(363\) 2.90412 2.90412i 0.152427 0.152427i
\(364\) 0 0
\(365\) −29.1079 9.20544i −1.52358 0.481835i
\(366\) 4.80982 0.251413
\(367\) −17.8318 17.8318i −0.930812 0.930812i 0.0669445 0.997757i \(-0.478675\pi\)
−0.997757 + 0.0669445i \(0.978675\pi\)
\(368\) 3.62926 + 3.62926i 0.189188 + 0.189188i
\(369\) 5.59423 0.291224
\(370\) −7.85302 + 4.07937i −0.408259 + 0.212077i
\(371\) 0 0
\(372\) −7.07231 + 7.07231i −0.366682 + 0.366682i
\(373\) 18.9888 + 18.9888i 0.983201 + 0.983201i 0.999861 0.0166605i \(-0.00530346\pi\)
−0.0166605 + 0.999861i \(0.505303\pi\)
\(374\) 19.8755 1.02774
\(375\) 8.88763 6.78307i 0.458955 0.350276i
\(376\) 6.33974i 0.326947i
\(377\) −7.30472 7.30472i −0.376212 0.376212i
\(378\) 0 0
\(379\) 3.51982i 0.180801i 0.995905 + 0.0904005i \(0.0288147\pi\)
−0.995905 + 0.0904005i \(0.971185\pi\)
\(380\) −9.23165 + 4.79552i −0.473574 + 0.246005i
\(381\) 9.61130i 0.492402i
\(382\) −3.06028 + 3.06028i −0.156578 + 0.156578i
\(383\) −6.33781 + 6.33781i −0.323847 + 0.323847i −0.850241 0.526394i \(-0.823544\pi\)
0.526394 + 0.850241i \(0.323544\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) −21.2681 −1.08252
\(387\) −0.545731 + 0.545731i −0.0277411 + 0.0277411i
\(388\) 4.35278 4.35278i 0.220979 0.220979i
\(389\) 31.5371i 1.59899i −0.600670 0.799497i \(-0.705100\pi\)
0.600670 0.799497i \(-0.294900\pi\)
\(390\) −1.16202 + 3.67435i −0.0588412 + 0.186058i
\(391\) 38.8551i 1.96499i
\(392\) 0 0
\(393\) 2.99529 + 2.99529i 0.151092 + 0.151092i
\(394\) 19.9848i 1.00682i
\(395\) 17.8486 9.27176i 0.898063 0.466513i
\(396\) −2.62544 −0.131933
\(397\) −4.39711 4.39711i −0.220685 0.220685i 0.588102 0.808787i \(-0.299875\pi\)
−0.808787 + 0.588102i \(0.799875\pi\)
\(398\) −0.596847 + 0.596847i −0.0299172 + 0.0299172i
\(399\) 0 0
\(400\) 2.87498 4.09078i 0.143749 0.204539i
\(401\) −20.5141 −1.02442 −0.512211 0.858859i \(-0.671174\pi\)
−0.512211 + 0.858859i \(0.671174\pi\)
\(402\) 1.81260 + 1.81260i 0.0904041 + 0.0904041i
\(403\) −12.1887 12.1887i −0.607160 0.607160i
\(404\) 7.67397 0.381795
\(405\) −1.03078 1.98431i −0.0512199 0.0986012i
\(406\) 0 0
\(407\) 7.34708 7.34708i 0.364181 0.364181i
\(408\) 5.35303 + 5.35303i 0.265015 + 0.265015i
\(409\) 25.6511 1.26837 0.634184 0.773182i \(-0.281336\pi\)
0.634184 + 0.773182i \(0.281336\pi\)
\(410\) 3.77189 11.9268i 0.186280 0.589025i
\(411\) 8.26262i 0.407565i
\(412\) −2.87646 2.87646i −0.141713 0.141713i
\(413\) 0 0
\(414\) 5.13255i 0.252251i
\(415\) 24.1058 + 7.62351i 1.18331 + 0.374223i
\(416\) 1.72343i 0.0844983i
\(417\) 6.61186 6.61186i 0.323784 0.323784i
\(418\) 8.63688 8.63688i 0.422444 0.422444i
\(419\) −1.54146 −0.0753054 −0.0376527 0.999291i \(-0.511988\pi\)
−0.0376527 + 0.999291i \(0.511988\pi\)
\(420\) 0 0
\(421\) −20.0850 −0.978884 −0.489442 0.872036i \(-0.662800\pi\)
−0.489442 + 0.872036i \(0.662800\pi\)
\(422\) −15.6867 + 15.6867i −0.763619 + 0.763619i
\(423\) −4.48288 + 4.48288i −0.217965 + 0.217965i
\(424\) 8.57963i 0.416664i
\(425\) 37.2880 6.50822i 1.80873 0.315695i
\(426\) 8.36973i 0.405515i
\(427\) 0 0
\(428\) 1.99197 + 1.99197i 0.0962855 + 0.0962855i
\(429\) 4.52478i 0.218458i
\(430\) 0.795537 + 1.53145i 0.0383642 + 0.0738532i
\(431\) 21.9006 1.05491 0.527457 0.849581i \(-0.323145\pi\)
0.527457 + 0.849581i \(0.323145\pi\)
\(432\) −0.707107 0.707107i −0.0340207 0.0340207i
\(433\) 5.51584 5.51584i 0.265074 0.265074i −0.562038 0.827112i \(-0.689982\pi\)
0.827112 + 0.562038i \(0.189982\pi\)
\(434\) 0 0
\(435\) 4.04150 12.7794i 0.193775 0.612724i
\(436\) −12.1606 −0.582388
\(437\) 16.8845 + 16.8845i 0.807694 + 0.807694i
\(438\) 9.65407 + 9.65407i 0.461289 + 0.461289i
\(439\) 5.24407 0.250286 0.125143 0.992139i \(-0.460061\pi\)
0.125143 + 0.992139i \(0.460061\pi\)
\(440\) −1.77020 + 5.59742i −0.0843909 + 0.266847i
\(441\) 0 0
\(442\) −9.22560 + 9.22560i −0.438817 + 0.438817i
\(443\) 0.919519 + 0.919519i 0.0436877 + 0.0436877i 0.728613 0.684925i \(-0.240165\pi\)
−0.684925 + 0.728613i \(0.740165\pi\)
\(444\) 3.95756 0.187817
\(445\) −0.167535 0.322515i −0.00794193 0.0152887i
\(446\) 15.2215i 0.720757i
\(447\) −3.36452 3.36452i −0.159136 0.159136i
\(448\) 0 0
\(449\) 22.3625i 1.05535i 0.849445 + 0.527676i \(0.176937\pi\)
−0.849445 + 0.527676i \(0.823063\pi\)
\(450\) −4.92554 + 0.859701i −0.232192 + 0.0405267i
\(451\) 14.6873i 0.691599i
\(452\) 1.63875 1.63875i 0.0770804 0.0770804i
\(453\) −1.52108 + 1.52108i −0.0714668 + 0.0714668i
\(454\) 3.73858 0.175460
\(455\) 0 0
\(456\) 4.65232 0.217865
\(457\) 2.33309 2.33309i 0.109137 0.109137i −0.650429 0.759567i \(-0.725411\pi\)
0.759567 + 0.650429i \(0.225411\pi\)
\(458\) −10.7351 + 10.7351i −0.501619 + 0.501619i
\(459\) 7.57033i 0.353353i
\(460\) −10.9425 3.46061i −0.510199 0.161352i
\(461\) 6.97417i 0.324819i 0.986723 + 0.162410i \(0.0519266\pi\)
−0.986723 + 0.162410i \(0.948073\pi\)
\(462\) 0 0
\(463\) 16.6658 + 16.6658i 0.774527 + 0.774527i 0.978894 0.204367i \(-0.0655136\pi\)
−0.204367 + 0.978894i \(0.565514\pi\)
\(464\) 5.99410i 0.278269i
\(465\) 6.74366 21.3237i 0.312730 0.988861i
\(466\) 1.21304 0.0561928
\(467\) −8.10351 8.10351i −0.374986 0.374986i 0.494304 0.869289i \(-0.335423\pi\)
−0.869289 + 0.494304i \(0.835423\pi\)
\(468\) 1.21865 1.21865i 0.0563322 0.0563322i
\(469\) 0 0
\(470\) 6.53489 + 12.5800i 0.301432 + 0.580273i
\(471\) 3.80434 0.175295
\(472\) −5.45917 5.45917i −0.251279 0.251279i
\(473\) −1.43279 1.43279i −0.0658796 0.0658796i
\(474\) −8.99488 −0.413149
\(475\) 13.3753 19.0316i 0.613702 0.873231i
\(476\) 0 0
\(477\) −6.06671 + 6.06671i −0.277776 + 0.277776i
\(478\) 11.4264 + 11.4264i 0.522630 + 0.522630i
\(479\) −10.1172 −0.462266 −0.231133 0.972922i \(-0.574243\pi\)
−0.231133 + 0.972922i \(0.574243\pi\)
\(480\) −1.98431 + 1.03078i −0.0905710 + 0.0470485i
\(481\) 6.82059i 0.310992i
\(482\) −17.8310 17.8310i −0.812180 0.812180i
\(483\) 0 0
\(484\) 4.10705i 0.186684i
\(485\) −4.15051 + 13.1240i −0.188465 + 0.595932i
\(486\) 1.00000i 0.0453609i
\(487\) −26.1275 + 26.1275i −1.18395 + 1.18395i −0.205235 + 0.978713i \(0.565796\pi\)
−0.978713 + 0.205235i \(0.934204\pi\)
\(488\) −3.40106 + 3.40106i −0.153959 + 0.153959i
\(489\) −4.46126 −0.201745
\(490\) 0 0
\(491\) −8.00737 −0.361368 −0.180684 0.983541i \(-0.557831\pi\)
−0.180684 + 0.983541i \(0.557831\pi\)
\(492\) −3.95571 + 3.95571i −0.178337 + 0.178337i
\(493\) 32.0866 32.0866i 1.44511 1.44511i
\(494\) 8.01797i 0.360745i
\(495\) 5.20970 2.70626i 0.234158 0.121637i
\(496\) 10.0018i 0.449092i
\(497\) 0 0
\(498\) −7.99504 7.99504i −0.358266 0.358266i
\(499\) 11.9668i 0.535708i 0.963459 + 0.267854i \(0.0863146\pi\)
−0.963459 + 0.267854i \(0.913685\pi\)
\(500\) −1.48815 + 11.0809i −0.0665523 + 0.495551i
\(501\) 22.8151 1.01930
\(502\) −1.46767 1.46767i −0.0655051 0.0655051i
\(503\) 20.3121 20.3121i 0.905670 0.905670i −0.0902493 0.995919i \(-0.528766\pi\)
0.995919 + 0.0902493i \(0.0287664\pi\)
\(504\) 0 0
\(505\) −15.2276 + 7.91019i −0.677617 + 0.351999i
\(506\) 13.4752 0.599046
\(507\) −7.09212 7.09212i −0.314972 0.314972i
\(508\) −6.79622 6.79622i −0.301533 0.301533i
\(509\) −29.5594 −1.31020 −0.655098 0.755544i \(-0.727373\pi\)
−0.655098 + 0.755544i \(0.727373\pi\)
\(510\) −16.1399 5.10428i −0.714686 0.226021i
\(511\) 0 0
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) −3.28969 3.28969i −0.145243 0.145243i
\(514\) −4.50222 −0.198584
\(515\) 8.67278 + 2.74279i 0.382168 + 0.120862i
\(516\) 0.771781i 0.0339757i
\(517\) −11.7695 11.7695i −0.517624 0.517624i
\(518\) 0 0
\(519\) 12.3822i 0.543520i
\(520\) −1.77648 3.41983i −0.0779040 0.149969i
\(521\) 8.82958i 0.386831i 0.981117 + 0.193415i \(0.0619565\pi\)
−0.981117 + 0.193415i \(0.938043\pi\)
\(522\) −4.23847 + 4.23847i −0.185513 + 0.185513i
\(523\) −29.1936 + 29.1936i −1.27655 + 1.27655i −0.333960 + 0.942587i \(0.608385\pi\)
−0.942587 + 0.333960i \(0.891615\pi\)
\(524\) −4.23598 −0.185050
\(525\) 0 0
\(526\) −22.3996 −0.976669
\(527\) 53.5397 53.5397i 2.33223 2.33223i
\(528\) 1.85647 1.85647i 0.0807924 0.0807924i
\(529\) 3.34303i 0.145349i
\(530\) 8.84372 + 17.0247i 0.384147 + 0.739504i
\(531\) 7.72043i 0.335038i
\(532\) 0 0
\(533\) −6.81741 6.81741i −0.295295 0.295295i
\(534\) 0.162532i 0.00703346i
\(535\) −6.00597 1.89940i −0.259661 0.0821183i
\(536\) −2.56340 −0.110722
\(537\) 14.3331 + 14.3331i 0.618519 + 0.618519i
\(538\) −8.29027 + 8.29027i −0.357419 + 0.357419i
\(539\) 0 0
\(540\) 2.13199 + 0.674247i 0.0917463 + 0.0290150i
\(541\) −25.5347 −1.09782 −0.548911 0.835881i \(-0.684958\pi\)
−0.548911 + 0.835881i \(0.684958\pi\)
\(542\) −17.0038 17.0038i −0.730377 0.730377i
\(543\) 5.32195 + 5.32195i 0.228387 + 0.228387i
\(544\) −7.57033 −0.324575
\(545\) 24.1304 12.5349i 1.03363 0.536937i
\(546\) 0 0
\(547\) 22.6183 22.6183i 0.967087 0.967087i −0.0323883 0.999475i \(-0.510311\pi\)
0.999475 + 0.0323883i \(0.0103113\pi\)
\(548\) 5.84256 + 5.84256i 0.249582 + 0.249582i
\(549\) 4.80982 0.205278
\(550\) −2.25710 12.9317i −0.0962429 0.551410i
\(551\) 27.8865i 1.18800i
\(552\) 3.62926 + 3.62926i 0.154471 + 0.154471i
\(553\) 0 0
\(554\) 27.1973i 1.15550i
\(555\) −7.85302 + 4.07937i −0.333342 + 0.173160i
\(556\) 9.35059i 0.396553i
\(557\) −12.4024 + 12.4024i −0.525507 + 0.525507i −0.919229 0.393722i \(-0.871187\pi\)
0.393722 + 0.919229i \(0.371187\pi\)
\(558\) −7.07231 + 7.07231i −0.299395 + 0.299395i
\(559\) 1.33011 0.0562578
\(560\) 0 0
\(561\) 19.8755 0.839143
\(562\) −15.6916 + 15.6916i −0.661910 + 0.661910i
\(563\) 11.0433 11.0433i 0.465418 0.465418i −0.435009 0.900426i \(-0.643255\pi\)
0.900426 + 0.435009i \(0.143255\pi\)
\(564\) 6.33974i 0.266951i
\(565\) −1.56260 + 4.94099i −0.0657390 + 0.207869i
\(566\) 11.1028i 0.466684i
\(567\) 0 0
\(568\) −5.91829 5.91829i −0.248326 0.248326i
\(569\) 17.9102i 0.750835i −0.926856 0.375418i \(-0.877499\pi\)
0.926856 0.375418i \(-0.122501\pi\)
\(570\) −9.23165 + 4.79552i −0.386671 + 0.200862i
\(571\) −20.4679 −0.856557 −0.428278 0.903647i \(-0.640880\pi\)
−0.428278 + 0.903647i \(0.640880\pi\)
\(572\) 3.19950 + 3.19950i 0.133778 + 0.133778i
\(573\) −3.06028 + 3.06028i −0.127845 + 0.127845i
\(574\) 0 0
\(575\) 25.2805 4.41246i 1.05427 0.184012i
\(576\) 1.00000 0.0416667
\(577\) −18.1035 18.1035i −0.753658 0.753658i 0.221502 0.975160i \(-0.428904\pi\)
−0.975160 + 0.221502i \(0.928904\pi\)
\(578\) −28.5034 28.5034i −1.18559 1.18559i
\(579\) −21.2681 −0.883871
\(580\) 6.17860 + 11.8942i 0.256553 + 0.493878i
\(581\) 0 0
\(582\) 4.35278 4.35278i 0.180429 0.180429i
\(583\) −15.9278 15.9278i −0.659663 0.659663i
\(584\) −13.6529 −0.564961
\(585\) −1.16202 + 3.67435i −0.0480436 + 0.151916i
\(586\) 9.21473i 0.380657i
\(587\) 26.2627 + 26.2627i 1.08398 + 1.08398i 0.996134 + 0.0878438i \(0.0279977\pi\)
0.0878438 + 0.996134i \(0.472002\pi\)
\(588\) 0 0
\(589\) 46.5313i 1.91729i
\(590\) 16.4599 + 5.20548i 0.677643 + 0.214306i
\(591\) 19.9848i 0.822063i
\(592\) −2.79841 + 2.79841i −0.115014 + 0.115014i
\(593\) 6.80591 6.80591i 0.279485 0.279485i −0.553418 0.832903i \(-0.686677\pi\)
0.832903 + 0.553418i \(0.186677\pi\)
\(594\) −2.62544 −0.107723
\(595\) 0 0
\(596\) 4.75815 0.194902
\(597\) −0.596847 + 0.596847i −0.0244273 + 0.0244273i
\(598\) −6.25479 + 6.25479i −0.255777 + 0.255777i
\(599\) 3.88788i 0.158855i 0.996841 + 0.0794273i \(0.0253091\pi\)
−0.996841 + 0.0794273i \(0.974691\pi\)
\(600\) 2.87498 4.09078i 0.117371 0.167005i
\(601\) 36.4068i 1.48506i −0.669811 0.742531i \(-0.733625\pi\)
0.669811 0.742531i \(-0.266375\pi\)
\(602\) 0 0
\(603\) 1.81260 + 1.81260i 0.0738146 + 0.0738146i
\(604\) 2.15114i 0.0875286i
\(605\) −4.23347 8.14966i −0.172115 0.331331i
\(606\) 7.67397 0.311734
\(607\) 4.89302 + 4.89302i 0.198601 + 0.198601i 0.799400 0.600799i \(-0.205151\pi\)
−0.600799 + 0.799400i \(0.705151\pi\)
\(608\) −3.28969 + 3.28969i −0.133414 + 0.133414i
\(609\) 0 0
\(610\) 3.24301 10.2545i 0.131306 0.415193i
\(611\) 10.9261 0.442024
\(612\) 5.35303 + 5.35303i 0.216384 + 0.216384i
\(613\) 31.5132 + 31.5132i 1.27281 + 1.27281i 0.944609 + 0.328198i \(0.106441\pi\)
0.328198 + 0.944609i \(0.393559\pi\)
\(614\) −29.1342 −1.17576
\(615\) 3.77189 11.9268i 0.152097 0.480937i
\(616\) 0 0
\(617\) 8.27627 8.27627i 0.333190 0.333190i −0.520607 0.853797i \(-0.674294\pi\)
0.853797 + 0.520607i \(0.174294\pi\)
\(618\) −2.87646 2.87646i −0.115708 0.115708i
\(619\) −11.5952 −0.466052 −0.233026 0.972471i \(-0.574863\pi\)
−0.233026 + 0.972471i \(0.574863\pi\)
\(620\) 10.3096 + 19.8466i 0.414044 + 0.797058i
\(621\) 5.13255i 0.205962i
\(622\) 23.2400 + 23.2400i 0.931840 + 0.931840i
\(623\) 0 0
\(624\) 1.72343i 0.0689926i
\(625\) −8.46898 23.5218i −0.338759 0.940873i
\(626\) 22.1831i 0.886615i
\(627\) 8.63688 8.63688i 0.344924 0.344924i
\(628\) −2.69007 + 2.69007i −0.107346 + 0.107346i
\(629\) −29.9600 −1.19458
\(630\) 0 0
\(631\) 2.25813 0.0898949 0.0449474 0.998989i \(-0.485688\pi\)
0.0449474 + 0.998989i \(0.485688\pi\)
\(632\) 6.36034 6.36034i 0.253001 0.253001i
\(633\) −15.6867 + 15.6867i −0.623492 + 0.623492i
\(634\) 14.3645i 0.570488i
\(635\) 20.4912 + 6.48040i 0.813169 + 0.257167i
\(636\) 8.57963i 0.340204i
\(637\) 0 0
\(638\) −11.1279 11.1279i −0.440556 0.440556i
\(639\) 8.36973i 0.331101i
\(640\) 0.674247 2.13199i 0.0266520 0.0842744i
\(641\) 19.2249 0.759339 0.379669 0.925122i \(-0.376038\pi\)
0.379669 + 0.925122i \(0.376038\pi\)
\(642\) 1.99197 + 1.99197i 0.0786168 + 0.0786168i
\(643\) −15.5634 + 15.5634i −0.613760 + 0.613760i −0.943924 0.330163i \(-0.892896\pi\)
0.330163 + 0.943924i \(0.392896\pi\)
\(644\) 0 0
\(645\) 0.795537 + 1.53145i 0.0313242 + 0.0603009i
\(646\) −35.2196 −1.38570
\(647\) 6.98936 + 6.98936i 0.274780 + 0.274780i 0.831021 0.556241i \(-0.187757\pi\)
−0.556241 + 0.831021i \(0.687757\pi\)
\(648\) −0.707107 0.707107i −0.0277778 0.0277778i
\(649\) −20.2696 −0.795650
\(650\) 7.05019 + 4.95484i 0.276531 + 0.194345i
\(651\) 0 0
\(652\) 3.15459 3.15459i 0.123543 0.123543i
\(653\) −7.03748 7.03748i −0.275398 0.275398i 0.555871 0.831269i \(-0.312385\pi\)
−0.831269 + 0.555871i \(0.812385\pi\)
\(654\) −12.1606 −0.475518
\(655\) 8.40550 4.36637i 0.328430 0.170608i
\(656\) 5.59423i 0.218418i
\(657\) 9.65407 + 9.65407i 0.376641 + 0.376641i
\(658\) 0 0
\(659\) 16.2333i 0.632360i −0.948699 0.316180i \(-0.897600\pi\)
0.948699 0.316180i \(-0.102400\pi\)
\(660\) −1.77020 + 5.59742i −0.0689049 + 0.217879i
\(661\) 10.1278i 0.393928i 0.980411 + 0.196964i \(0.0631081\pi\)
−0.980411 + 0.196964i \(0.936892\pi\)
\(662\) 2.04401 2.04401i 0.0794427 0.0794427i
\(663\) −9.22560 + 9.22560i −0.358293 + 0.358293i
\(664\) 11.3067 0.438785
\(665\) 0 0
\(666\) 3.95756 0.153352
\(667\) 21.7541 21.7541i 0.842323 0.842323i
\(668\) −16.1327 + 16.1327i −0.624194 + 0.624194i
\(669\) 15.2215i 0.588496i
\(670\) 5.08658 2.64230i 0.196512 0.102081i
\(671\) 12.6279i 0.487495i
\(672\) 0 0
\(673\) 15.2038 + 15.2038i 0.586062 + 0.586062i 0.936563 0.350501i \(-0.113989\pi\)
−0.350501 + 0.936563i \(0.613989\pi\)
\(674\) 33.1567i 1.27715i
\(675\) −4.92554 + 0.859701i −0.189584 + 0.0330899i
\(676\) 10.0298 0.385761
\(677\) 8.52782 + 8.52782i 0.327751 + 0.327751i 0.851731 0.523980i \(-0.175553\pi\)
−0.523980 + 0.851731i \(0.675553\pi\)
\(678\) 1.63875 1.63875i 0.0629359 0.0629359i
\(679\) 0 0
\(680\) 15.0219 7.80336i 0.576063 0.299245i
\(681\) 3.73858 0.143263
\(682\) −18.5679 18.5679i −0.711003 0.711003i
\(683\) 8.28510 + 8.28510i 0.317020 + 0.317020i 0.847622 0.530601i \(-0.178034\pi\)
−0.530601 + 0.847622i \(0.678034\pi\)
\(684\) 4.65232 0.177886
\(685\) −17.6158 5.57105i −0.673067 0.212859i
\(686\) 0 0
\(687\) −10.7351 + 10.7351i −0.409570 + 0.409570i
\(688\) 0.545731 + 0.545731i 0.0208058 + 0.0208058i
\(689\) 14.7864 0.563318
\(690\) −10.9425 3.46061i −0.416576 0.131743i
\(691\) 28.7034i 1.09193i −0.837808 0.545965i \(-0.816163\pi\)
0.837808 0.545965i \(-0.183837\pi\)
\(692\) −8.75557 8.75557i −0.332837 0.332837i
\(693\) 0 0
\(694\) 11.3379i 0.430382i
\(695\) −9.63841 18.5545i −0.365606 0.703811i
\(696\) 5.99410i 0.227206i
\(697\) 29.9461 29.9461i 1.13429 1.13429i
\(698\) 4.81389 4.81389i 0.182208 0.182208i
\(699\) 1.21304 0.0458812
\(700\) 0 0
\(701\) 47.8761 1.80825 0.904127 0.427264i \(-0.140523\pi\)
0.904127 + 0.427264i \(0.140523\pi\)
\(702\) 1.21865 1.21865i 0.0459951 0.0459951i
\(703\) −13.0191 + 13.0191i −0.491025 + 0.491025i
\(704\) 2.62544i 0.0989501i
\(705\) 6.53489 + 12.5800i 0.246118 + 0.473791i
\(706\) 27.8246i 1.04719i
\(707\) 0 0
\(708\) −5.45917 5.45917i −0.205168 0.205168i
\(709\) 25.4992i 0.957643i 0.877912 + 0.478822i \(0.158936\pi\)
−0.877912 + 0.478822i \(0.841064\pi\)
\(710\) 17.8442 + 5.64327i 0.669681 + 0.211788i
\(711\) −8.99488 −0.337334
\(712\) −0.114928 0.114928i −0.00430710 0.00430710i
\(713\) 36.2989 36.2989i 1.35941 1.35941i
\(714\) 0 0
\(715\) −9.64679 3.05082i −0.360770 0.114094i
\(716\) −20.2701 −0.757528
\(717\) 11.4264 + 11.4264i 0.426726 + 0.426726i
\(718\) −9.71461 9.71461i −0.362546 0.362546i
\(719\) −32.0876 −1.19667 −0.598333 0.801248i \(-0.704170\pi\)
−0.598333 + 0.801248i \(0.704170\pi\)
\(720\) −1.98431 + 1.03078i −0.0739509 + 0.0384149i
\(721\) 0 0
\(722\) −1.86964 + 1.86964i −0.0695809 + 0.0695809i
\(723\) −17.8310 17.8310i −0.663142 0.663142i
\(724\) −7.52637 −0.279715
\(725\) −24.5205 17.2329i −0.910670 0.640014i
\(726\) 4.10705i 0.152427i
\(727\) −11.3772 11.3772i −0.421956 0.421956i 0.463921 0.885877i \(-0.346442\pi\)
−0.885877 + 0.463921i \(0.846442\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 27.0916 14.0732i 1.00271 0.520871i
\(731\) 5.84264i 0.216098i
\(732\) −3.40106 + 3.40106i −0.125707 + 0.125707i
\(733\) −14.8516 + 14.8516i −0.548557 + 0.548557i −0.926023 0.377466i \(-0.876795\pi\)
0.377466 + 0.926023i \(0.376795\pi\)
\(734\) 25.2180 0.930812
\(735\) 0 0
\(736\) −5.13255 −0.189188
\(737\) −4.75887 + 4.75887i −0.175295 + 0.175295i
\(738\) −3.95571 + 3.95571i −0.145612 + 0.145612i
\(739\) 36.7595i 1.35222i 0.736801 + 0.676110i \(0.236336\pi\)
−0.736801 + 0.676110i \(0.763664\pi\)
\(740\) 2.66837 8.43748i 0.0980913 0.310168i
\(741\) 8.01797i 0.294547i
\(742\) 0 0
\(743\) −17.1637 17.1637i −0.629676 0.629676i 0.318310 0.947987i \(-0.396885\pi\)
−0.947987 + 0.318310i \(0.896885\pi\)
\(744\) 10.0018i 0.366682i
\(745\) −9.44166 + 4.90462i −0.345916 + 0.179691i
\(746\) −26.8542 −0.983201
\(747\) −7.99504 7.99504i −0.292523 0.292523i
\(748\) −14.0541 + 14.0541i −0.513868 + 0.513868i
\(749\) 0 0
\(750\) −1.48815 + 11.0809i −0.0543397 + 0.404616i
\(751\) 30.2637 1.10434 0.552168 0.833733i \(-0.313801\pi\)
0.552168 + 0.833733i \(0.313801\pi\)
\(752\) 4.48288 + 4.48288i 0.163474 + 0.163474i
\(753\) −1.46767 1.46767i −0.0534847 0.0534847i
\(754\) 10.3304 0.376212
\(755\) 2.21735 + 4.26853i 0.0806978 + 0.155348i
\(756\) 0 0
\(757\) −1.48321 + 1.48321i −0.0539082 + 0.0539082i −0.733547 0.679639i \(-0.762137\pi\)
0.679639 + 0.733547i \(0.262137\pi\)
\(758\) −2.48889 2.48889i −0.0904005 0.0904005i
\(759\) 13.4752 0.489119
\(760\) 3.13681 9.91871i 0.113784 0.359789i
\(761\) 6.91949i 0.250831i 0.992104 + 0.125416i \(0.0400265\pi\)
−0.992104 + 0.125416i \(0.959974\pi\)
\(762\) −6.79622 6.79622i −0.246201 0.246201i
\(763\) 0 0
\(764\) 4.32789i 0.156578i
\(765\) −16.1399 5.10428i −0.583539 0.184546i
\(766\) 8.96302i 0.323847i
\(767\) 9.40852 9.40852i 0.339722 0.339722i
\(768\) −0.707107 + 0.707107i −0.0255155 + 0.0255155i
\(769\) −16.5757 −0.597736 −0.298868 0.954294i \(-0.596609\pi\)
−0.298868 + 0.954294i \(0.596609\pi\)
\(770\) 0 0
\(771\) −4.50222 −0.162143
\(772\) 15.0388 15.0388i 0.541258 0.541258i
\(773\) −4.74612 + 4.74612i −0.170706 + 0.170706i −0.787289 0.616584i \(-0.788516\pi\)
0.616584 + 0.787289i \(0.288516\pi\)
\(774\) 0.771781i 0.0277411i
\(775\) −40.9150 28.7548i −1.46971 1.03290i
\(776\) 6.15577i 0.220979i
\(777\) 0 0
\(778\) 22.3001 + 22.3001i 0.799497 + 0.799497i
\(779\) 26.0261i 0.932483i
\(780\) −1.77648 3.41983i −0.0636083 0.122450i
\(781\) −21.9742 −0.786300
\(782\) −27.4747 27.4747i −0.982493 0.982493i
\(783\) −4.23847 + 4.23847i −0.151470 + 0.151470i
\(784\) 0 0
\(785\) 2.56506 8.11082i 0.0915511 0.289488i
\(786\) −4.23598 −0.151092
\(787\) −10.6060 10.6060i −0.378063 0.378063i 0.492340 0.870403i \(-0.336142\pi\)
−0.870403 + 0.492340i \(0.836142\pi\)
\(788\) 14.1314 + 14.1314i 0.503409 + 0.503409i
\(789\) −22.3996 −0.797447
\(790\) −6.06478 + 19.1770i −0.215775 + 0.682288i
\(791\) 0 0
\(792\) 1.85647 1.85647i 0.0659667 0.0659667i
\(793\) −5.86150 5.86150i −0.208148 0.208148i
\(794\) 6.21845 0.220685
\(795\) 8.84372 + 17.0247i 0.313654 + 0.603802i
\(796\) 0.844069i 0.0299172i
\(797\) 29.9616 + 29.9616i 1.06130 + 1.06130i 0.997994 + 0.0633012i \(0.0201629\pi\)
0.0633012 + 0.997994i \(0.479837\pi\)
\(798\) 0 0
\(799\) 47.9940i 1.69790i
\(800\) 0.859701 + 4.92554i 0.0303950 + 0.174144i
\(801\) 0.162532i 0.00574280i
\(802\) 14.5056 14.5056i 0.512211 0.512211i
\(803\) −25.3462 + 25.3462i −0.894448 + 0.894448i
\(804\) −2.56340 −0.0904041
\(805\) 0 0
\(806\) 17.2374 0.607160
\(807\) −8.29027 + 8.29027i −0.291831 + 0.291831i
\(808\) −5.42632 + 5.42632i −0.190897 + 0.190897i
\(809\) 8.67329i 0.304937i 0.988308 + 0.152468i \(0.0487222\pi\)
−0.988308 + 0.152468i \(0.951278\pi\)
\(810\) 2.13199 + 0.674247i 0.0749106 + 0.0236906i
\(811\) 21.4366i 0.752741i −0.926469 0.376370i \(-0.877172\pi\)
0.926469 0.376370i \(-0.122828\pi\)
\(812\) 0 0
\(813\) −17.0038 17.0038i −0.596351 0.596351i
\(814\) 10.3903i 0.364181i
\(815\) −3.00799 + 9.51137i −0.105365 + 0.333169i
\(816\) −7.57033 −0.265015
\(817\) 2.53892 + 2.53892i 0.0888254 + 0.0888254i
\(818\) −18.1381 + 18.1381i −0.634184 + 0.634184i
\(819\) 0 0
\(820\) 5.76642 + 11.1007i 0.201372 + 0.387653i
\(821\) 19.1999 0.670082 0.335041 0.942204i \(-0.391250\pi\)
0.335041 + 0.942204i \(0.391250\pi\)
\(822\) 5.84256 + 5.84256i 0.203783 + 0.203783i
\(823\) 7.13593 + 7.13593i 0.248743 + 0.248743i 0.820455 0.571712i \(-0.193720\pi\)
−0.571712 + 0.820455i \(0.693720\pi\)
\(824\) 4.06792 0.141713
\(825\) −2.25710 12.9317i −0.0785820 0.450225i
\(826\) 0 0
\(827\) −2.93550 + 2.93550i −0.102077 + 0.102077i −0.756301 0.654224i \(-0.772995\pi\)
0.654224 + 0.756301i \(0.272995\pi\)
\(828\) 3.62926 + 3.62926i 0.126125 + 0.126125i
\(829\) 0.632225 0.0219581 0.0109790 0.999940i \(-0.496505\pi\)
0.0109790 + 0.999940i \(0.496505\pi\)
\(830\) −22.4360 + 11.6547i −0.778765 + 0.404542i
\(831\) 27.1973i 0.943462i
\(832\) −1.21865 1.21865i −0.0422492 0.0422492i
\(833\) 0 0
\(834\) 9.35059i 0.323784i
\(835\) 15.3830 48.6417i 0.532352 1.68331i
\(836\) 12.2144i 0.422444i
\(837\) −7.07231 + 7.07231i −0.244455 + 0.244455i
\(838\) 1.08998 1.08998i 0.0376527 0.0376527i
\(839\) 7.93406 0.273914 0.136957 0.990577i \(-0.456268\pi\)
0.136957 + 0.990577i \(0.456268\pi\)
\(840\) 0 0
\(841\) −6.92921 −0.238938
\(842\) 14.2023 14.2023i 0.489442 0.489442i
\(843\) −15.6916 + 15.6916i −0.540447 + 0.540447i
\(844\) 22.1844i 0.763619i
\(845\) −19.9022 + 10.3385i −0.684656 + 0.355655i
\(846\) 6.33974i 0.217965i
\(847\) 0 0
\(848\) 6.06671 + 6.06671i 0.208332 + 0.208332i
\(849\) 11.1028i 0.381046i
\(850\) −21.7646 + 30.9686i −0.746518 + 1.06221i
\(851\) −20.3123 −0.696298
\(852\) −5.91829 5.91829i −0.202757 0.202757i
\(853\) 13.0203 13.0203i 0.445806 0.445806i −0.448152 0.893957i \(-0.647918\pi\)
0.893957 + 0.448152i \(0.147918\pi\)
\(854\) 0 0
\(855\) −9.23165 + 4.79552i −0.315716 + 0.164003i
\(856\) −2.81707 −0.0962855
\(857\) 8.06970 + 8.06970i 0.275656 + 0.275656i 0.831372 0.555716i \(-0.187556\pi\)
−0.555716 + 0.831372i \(0.687556\pi\)
\(858\) 3.19950 + 3.19950i 0.109229 + 0.109229i
\(859\) −12.8977 −0.440063 −0.220031 0.975493i \(-0.570616\pi\)
−0.220031 + 0.975493i \(0.570616\pi\)
\(860\) −1.64543 0.520371i −0.0561087 0.0177445i
\(861\) 0 0
\(862\) −15.4861 + 15.4861i −0.527457 + 0.527457i
\(863\) −8.97306 8.97306i −0.305447 0.305447i 0.537694 0.843140i \(-0.319296\pi\)
−0.843140 + 0.537694i \(0.819296\pi\)
\(864\) 1.00000 0.0340207
\(865\) 26.3988 + 8.34869i 0.897588 + 0.283864i
\(866\) 7.80057i 0.265074i
\(867\) −28.5034 28.5034i −0.968027 0.968027i
\(868\) 0 0
\(869\) 23.6156i 0.801103i
\(870\) 6.17860 + 11.8942i 0.209474 + 0.403250i
\(871\) 4.41785i 0.149693i
\(872\) 8.59885 8.59885i 0.291194 0.291194i
\(873\) 4.35278 4.35278i 0.147319 0.147319i
\(874\) −23.8782 −0.807694
\(875\) 0 0
\(876\) −13.6529 −0.461289
\(877\) −18.4582 + 18.4582i −0.623289 + 0.623289i −0.946371 0.323082i \(-0.895281\pi\)
0.323082 + 0.946371i \(0.395281\pi\)
\(878\) −3.70812 + 3.70812i −0.125143 + 0.125143i
\(879\) 9.21473i 0.310805i
\(880\) −2.70626 5.20970i −0.0912279 0.175619i
\(881\) 34.2689i 1.15455i 0.816551 + 0.577274i \(0.195884\pi\)
−0.816551 + 0.577274i \(0.804116\pi\)
\(882\) 0 0
\(883\) −33.0880 33.0880i −1.11350 1.11350i −0.992674 0.120827i \(-0.961445\pi\)
−0.120827 0.992674i \(-0.538555\pi\)
\(884\) 13.0470i 0.438817i
\(885\) 16.4599 + 5.20548i 0.553293 + 0.174980i
\(886\) −1.30040 −0.0436877
\(887\) −13.4304 13.4304i −0.450949 0.450949i 0.444720 0.895670i \(-0.353303\pi\)
−0.895670 + 0.444720i \(0.853303\pi\)
\(888\) −2.79841 + 2.79841i −0.0939087 + 0.0939087i
\(889\) 0 0
\(890\) 0.346518 + 0.109587i 0.0116153 + 0.00367336i
\(891\) −2.62544 −0.0879557
\(892\) 10.7632 + 10.7632i 0.360378 + 0.360378i
\(893\) 20.8558 + 20.8558i 0.697912 + 0.697912i
\(894\) 4.75815 0.159136
\(895\) 40.2221 20.8940i 1.34448 0.698410i
\(896\) 0 0
\(897\) −6.25479 + 6.25479i −0.208841 + 0.208841i
\(898\) −15.8127 15.8127i −0.527676 0.527676i
\(899\) −59.9515 −1.99949
\(900\) 2.87498 4.09078i 0.0958327 0.136359i
\(901\) 64.9506i 2.16382i
\(902\) −10.3855 10.3855i −0.345799 0.345799i
\(903\) 0 0
\(904\) 2.31755i 0.0770804i
\(905\) 14.9347 7.75804i 0.496445 0.257886i
\(906\) 2.15114i 0.0714668i
\(907\) 39.9835 39.9835i 1.32763 1.32763i 0.420200 0.907432i \(-0.361960\pi\)
0.907432 0.420200i \(-0.138040\pi\)
\(908\) −2.64357 + 2.64357i −0.0877301 + 0.0877301i
\(909\) 7.67397 0.254530
\(910\) 0 0
\(911\) −18.6286 −0.617193 −0.308596 0.951193i \(-0.599859\pi\)
−0.308596 + 0.951193i \(0.599859\pi\)
\(912\) −3.28969 + 3.28969i −0.108932 + 0.108932i
\(913\) 20.9905 20.9905i 0.694685 0.694685i
\(914\) 3.29949i 0.109137i
\(915\) 3.24301 10.2545i 0.107211 0.339003i
\(916\) 15.1818i 0.501619i
\(917\) 0 0
\(918\) 5.35303 + 5.35303i 0.176676 + 0.176676i
\(919\) 44.3232i 1.46209i 0.682331 + 0.731043i \(0.260966\pi\)
−0.682331 + 0.731043i \(0.739034\pi\)
\(920\) 10.1846 5.29053i 0.335775 0.174424i
\(921\) −29.1342 −0.960005
\(922\) −4.93148 4.93148i −0.162410 0.162410i
\(923\) 10.1998 10.1998i 0.335730 0.335730i
\(924\) 0 0
\(925\) 3.40232 + 19.4931i 0.111867 + 0.640929i
\(926\) −23.5691 −0.774527
\(927\) −2.87646 2.87646i −0.0944752 0.0944752i
\(928\) 4.23847 + 4.23847i 0.139135 + 0.139135i
\(929\) 14.0476 0.460886 0.230443 0.973086i \(-0.425982\pi\)
0.230443 + 0.973086i \(0.425982\pi\)
\(930\) 10.3096 + 19.8466i 0.338066 + 0.650795i
\(931\) 0 0
\(932\) −0.857745 + 0.857745i −0.0280964 + 0.0280964i
\(933\) 23.2400 + 23.2400i 0.760844 + 0.760844i
\(934\) 11.4601 0.374986
\(935\) 13.4010 42.3744i 0.438259 1.38579i
\(936\) 1.72343i 0.0563322i
\(937\) −24.1561 24.1561i −0.789145 0.789145i 0.192209 0.981354i \(-0.438435\pi\)
−0.981354 + 0.192209i \(0.938435\pi\)
\(938\) 0 0
\(939\) 22.1831i 0.723918i
\(940\) −13.5163 4.27456i −0.440853 0.139421i
\(941\) 52.3393i 1.70621i −0.521738 0.853106i \(-0.674716\pi\)
0.521738 0.853106i \(-0.325284\pi\)
\(942\) −2.69007 + 2.69007i −0.0876473 + 0.0876473i
\(943\) 20.3029 20.3029i 0.661153 0.661153i
\(944\) 7.72043 0.251279
\(945\) 0 0
\(946\) 2.02627 0.0658796
\(947\) −27.5701 + 27.5701i −0.895908 + 0.895908i −0.995071 0.0991635i \(-0.968383\pi\)
0.0991635 + 0.995071i \(0.468383\pi\)
\(948\) 6.36034 6.36034i 0.206574 0.206574i
\(949\) 23.5299i 0.763813i
\(950\) 3.99960 + 22.9152i 0.129764 + 0.743466i
\(951\) 14.3645i 0.465801i
\(952\) 0 0
\(953\) 1.45944 + 1.45944i 0.0472759 + 0.0472759i 0.730350 0.683074i \(-0.239357\pi\)
−0.683074 + 0.730350i \(0.739357\pi\)
\(954\) 8.57963i 0.277776i
\(955\) 4.46111 + 8.58789i 0.144358 + 0.277898i
\(956\) −16.1593 −0.522630
\(957\) −11.1279 11.1279i −0.359712 0.359712i
\(958\) 7.15393 7.15393i 0.231133 0.231133i
\(959\) 0 0
\(960\) 0.674247 2.13199i 0.0217612 0.0688098i
\(961\) −69.0351 −2.22694
\(962\) −4.82288 4.82288i −0.155496 0.155496i
\(963\) 1.99197 + 1.99197i 0.0641903 + 0.0641903i
\(964\) 25.2169 0.812180
\(965\) −14.3399 + 45.3434i −0.461619 + 1.45965i
\(966\) 0 0
\(967\) 11.2656 11.2656i 0.362279 0.362279i −0.502373 0.864651i \(-0.667539\pi\)
0.864651 + 0.502373i \(0.167539\pi\)
\(968\) −2.90412 2.90412i −0.0933420 0.0933420i
\(969\) −35.2196 −1.13142
\(970\) −6.34525 12.2150i −0.203734 0.392199i
\(971\) 9.80195i 0.314559i −0.987554 0.157280i \(-0.949728\pi\)
0.987554 0.157280i \(-0.0502724\pi\)
\(972\) −0.707107 0.707107i −0.0226805 0.0226805i
\(973\) 0 0
\(974\) 36.9498i 1.18395i
\(975\) 7.05019 + 4.95484i 0.225787 + 0.158682i
\(976\) 4.80982i 0.153959i
\(977\) −34.8727 + 34.8727i −1.11568 + 1.11568i −0.123309 + 0.992368i \(0.539351\pi\)
−0.992368 + 0.123309i \(0.960649\pi\)
\(978\) 3.15459 3.15459i 0.100873 0.100873i
\(979\) −0.426719 −0.0136380
\(980\) 0 0
\(981\) −12.1606 −0.388258
\(982\) 5.66207 5.66207i 0.180684 0.180684i
\(983\) −4.22505 + 4.22505i −0.134758 + 0.134758i −0.771268 0.636510i \(-0.780377\pi\)
0.636510 + 0.771268i \(0.280377\pi\)
\(984\) 5.59423i 0.178337i
\(985\) −42.6073 13.4747i −1.35758 0.429339i
\(986\) 45.3773i 1.44511i
\(987\) 0 0
\(988\) −5.66956 5.66956i −0.180373 0.180373i
\(989\) 3.96120i 0.125959i
\(990\) −1.77020 + 5.59742i −0.0562606 + 0.177898i
\(991\) 13.0417 0.414284 0.207142 0.978311i \(-0.433584\pi\)
0.207142 + 0.978311i \(0.433584\pi\)
\(992\) 7.07231 + 7.07231i 0.224546 + 0.224546i
\(993\) 2.04401 2.04401i 0.0648647 0.0648647i
\(994\) 0 0
\(995\) 0.870050 + 1.67490i 0.0275824 + 0.0530977i
\(996\) 11.3067 0.358266
\(997\) −15.0223 15.0223i −0.475761 0.475761i 0.428012 0.903773i \(-0.359214\pi\)
−0.903773 + 0.428012i \(0.859214\pi\)
\(998\) −8.46182 8.46182i −0.267854 0.267854i
\(999\) 3.95756 0.125212
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1470.2.m.e.1273.3 16
5.2 odd 4 1470.2.m.d.97.2 16
7.2 even 3 210.2.u.b.73.3 yes 16
7.3 odd 6 210.2.u.a.103.2 16
7.6 odd 2 1470.2.m.d.1273.2 16
21.2 odd 6 630.2.bv.b.73.2 16
21.17 even 6 630.2.bv.a.523.3 16
35.2 odd 12 210.2.u.a.157.2 yes 16
35.3 even 12 1050.2.bc.g.607.1 16
35.9 even 6 1050.2.bc.g.493.1 16
35.17 even 12 210.2.u.b.187.3 yes 16
35.23 odd 12 1050.2.bc.h.157.3 16
35.24 odd 6 1050.2.bc.h.943.3 16
35.27 even 4 inner 1470.2.m.e.97.3 16
105.2 even 12 630.2.bv.a.577.3 16
105.17 odd 12 630.2.bv.b.397.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
210.2.u.a.103.2 16 7.3 odd 6
210.2.u.a.157.2 yes 16 35.2 odd 12
210.2.u.b.73.3 yes 16 7.2 even 3
210.2.u.b.187.3 yes 16 35.17 even 12
630.2.bv.a.523.3 16 21.17 even 6
630.2.bv.a.577.3 16 105.2 even 12
630.2.bv.b.73.2 16 21.2 odd 6
630.2.bv.b.397.2 16 105.17 odd 12
1050.2.bc.g.493.1 16 35.9 even 6
1050.2.bc.g.607.1 16 35.3 even 12
1050.2.bc.h.157.3 16 35.23 odd 12
1050.2.bc.h.943.3 16 35.24 odd 6
1470.2.m.d.97.2 16 5.2 odd 4
1470.2.m.d.1273.2 16 7.6 odd 2
1470.2.m.e.97.3 16 35.27 even 4 inner
1470.2.m.e.1273.3 16 1.1 even 1 trivial