Properties

Label 630.2.bi.b.479.17
Level $630$
Weight $2$
Character 630.479
Analytic conductor $5.031$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [630,2,Mod(479,630)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(630, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("630.479"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 630.bi (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.03057532734\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 479.17
Character \(\chi\) \(=\) 630.479
Dual form 630.2.bi.b.509.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +(0.640430 - 1.60930i) q^{3} +1.00000 q^{4} +(2.22760 - 0.194363i) q^{5} +(0.640430 - 1.60930i) q^{6} +(-2.20085 - 1.46842i) q^{7} +1.00000 q^{8} +(-2.17970 - 2.06129i) q^{9} +(2.22760 - 0.194363i) q^{10} +(-0.123075 + 0.0710575i) q^{11} +(0.640430 - 1.60930i) q^{12} +(-0.600465 - 1.04004i) q^{13} +(-2.20085 - 1.46842i) q^{14} +(1.11384 - 3.70936i) q^{15} +1.00000 q^{16} +(-0.0902992 - 0.0521342i) q^{17} +(-2.17970 - 2.06129i) q^{18} +(5.02533 - 2.90137i) q^{19} +(2.22760 - 0.194363i) q^{20} +(-3.77262 + 2.60142i) q^{21} +(-0.123075 + 0.0710575i) q^{22} +(-2.15286 + 3.72887i) q^{23} +(0.640430 - 1.60930i) q^{24} +(4.92445 - 0.865927i) q^{25} +(-0.600465 - 1.04004i) q^{26} +(-4.71318 + 2.18768i) q^{27} +(-2.20085 - 1.46842i) q^{28} +(3.20977 + 1.85316i) q^{29} +(1.11384 - 3.70936i) q^{30} +3.59772i q^{31} +1.00000 q^{32} +(0.0355319 + 0.243572i) q^{33} +(-0.0902992 - 0.0521342i) q^{34} +(-5.18803 - 2.84329i) q^{35} +(-2.17970 - 2.06129i) q^{36} +(-5.42899 + 3.13443i) q^{37} +(5.02533 - 2.90137i) q^{38} +(-2.05829 + 0.300259i) q^{39} +(2.22760 - 0.194363i) q^{40} +(3.96636 + 6.86994i) q^{41} +(-3.77262 + 2.60142i) q^{42} +(-1.49609 - 0.863766i) q^{43} +(-0.123075 + 0.0710575i) q^{44} +(-5.25615 - 4.16808i) q^{45} +(-2.15286 + 3.72887i) q^{46} -5.04557i q^{47} +(0.640430 - 1.60930i) q^{48} +(2.68750 + 6.46354i) q^{49} +(4.92445 - 0.865927i) q^{50} +(-0.141730 + 0.111930i) q^{51} +(-0.600465 - 1.04004i) q^{52} +(1.34026 - 2.32140i) q^{53} +(-4.71318 + 2.18768i) q^{54} +(-0.260352 + 0.182209i) q^{55} +(-2.20085 - 1.46842i) q^{56} +(-1.45081 - 9.94539i) q^{57} +(3.20977 + 1.85316i) q^{58} +9.80986 q^{59} +(1.11384 - 3.70936i) q^{60} +12.3067i q^{61} +3.59772i q^{62} +(1.77036 + 7.73730i) q^{63} +1.00000 q^{64} +(-1.53974 - 2.20008i) q^{65} +(0.0355319 + 0.243572i) q^{66} -7.27754i q^{67} +(-0.0902992 - 0.0521342i) q^{68} +(4.62211 + 5.85268i) q^{69} +(-5.18803 - 2.84329i) q^{70} -12.4507i q^{71} +(-2.17970 - 2.06129i) q^{72} +(-4.01981 + 6.96252i) q^{73} +(-5.42899 + 3.13443i) q^{74} +(1.76023 - 8.47948i) q^{75} +(5.02533 - 2.90137i) q^{76} +(0.375212 + 0.0243387i) q^{77} +(-2.05829 + 0.300259i) q^{78} -8.41003 q^{79} +(2.22760 - 0.194363i) q^{80} +(0.502177 + 8.98598i) q^{81} +(3.96636 + 6.86994i) q^{82} +(-2.03412 - 1.17440i) q^{83} +(-3.77262 + 2.60142i) q^{84} +(-0.211284 - 0.0985837i) q^{85} +(-1.49609 - 0.863766i) q^{86} +(5.03793 - 3.97867i) q^{87} +(-0.123075 + 0.0710575i) q^{88} +(-0.748203 - 1.29593i) q^{89} +(-5.25615 - 4.16808i) q^{90} +(-0.205672 + 3.17070i) q^{91} +(-2.15286 + 3.72887i) q^{92} +(5.78982 + 2.30409i) q^{93} -5.04557i q^{94} +(10.6305 - 7.43985i) q^{95} +(0.640430 - 1.60930i) q^{96} +(-2.01118 + 3.48347i) q^{97} +(2.68750 + 6.46354i) q^{98} +(0.414737 + 0.0988096i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 48 q^{2} + 48 q^{4} + 3 q^{7} + 48 q^{8} + 6 q^{11} + 3 q^{14} - 4 q^{15} + 48 q^{16} + 8 q^{21} + 6 q^{22} + 3 q^{23} - 18 q^{25} + 3 q^{28} - 3 q^{29} - 4 q^{30} + 48 q^{32} - 12 q^{35} - 18 q^{39}+ \cdots - 26 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0.640430 1.60930i 0.369752 0.929130i
\(4\) 1.00000 0.500000
\(5\) 2.22760 0.194363i 0.996215 0.0869217i
\(6\) 0.640430 1.60930i 0.261454 0.656994i
\(7\) −2.20085 1.46842i −0.831844 0.555009i
\(8\) 1.00000 0.353553
\(9\) −2.17970 2.06129i −0.726566 0.687096i
\(10\) 2.22760 0.194363i 0.704430 0.0614629i
\(11\) −0.123075 + 0.0710575i −0.0371086 + 0.0214246i −0.518440 0.855114i \(-0.673487\pi\)
0.481331 + 0.876539i \(0.340154\pi\)
\(12\) 0.640430 1.60930i 0.184876 0.464565i
\(13\) −0.600465 1.04004i −0.166539 0.288454i 0.770662 0.637245i \(-0.219926\pi\)
−0.937201 + 0.348790i \(0.886593\pi\)
\(14\) −2.20085 1.46842i −0.588203 0.392451i
\(15\) 1.11384 3.70936i 0.287591 0.957753i
\(16\) 1.00000 0.250000
\(17\) −0.0902992 0.0521342i −0.0219008 0.0126444i 0.489010 0.872278i \(-0.337358\pi\)
−0.510910 + 0.859634i \(0.670692\pi\)
\(18\) −2.17970 2.06129i −0.513760 0.485850i
\(19\) 5.02533 2.90137i 1.15289 0.665621i 0.203300 0.979117i \(-0.434833\pi\)
0.949590 + 0.313495i \(0.101500\pi\)
\(20\) 2.22760 0.194363i 0.498108 0.0434608i
\(21\) −3.77262 + 2.60142i −0.823252 + 0.567675i
\(22\) −0.123075 + 0.0710575i −0.0262397 + 0.0151495i
\(23\) −2.15286 + 3.72887i −0.448903 + 0.777523i −0.998315 0.0580289i \(-0.981518\pi\)
0.549412 + 0.835552i \(0.314852\pi\)
\(24\) 0.640430 1.60930i 0.130727 0.328497i
\(25\) 4.92445 0.865927i 0.984889 0.173185i
\(26\) −0.600465 1.04004i −0.117761 0.203968i
\(27\) −4.71318 + 2.18768i −0.907052 + 0.421019i
\(28\) −2.20085 1.46842i −0.415922 0.277505i
\(29\) 3.20977 + 1.85316i 0.596040 + 0.344124i 0.767482 0.641070i \(-0.221509\pi\)
−0.171442 + 0.985194i \(0.554843\pi\)
\(30\) 1.11384 3.70936i 0.203358 0.677234i
\(31\) 3.59772i 0.646170i 0.946370 + 0.323085i \(0.104720\pi\)
−0.946370 + 0.323085i \(0.895280\pi\)
\(32\) 1.00000 0.176777
\(33\) 0.0355319 + 0.243572i 0.00618531 + 0.0424005i
\(34\) −0.0902992 0.0521342i −0.0154862 0.00894095i
\(35\) −5.18803 2.84329i −0.876938 0.480604i
\(36\) −2.17970 2.06129i −0.363283 0.343548i
\(37\) −5.42899 + 3.13443i −0.892520 + 0.515296i −0.874766 0.484546i \(-0.838985\pi\)
−0.0177539 + 0.999842i \(0.505652\pi\)
\(38\) 5.02533 2.90137i 0.815216 0.470665i
\(39\) −2.05829 + 0.300259i −0.329590 + 0.0480799i
\(40\) 2.22760 0.194363i 0.352215 0.0307314i
\(41\) 3.96636 + 6.86994i 0.619442 + 1.07290i 0.989588 + 0.143931i \(0.0459743\pi\)
−0.370146 + 0.928974i \(0.620692\pi\)
\(42\) −3.77262 + 2.60142i −0.582127 + 0.401407i
\(43\) −1.49609 0.863766i −0.228151 0.131723i 0.381568 0.924341i \(-0.375384\pi\)
−0.609719 + 0.792618i \(0.708718\pi\)
\(44\) −0.123075 + 0.0710575i −0.0185543 + 0.0107123i
\(45\) −5.25615 4.16808i −0.783540 0.621341i
\(46\) −2.15286 + 3.72887i −0.317422 + 0.549792i
\(47\) 5.04557i 0.735973i −0.929831 0.367986i \(-0.880047\pi\)
0.929831 0.367986i \(-0.119953\pi\)
\(48\) 0.640430 1.60930i 0.0924381 0.232283i
\(49\) 2.68750 + 6.46354i 0.383929 + 0.923363i
\(50\) 4.92445 0.865927i 0.696422 0.122461i
\(51\) −0.141730 + 0.111930i −0.0198462 + 0.0156734i
\(52\) −0.600465 1.04004i −0.0832696 0.144227i
\(53\) 1.34026 2.32140i 0.184099 0.318869i −0.759174 0.650888i \(-0.774397\pi\)
0.943273 + 0.332019i \(0.107730\pi\)
\(54\) −4.71318 + 2.18768i −0.641382 + 0.297706i
\(55\) −0.260352 + 0.182209i −0.0351059 + 0.0245691i
\(56\) −2.20085 1.46842i −0.294101 0.196225i
\(57\) −1.45081 9.94539i −0.192165 1.31730i
\(58\) 3.20977 + 1.85316i 0.421464 + 0.243332i
\(59\) 9.80986 1.27713 0.638567 0.769566i \(-0.279527\pi\)
0.638567 + 0.769566i \(0.279527\pi\)
\(60\) 1.11384 3.70936i 0.143796 0.478877i
\(61\) 12.3067i 1.57571i 0.615863 + 0.787853i \(0.288808\pi\)
−0.615863 + 0.787853i \(0.711192\pi\)
\(62\) 3.59772i 0.456911i
\(63\) 1.77036 + 7.73730i 0.223045 + 0.974808i
\(64\) 1.00000 0.125000
\(65\) −1.53974 2.20008i −0.190982 0.272887i
\(66\) 0.0355319 + 0.243572i 0.00437367 + 0.0299817i
\(67\) 7.27754i 0.889093i −0.895756 0.444547i \(-0.853365\pi\)
0.895756 0.444547i \(-0.146635\pi\)
\(68\) −0.0902992 0.0521342i −0.0109504 0.00632221i
\(69\) 4.62211 + 5.85268i 0.556437 + 0.704580i
\(70\) −5.18803 2.84329i −0.620089 0.339838i
\(71\) 12.4507i 1.47762i −0.673912 0.738812i \(-0.735387\pi\)
0.673912 0.738812i \(-0.264613\pi\)
\(72\) −2.17970 2.06129i −0.256880 0.242925i
\(73\) −4.01981 + 6.96252i −0.470483 + 0.814901i −0.999430 0.0337541i \(-0.989254\pi\)
0.528947 + 0.848655i \(0.322587\pi\)
\(74\) −5.42899 + 3.13443i −0.631107 + 0.364370i
\(75\) 1.76023 8.47948i 0.203253 0.979126i
\(76\) 5.02533 2.90137i 0.576445 0.332811i
\(77\) 0.375212 + 0.0243387i 0.0427594 + 0.00277365i
\(78\) −2.05829 + 0.300259i −0.233055 + 0.0339976i
\(79\) −8.41003 −0.946202 −0.473101 0.881008i \(-0.656865\pi\)
−0.473101 + 0.881008i \(0.656865\pi\)
\(80\) 2.22760 0.194363i 0.249054 0.0217304i
\(81\) 0.502177 + 8.98598i 0.0557975 + 0.998442i
\(82\) 3.96636 + 6.86994i 0.438011 + 0.758658i
\(83\) −2.03412 1.17440i −0.223274 0.128907i 0.384191 0.923253i \(-0.374480\pi\)
−0.607465 + 0.794346i \(0.707814\pi\)
\(84\) −3.77262 + 2.60142i −0.411626 + 0.283838i
\(85\) −0.211284 0.0985837i −0.0229169 0.0106929i
\(86\) −1.49609 0.863766i −0.161327 0.0931423i
\(87\) 5.03793 3.97867i 0.540123 0.426558i
\(88\) −0.123075 + 0.0710575i −0.0131199 + 0.00757476i
\(89\) −0.748203 1.29593i −0.0793094 0.137368i 0.823643 0.567109i \(-0.191938\pi\)
−0.902952 + 0.429741i \(0.858605\pi\)
\(90\) −5.25615 4.16808i −0.554046 0.439355i
\(91\) −0.205672 + 3.17070i −0.0215603 + 0.332380i
\(92\) −2.15286 + 3.72887i −0.224451 + 0.388761i
\(93\) 5.78982 + 2.30409i 0.600376 + 0.238923i
\(94\) 5.04557i 0.520411i
\(95\) 10.6305 7.43985i 1.09067 0.763313i
\(96\) 0.640430 1.60930i 0.0653636 0.164249i
\(97\) −2.01118 + 3.48347i −0.204204 + 0.353693i −0.949879 0.312618i \(-0.898794\pi\)
0.745674 + 0.666310i \(0.232127\pi\)
\(98\) 2.68750 + 6.46354i 0.271479 + 0.652916i
\(99\) 0.414737 + 0.0988096i 0.0416826 + 0.00993074i
\(100\) 4.92445 0.865927i 0.492445 0.0865927i
\(101\) 1.68050 + 2.91071i 0.167216 + 0.289626i 0.937440 0.348147i \(-0.113189\pi\)
−0.770224 + 0.637773i \(0.779856\pi\)
\(102\) −0.141730 + 0.111930i −0.0140334 + 0.0110827i
\(103\) −9.57498 + 16.5843i −0.943450 + 1.63410i −0.184626 + 0.982809i \(0.559107\pi\)
−0.758825 + 0.651295i \(0.774226\pi\)
\(104\) −0.600465 1.04004i −0.0588805 0.101984i
\(105\) −7.89828 + 6.52818i −0.770793 + 0.637085i
\(106\) 1.34026 2.32140i 0.130178 0.225474i
\(107\) −7.15043 12.3849i −0.691258 1.19729i −0.971426 0.237343i \(-0.923724\pi\)
0.280168 0.959951i \(-0.409610\pi\)
\(108\) −4.71318 + 2.18768i −0.453526 + 0.210510i
\(109\) 8.89823 15.4122i 0.852296 1.47622i −0.0268351 0.999640i \(-0.508543\pi\)
0.879131 0.476580i \(-0.158124\pi\)
\(110\) −0.260352 + 0.182209i −0.0248236 + 0.0173730i
\(111\) 1.56735 + 10.7443i 0.148766 + 1.01980i
\(112\) −2.20085 1.46842i −0.207961 0.138752i
\(113\) 8.09024 + 14.0127i 0.761066 + 1.31820i 0.942302 + 0.334765i \(0.108657\pi\)
−0.181236 + 0.983440i \(0.558010\pi\)
\(114\) −1.45081 9.94539i −0.135881 0.931471i
\(115\) −4.07097 + 8.72488i −0.379620 + 0.813599i
\(116\) 3.20977 + 1.85316i 0.298020 + 0.172062i
\(117\) −0.834982 + 3.50470i −0.0771941 + 0.324010i
\(118\) 9.80986 0.903071
\(119\) 0.122180 + 0.247337i 0.0112003 + 0.0226733i
\(120\) 1.11384 3.70936i 0.101679 0.338617i
\(121\) −5.48990 + 9.50879i −0.499082 + 0.864435i
\(122\) 12.3067i 1.11419i
\(123\) 13.5960 1.98336i 1.22591 0.178833i
\(124\) 3.59772i 0.323085i
\(125\) 10.8014 2.88607i 0.966108 0.258138i
\(126\) 1.77036 + 7.73730i 0.157717 + 0.689293i
\(127\) 11.0556i 0.981023i 0.871435 + 0.490511i \(0.163190\pi\)
−0.871435 + 0.490511i \(0.836810\pi\)
\(128\) 1.00000 0.0883883
\(129\) −2.34820 + 1.85447i −0.206747 + 0.163277i
\(130\) −1.53974 2.20008i −0.135044 0.192960i
\(131\) −4.68485 + 8.11440i −0.409318 + 0.708959i −0.994813 0.101717i \(-0.967567\pi\)
0.585496 + 0.810675i \(0.300900\pi\)
\(132\) 0.0355319 + 0.243572i 0.00309265 + 0.0212003i
\(133\) −15.3204 0.993780i −1.32845 0.0861717i
\(134\) 7.27754i 0.628684i
\(135\) −10.0739 + 5.78936i −0.867023 + 0.498268i
\(136\) −0.0902992 0.0521342i −0.00774309 0.00447047i
\(137\) 9.56078 + 16.5598i 0.816833 + 1.41480i 0.908004 + 0.418961i \(0.137605\pi\)
−0.0911716 + 0.995835i \(0.529061\pi\)
\(138\) 4.62211 + 5.85268i 0.393460 + 0.498213i
\(139\) 0.954315 0.550974i 0.0809439 0.0467330i −0.458982 0.888446i \(-0.651786\pi\)
0.539926 + 0.841713i \(0.318452\pi\)
\(140\) −5.18803 2.84329i −0.438469 0.240302i
\(141\) −8.11985 3.23134i −0.683814 0.272128i
\(142\) 12.4507i 1.04484i
\(143\) 0.147805 + 0.0853352i 0.0123601 + 0.00713608i
\(144\) −2.17970 2.06129i −0.181642 0.171774i
\(145\) 7.51029 + 3.50426i 0.623696 + 0.291013i
\(146\) −4.01981 + 6.96252i −0.332682 + 0.576222i
\(147\) 12.1229 0.185558i 0.999883 0.0153045i
\(148\) −5.42899 + 3.13443i −0.446260 + 0.257648i
\(149\) −12.1146 6.99438i −0.992468 0.573002i −0.0864572 0.996256i \(-0.527555\pi\)
−0.906011 + 0.423254i \(0.860888\pi\)
\(150\) 1.76023 8.47948i 0.143722 0.692347i
\(151\) 2.45666 + 4.25506i 0.199920 + 0.346272i 0.948502 0.316770i \(-0.102598\pi\)
−0.748582 + 0.663042i \(0.769265\pi\)
\(152\) 5.02533 2.90137i 0.407608 0.235333i
\(153\) 0.0893613 + 0.299770i 0.00722443 + 0.0242349i
\(154\) 0.375212 + 0.0243387i 0.0302355 + 0.00196126i
\(155\) 0.699263 + 8.01430i 0.0561662 + 0.643724i
\(156\) −2.05829 + 0.300259i −0.164795 + 0.0240400i
\(157\) 6.40902 0.511495 0.255748 0.966744i \(-0.417678\pi\)
0.255748 + 0.966744i \(0.417678\pi\)
\(158\) −8.41003 −0.669066
\(159\) −2.87749 3.64358i −0.228200 0.288954i
\(160\) 2.22760 0.194363i 0.176108 0.0153657i
\(161\) 10.2137 5.04539i 0.804950 0.397632i
\(162\) 0.502177 + 8.98598i 0.0394548 + 0.706005i
\(163\) 0.970831 0.560510i 0.0760414 0.0439025i −0.461497 0.887142i \(-0.652688\pi\)
0.537539 + 0.843239i \(0.319354\pi\)
\(164\) 3.96636 + 6.86994i 0.309721 + 0.536452i
\(165\) 0.126492 + 0.535677i 0.00984742 + 0.0417024i
\(166\) −2.03412 1.17440i −0.157879 0.0911512i
\(167\) 0.739056 0.426694i 0.0571899 0.0330186i −0.471132 0.882062i \(-0.656155\pi\)
0.528322 + 0.849044i \(0.322821\pi\)
\(168\) −3.77262 + 2.60142i −0.291064 + 0.200704i
\(169\) 5.77888 10.0093i 0.444529 0.769948i
\(170\) −0.211284 0.0985837i −0.0162047 0.00756102i
\(171\) −16.9343 4.03453i −1.29500 0.308528i
\(172\) −1.49609 0.863766i −0.114076 0.0658615i
\(173\) 25.1821i 1.91456i −0.289162 0.957280i \(-0.593377\pi\)
0.289162 0.957280i \(-0.406623\pi\)
\(174\) 5.03793 3.97867i 0.381925 0.301622i
\(175\) −12.1095 5.32536i −0.915394 0.402560i
\(176\) −0.123075 + 0.0710575i −0.00927714 + 0.00535616i
\(177\) 6.28253 15.7870i 0.472224 1.18662i
\(178\) −0.748203 1.29593i −0.0560802 0.0971337i
\(179\) −14.0102 8.08881i −1.04717 0.604586i −0.125317 0.992117i \(-0.539995\pi\)
−0.921857 + 0.387531i \(0.873328\pi\)
\(180\) −5.25615 4.16808i −0.391770 0.310671i
\(181\) 17.0243i 1.26540i 0.774396 + 0.632701i \(0.218054\pi\)
−0.774396 + 0.632701i \(0.781946\pi\)
\(182\) −0.205672 + 3.17070i −0.0152454 + 0.235028i
\(183\) 19.8051 + 7.88155i 1.46404 + 0.582621i
\(184\) −2.15286 + 3.72887i −0.158711 + 0.274896i
\(185\) −11.4844 + 8.03746i −0.844351 + 0.590925i
\(186\) 5.78982 + 2.30409i 0.424530 + 0.168944i
\(187\) 0.0148181 0.00108361
\(188\) 5.04557i 0.367986i
\(189\) 13.5854 + 2.10615i 0.988195 + 0.153200i
\(190\) 10.6305 7.43985i 0.771220 0.539744i
\(191\) 3.96791i 0.287108i −0.989643 0.143554i \(-0.954147\pi\)
0.989643 0.143554i \(-0.0458530\pi\)
\(192\) 0.640430 1.60930i 0.0462190 0.116141i
\(193\) 1.29203i 0.0930026i −0.998918 0.0465013i \(-0.985193\pi\)
0.998918 0.0465013i \(-0.0148072\pi\)
\(194\) −2.01118 + 3.48347i −0.144394 + 0.250098i
\(195\) −4.52669 + 1.06891i −0.324163 + 0.0765465i
\(196\) 2.68750 + 6.46354i 0.191964 + 0.461681i
\(197\) 0.983884 0.0700988 0.0350494 0.999386i \(-0.488841\pi\)
0.0350494 + 0.999386i \(0.488841\pi\)
\(198\) 0.414737 + 0.0988096i 0.0294741 + 0.00702209i
\(199\) −20.6241 11.9073i −1.46200 0.844086i −0.462897 0.886412i \(-0.653190\pi\)
−0.999104 + 0.0423259i \(0.986523\pi\)
\(200\) 4.92445 0.865927i 0.348211 0.0612303i
\(201\) −11.7118 4.66076i −0.826084 0.328744i
\(202\) 1.68050 + 2.91071i 0.118239 + 0.204797i
\(203\) −4.34302 8.79183i −0.304820 0.617065i
\(204\) −0.141730 + 0.111930i −0.00992308 + 0.00783668i
\(205\) 10.1707 + 14.5326i 0.710356 + 1.01500i
\(206\) −9.57498 + 16.5843i −0.667120 + 1.15549i
\(207\) 12.3789 3.69014i 0.860391 0.256482i
\(208\) −0.600465 1.04004i −0.0416348 0.0721136i
\(209\) −0.412329 + 0.714175i −0.0285214 + 0.0494005i
\(210\) −7.89828 + 6.52818i −0.545033 + 0.450487i
\(211\) −11.2221 19.4372i −0.772559 1.33811i −0.936156 0.351585i \(-0.885643\pi\)
0.163597 0.986527i \(-0.447690\pi\)
\(212\) 1.34026 2.32140i 0.0920495 0.159434i
\(213\) −20.0369 7.97379i −1.37291 0.546355i
\(214\) −7.15043 12.3849i −0.488793 0.846614i
\(215\) −3.50057 1.63335i −0.238737 0.111393i
\(216\) −4.71318 + 2.18768i −0.320691 + 0.148853i
\(217\) 5.28296 7.91805i 0.358630 0.537513i
\(218\) 8.89823 15.4122i 0.602664 1.04385i
\(219\) 8.63038 + 10.9281i 0.583187 + 0.738452i
\(220\) −0.260352 + 0.182209i −0.0175529 + 0.0122845i
\(221\) 0.125219i 0.00842316i
\(222\) 1.56735 + 10.7443i 0.105194 + 0.721107i
\(223\) −8.99621 + 15.5819i −0.602430 + 1.04344i 0.390021 + 0.920806i \(0.372468\pi\)
−0.992452 + 0.122634i \(0.960866\pi\)
\(224\) −2.20085 1.46842i −0.147051 0.0981127i
\(225\) −12.5187 8.26325i −0.834582 0.550883i
\(226\) 8.09024 + 14.0127i 0.538155 + 0.932111i
\(227\) 17.5341 10.1233i 1.16378 0.671909i 0.211573 0.977362i \(-0.432141\pi\)
0.952207 + 0.305453i \(0.0988080\pi\)
\(228\) −1.45081 9.94539i −0.0960826 0.658650i
\(229\) −0.650116 0.375345i −0.0429609 0.0248035i 0.478366 0.878161i \(-0.341229\pi\)
−0.521327 + 0.853357i \(0.674563\pi\)
\(230\) −4.07097 + 8.72488i −0.268432 + 0.575302i
\(231\) 0.279465 0.588243i 0.0183875 0.0387035i
\(232\) 3.20977 + 1.85316i 0.210732 + 0.121666i
\(233\) −9.57787 16.5894i −0.627467 1.08681i −0.988058 0.154081i \(-0.950758\pi\)
0.360591 0.932724i \(-0.382575\pi\)
\(234\) −0.834982 + 3.50470i −0.0545845 + 0.229109i
\(235\) −0.980671 11.2395i −0.0639720 0.733187i
\(236\) 9.80986 0.638567
\(237\) −5.38603 + 13.5343i −0.349860 + 0.879145i
\(238\) 0.122180 + 0.247337i 0.00791977 + 0.0160325i
\(239\) 1.15565 0.667217i 0.0747531 0.0431587i −0.462158 0.886798i \(-0.652925\pi\)
0.536911 + 0.843639i \(0.319591\pi\)
\(240\) 1.11384 3.70936i 0.0718978 0.239438i
\(241\) −17.1287 + 9.88925i −1.10336 + 0.637023i −0.937100 0.349060i \(-0.886501\pi\)
−0.166256 + 0.986083i \(0.553168\pi\)
\(242\) −5.48990 + 9.50879i −0.352904 + 0.611248i
\(243\) 14.7828 + 4.94674i 0.948314 + 0.317333i
\(244\) 12.3067i 0.787853i
\(245\) 7.24296 + 13.8759i 0.462736 + 0.886496i
\(246\) 13.5960 1.98336i 0.866848 0.126454i
\(247\) −6.03507 3.48435i −0.384002 0.221704i
\(248\) 3.59772i 0.228456i
\(249\) −3.19268 + 2.52139i −0.202328 + 0.159787i
\(250\) 10.8014 2.88607i 0.683142 0.182531i
\(251\) 28.8281 1.81961 0.909805 0.415035i \(-0.136231\pi\)
0.909805 + 0.415035i \(0.136231\pi\)
\(252\) 1.77036 + 7.73730i 0.111522 + 0.487404i
\(253\) 0.611908i 0.0384703i
\(254\) 11.0556i 0.693688i
\(255\) −0.293963 + 0.276883i −0.0184087 + 0.0173391i
\(256\) 1.00000 0.0625000
\(257\) −15.5450 8.97493i −0.969672 0.559841i −0.0705361 0.997509i \(-0.522471\pi\)
−0.899136 + 0.437669i \(0.855804\pi\)
\(258\) −2.34820 + 1.85447i −0.146192 + 0.115454i
\(259\) 16.5510 + 1.07361i 1.02843 + 0.0667106i
\(260\) −1.53974 2.20008i −0.0954909 0.136443i
\(261\) −3.17644 10.6556i −0.196616 0.659566i
\(262\) −4.68485 + 8.11440i −0.289431 + 0.501310i
\(263\) −7.94184 13.7557i −0.489715 0.848211i 0.510215 0.860047i \(-0.329566\pi\)
−0.999930 + 0.0118356i \(0.996233\pi\)
\(264\) 0.0355319 + 0.243572i 0.00218684 + 0.0149908i
\(265\) 2.53438 5.43166i 0.155686 0.333664i
\(266\) −15.3204 0.993780i −0.939356 0.0609326i
\(267\) −2.56471 + 0.374134i −0.156957 + 0.0228966i
\(268\) 7.27754i 0.444547i
\(269\) 5.25345 9.09924i 0.320308 0.554790i −0.660243 0.751052i \(-0.729547\pi\)
0.980552 + 0.196261i \(0.0628801\pi\)
\(270\) −10.0739 + 5.78936i −0.613078 + 0.352329i
\(271\) 10.9732 6.33540i 0.666577 0.384848i −0.128202 0.991748i \(-0.540920\pi\)
0.794778 + 0.606900i \(0.207587\pi\)
\(272\) −0.0902992 0.0521342i −0.00547519 0.00316110i
\(273\) 4.97089 + 2.36160i 0.300852 + 0.142930i
\(274\) 9.56078 + 16.5598i 0.577588 + 1.00041i
\(275\) −0.544547 + 0.456493i −0.0328374 + 0.0275276i
\(276\) 4.62211 + 5.85268i 0.278219 + 0.352290i
\(277\) −12.8968 + 7.44600i −0.774896 + 0.447387i −0.834619 0.550828i \(-0.814312\pi\)
0.0597221 + 0.998215i \(0.480979\pi\)
\(278\) 0.954315 0.550974i 0.0572360 0.0330452i
\(279\) 7.41594 7.84195i 0.443981 0.469485i
\(280\) −5.18803 2.84329i −0.310044 0.169919i
\(281\) 5.92114 + 3.41857i 0.353226 + 0.203935i 0.666105 0.745858i \(-0.267960\pi\)
−0.312879 + 0.949793i \(0.601294\pi\)
\(282\) −8.11985 3.23134i −0.483530 0.192423i
\(283\) −11.6293 −0.691292 −0.345646 0.938365i \(-0.612340\pi\)
−0.345646 + 0.938365i \(0.612340\pi\)
\(284\) 12.4507i 0.738812i
\(285\) −5.16486 21.8724i −0.305940 1.29561i
\(286\) 0.147805 + 0.0853352i 0.00873988 + 0.00504597i
\(287\) 1.35856 20.9440i 0.0801933 1.23629i
\(288\) −2.17970 2.06129i −0.128440 0.121463i
\(289\) −8.49456 14.7130i −0.499680 0.865472i
\(290\) 7.51029 + 3.50426i 0.441020 + 0.205777i
\(291\) 4.31793 + 5.46751i 0.253121 + 0.320511i
\(292\) −4.01981 + 6.96252i −0.235242 + 0.407450i
\(293\) −8.60234 + 4.96657i −0.502554 + 0.290150i −0.729768 0.683695i \(-0.760372\pi\)
0.227213 + 0.973845i \(0.427038\pi\)
\(294\) 12.1229 0.185558i 0.707024 0.0108219i
\(295\) 21.8525 1.90667i 1.27230 0.111011i
\(296\) −5.42899 + 3.13443i −0.315553 + 0.182185i
\(297\) 0.424624 0.604156i 0.0246392 0.0350567i
\(298\) −12.1146 6.99438i −0.701781 0.405174i
\(299\) 5.17088 0.299040
\(300\) 1.76023 8.47948i 0.101627 0.489563i
\(301\) 2.02430 + 4.09790i 0.116679 + 0.236199i
\(302\) 2.45666 + 4.25506i 0.141365 + 0.244851i
\(303\) 5.76045 0.840323i 0.330929 0.0482753i
\(304\) 5.02533 2.90137i 0.288222 0.166405i
\(305\) 2.39196 + 27.4144i 0.136963 + 1.56974i
\(306\) 0.0893613 + 0.299770i 0.00510844 + 0.0171367i
\(307\) 25.3226 1.44524 0.722618 0.691247i \(-0.242939\pi\)
0.722618 + 0.691247i \(0.242939\pi\)
\(308\) 0.375212 + 0.0243387i 0.0213797 + 0.00138682i
\(309\) 20.5571 + 26.0301i 1.16945 + 1.48080i
\(310\) 0.699263 + 8.01430i 0.0397155 + 0.455182i
\(311\) 7.32275 0.415235 0.207618 0.978210i \(-0.433429\pi\)
0.207618 + 0.978210i \(0.433429\pi\)
\(312\) −2.05829 + 0.300259i −0.116528 + 0.0169988i
\(313\) −8.48704 −0.479716 −0.239858 0.970808i \(-0.577101\pi\)
−0.239858 + 0.970808i \(0.577101\pi\)
\(314\) 6.40902 0.361682
\(315\) 5.44752 + 16.8916i 0.306933 + 0.951731i
\(316\) −8.41003 −0.473101
\(317\) 2.24351 0.126008 0.0630039 0.998013i \(-0.479932\pi\)
0.0630039 + 0.998013i \(0.479932\pi\)
\(318\) −2.87749 3.64358i −0.161362 0.204322i
\(319\) −0.526725 −0.0294909
\(320\) 2.22760 0.194363i 0.124527 0.0108652i
\(321\) −24.5104 + 3.57553i −1.36804 + 0.199566i
\(322\) 10.2137 5.04539i 0.569185 0.281168i
\(323\) −0.605044 −0.0336655
\(324\) 0.502177 + 8.98598i 0.0278987 + 0.499221i
\(325\) −3.85756 4.60165i −0.213979 0.255253i
\(326\) 0.970831 0.560510i 0.0537694 0.0310438i
\(327\) −19.1042 24.1904i −1.05646 1.33773i
\(328\) 3.96636 + 6.86994i 0.219006 + 0.379329i
\(329\) −7.40901 + 11.1046i −0.408472 + 0.612214i
\(330\) 0.126492 + 0.535677i 0.00696318 + 0.0294880i
\(331\) −5.04537 −0.277319 −0.138659 0.990340i \(-0.544279\pi\)
−0.138659 + 0.990340i \(0.544279\pi\)
\(332\) −2.03412 1.17440i −0.111637 0.0644536i
\(333\) 18.2945 + 4.35860i 1.00253 + 0.238850i
\(334\) 0.739056 0.426694i 0.0404394 0.0233477i
\(335\) −1.41448 16.2115i −0.0772815 0.885728i
\(336\) −3.77262 + 2.60142i −0.205813 + 0.141919i
\(337\) 30.0990 17.3777i 1.63960 0.946623i 0.658629 0.752468i \(-0.271137\pi\)
0.980971 0.194155i \(-0.0621965\pi\)
\(338\) 5.77888 10.0093i 0.314330 0.544435i
\(339\) 27.7319 4.04547i 1.50619 0.219720i
\(340\) −0.211284 0.0985837i −0.0114585 0.00534645i
\(341\) −0.255645 0.442790i −0.0138440 0.0239784i
\(342\) −16.9343 4.03453i −0.915701 0.218162i
\(343\) 3.57637 18.1717i 0.193106 0.981178i
\(344\) −1.49609 0.863766i −0.0806636 0.0465711i
\(345\) 11.4338 + 12.1391i 0.615574 + 0.653547i
\(346\) 25.1821i 1.35380i
\(347\) −6.90143 −0.370488 −0.185244 0.982693i \(-0.559308\pi\)
−0.185244 + 0.982693i \(0.559308\pi\)
\(348\) 5.03793 3.97867i 0.270062 0.213279i
\(349\) −0.226488 0.130763i −0.0121237 0.00699959i 0.493926 0.869504i \(-0.335561\pi\)
−0.506050 + 0.862504i \(0.668895\pi\)
\(350\) −12.1095 5.32536i −0.647281 0.284653i
\(351\) 5.10537 + 3.58825i 0.272504 + 0.191527i
\(352\) −0.123075 + 0.0710575i −0.00655993 + 0.00378738i
\(353\) 24.7213 14.2729i 1.31578 0.759668i 0.332737 0.943020i \(-0.392028\pi\)
0.983047 + 0.183351i \(0.0586946\pi\)
\(354\) 6.28253 15.7870i 0.333913 0.839070i
\(355\) −2.41995 27.7352i −0.128438 1.47203i
\(356\) −0.748203 1.29593i −0.0396547 0.0686839i
\(357\) 0.476287 0.0382231i 0.0252078 0.00202298i
\(358\) −14.0102 8.08881i −0.740464 0.427507i
\(359\) −10.5441 + 6.08767i −0.556499 + 0.321295i −0.751739 0.659461i \(-0.770785\pi\)
0.195240 + 0.980755i \(0.437451\pi\)
\(360\) −5.25615 4.16808i −0.277023 0.219677i
\(361\) 7.33595 12.7062i 0.386103 0.668750i
\(362\) 17.0243i 0.894775i
\(363\) 11.7866 + 14.9246i 0.618636 + 0.783339i
\(364\) −0.205672 + 3.17070i −0.0107801 + 0.166190i
\(365\) −7.60130 + 16.2910i −0.397870 + 0.852712i
\(366\) 19.8051 + 7.88155i 1.03523 + 0.411975i
\(367\) 11.1198 + 19.2601i 0.580451 + 1.00537i 0.995426 + 0.0955375i \(0.0304570\pi\)
−0.414975 + 0.909833i \(0.636210\pi\)
\(368\) −2.15286 + 3.72887i −0.112226 + 0.194381i
\(369\) 5.51546 23.1502i 0.287123 1.20515i
\(370\) −11.4844 + 8.03746i −0.597046 + 0.417847i
\(371\) −6.35850 + 3.14100i −0.330117 + 0.163072i
\(372\) 5.78982 + 2.30409i 0.300188 + 0.119461i
\(373\) −3.32049 1.91709i −0.171929 0.0992631i 0.411566 0.911380i \(-0.364982\pi\)
−0.583495 + 0.812117i \(0.698315\pi\)
\(374\) 0.0148181 0.000766227
\(375\) 2.27299 19.2311i 0.117377 0.993087i
\(376\) 5.04557i 0.260206i
\(377\) 4.45104i 0.229240i
\(378\) 13.5854 + 2.10615i 0.698760 + 0.108329i
\(379\) −29.0957 −1.49454 −0.747272 0.664519i \(-0.768637\pi\)
−0.747272 + 0.664519i \(0.768637\pi\)
\(380\) 10.6305 7.43985i 0.545335 0.381656i
\(381\) 17.7917 + 7.08031i 0.911498 + 0.362735i
\(382\) 3.96791i 0.203016i
\(383\) −12.2543 7.07501i −0.626164 0.361516i 0.153101 0.988211i \(-0.451074\pi\)
−0.779265 + 0.626695i \(0.784407\pi\)
\(384\) 0.640430 1.60930i 0.0326818 0.0821243i
\(385\) 0.840556 0.0187104i 0.0428387 0.000953571i
\(386\) 1.29203i 0.0657628i
\(387\) 1.48055 + 4.96662i 0.0752605 + 0.252467i
\(388\) −2.01118 + 3.48347i −0.102102 + 0.176846i
\(389\) −29.9470 + 17.2899i −1.51837 + 0.876633i −0.518606 + 0.855013i \(0.673549\pi\)
−0.999766 + 0.0216198i \(0.993118\pi\)
\(390\) −4.52669 + 1.06891i −0.229218 + 0.0541265i
\(391\) 0.388803 0.224476i 0.0196626 0.0113522i
\(392\) 2.68750 + 6.46354i 0.135739 + 0.326458i
\(393\) 10.0582 + 12.7360i 0.507369 + 0.642449i
\(394\) 0.983884 0.0495674
\(395\) −18.7342 + 1.63460i −0.942621 + 0.0822455i
\(396\) 0.414737 + 0.0988096i 0.0208413 + 0.00496537i
\(397\) −14.6731 25.4146i −0.736422 1.27552i −0.954096 0.299500i \(-0.903180\pi\)
0.217674 0.976022i \(-0.430153\pi\)
\(398\) −20.6241 11.9073i −1.03379 0.596859i
\(399\) −11.4110 + 24.0187i −0.571262 + 1.20244i
\(400\) 4.92445 0.865927i 0.246222 0.0432963i
\(401\) −22.8472 13.1908i −1.14093 0.658719i −0.194273 0.980948i \(-0.562235\pi\)
−0.946662 + 0.322229i \(0.895568\pi\)
\(402\) −11.7118 4.66076i −0.584129 0.232457i
\(403\) 3.74176 2.16031i 0.186390 0.107613i
\(404\) 1.68050 + 2.91071i 0.0836079 + 0.144813i
\(405\) 2.86519 + 19.9196i 0.142373 + 0.989813i
\(406\) −4.34302 8.79183i −0.215541 0.436331i
\(407\) 0.445449 0.771540i 0.0220801 0.0382438i
\(408\) −0.141730 + 0.111930i −0.00701668 + 0.00554137i
\(409\) 12.8464i 0.635215i −0.948222 0.317607i \(-0.897121\pi\)
0.948222 0.317607i \(-0.102879\pi\)
\(410\) 10.1707 + 14.5326i 0.502297 + 0.717714i
\(411\) 32.7726 4.78081i 1.61656 0.235820i
\(412\) −9.57498 + 16.5843i −0.471725 + 0.817052i
\(413\) −21.5901 14.4050i −1.06238 0.708822i
\(414\) 12.3789 3.69014i 0.608388 0.181360i
\(415\) −4.75948 2.22074i −0.233634 0.109012i
\(416\) −0.600465 1.04004i −0.0294402 0.0509920i
\(417\) −0.275511 1.88864i −0.0134918 0.0924871i
\(418\) −0.412329 + 0.714175i −0.0201677 + 0.0349314i
\(419\) −5.13440 8.89304i −0.250832 0.434453i 0.712923 0.701242i \(-0.247371\pi\)
−0.963755 + 0.266789i \(0.914037\pi\)
\(420\) −7.89828 + 6.52818i −0.385397 + 0.318543i
\(421\) 3.18306 5.51323i 0.155133 0.268698i −0.777974 0.628296i \(-0.783753\pi\)
0.933107 + 0.359598i \(0.117086\pi\)
\(422\) −11.2221 19.4372i −0.546282 0.946188i
\(423\) −10.4004 + 10.9978i −0.505684 + 0.534733i
\(424\) 1.34026 2.32140i 0.0650888 0.112737i
\(425\) −0.489818 0.178540i −0.0237597 0.00866045i
\(426\) −20.0369 7.97379i −0.970791 0.386331i
\(427\) 18.0713 27.0851i 0.874532 1.31074i
\(428\) −7.15043 12.3849i −0.345629 0.598647i
\(429\) 0.231989 0.183211i 0.0112005 0.00884552i
\(430\) −3.50057 1.63335i −0.168813 0.0787669i
\(431\) −3.37653 1.94944i −0.162642 0.0939012i 0.416470 0.909149i \(-0.363267\pi\)
−0.579112 + 0.815248i \(0.696600\pi\)
\(432\) −4.71318 + 2.18768i −0.226763 + 0.105255i
\(433\) 20.9340 1.00603 0.503013 0.864279i \(-0.332225\pi\)
0.503013 + 0.864279i \(0.332225\pi\)
\(434\) 5.28296 7.91805i 0.253590 0.380079i
\(435\) 10.4492 9.84209i 0.501002 0.471892i
\(436\) 8.89823 15.4122i 0.426148 0.738110i
\(437\) 24.9851i 1.19520i
\(438\) 8.63038 + 10.9281i 0.412375 + 0.522164i
\(439\) 16.4017i 0.782811i −0.920218 0.391406i \(-0.871989\pi\)
0.920218 0.391406i \(-0.128011\pi\)
\(440\) −0.260352 + 0.182209i −0.0124118 + 0.00868649i
\(441\) 7.46527 19.6283i 0.355489 0.934680i
\(442\) 0.125219i 0.00595607i
\(443\) 26.3852 1.25360 0.626800 0.779180i \(-0.284364\pi\)
0.626800 + 0.779180i \(0.284364\pi\)
\(444\) 1.56735 + 10.7443i 0.0743832 + 0.509900i
\(445\) −1.91858 2.74139i −0.0909494 0.129954i
\(446\) −8.99621 + 15.5819i −0.425983 + 0.737824i
\(447\) −19.0146 + 15.0167i −0.899361 + 0.710264i
\(448\) −2.20085 1.46842i −0.103981 0.0693762i
\(449\) 32.5310i 1.53523i 0.640911 + 0.767615i \(0.278557\pi\)
−0.640911 + 0.767615i \(0.721443\pi\)
\(450\) −12.5187 8.26325i −0.590139 0.389533i
\(451\) −0.976322 0.563680i −0.0459732 0.0265426i
\(452\) 8.09024 + 14.0127i 0.380533 + 0.659102i
\(453\) 8.42100 1.22844i 0.395653 0.0577171i
\(454\) 17.5341 10.1233i 0.822917 0.475111i
\(455\) 0.158111 + 7.10304i 0.00741235 + 0.332996i
\(456\) −1.45081 9.94539i −0.0679406 0.465736i
\(457\) 35.0085i 1.63763i −0.574058 0.818814i \(-0.694632\pi\)
0.574058 0.818814i \(-0.305368\pi\)
\(458\) −0.650116 0.375345i −0.0303779 0.0175387i
\(459\) 0.539649 + 0.0481722i 0.0251887 + 0.00224849i
\(460\) −4.07097 + 8.72488i −0.189810 + 0.406800i
\(461\) −5.08610 + 8.80939i −0.236883 + 0.410294i −0.959818 0.280622i \(-0.909459\pi\)
0.722935 + 0.690916i \(0.242793\pi\)
\(462\) 0.279465 0.588243i 0.0130019 0.0273675i
\(463\) −27.5356 + 15.8977i −1.27969 + 0.738828i −0.976791 0.214195i \(-0.931287\pi\)
−0.302897 + 0.953023i \(0.597954\pi\)
\(464\) 3.20977 + 1.85316i 0.149010 + 0.0860310i
\(465\) 13.3453 + 4.00727i 0.618871 + 0.185833i
\(466\) −9.57787 16.5894i −0.443686 0.768487i
\(467\) −19.5141 + 11.2665i −0.903006 + 0.521351i −0.878174 0.478341i \(-0.841238\pi\)
−0.0248321 + 0.999692i \(0.507905\pi\)
\(468\) −0.834982 + 3.50470i −0.0385970 + 0.162005i
\(469\) −10.6865 + 16.0168i −0.493455 + 0.739587i
\(470\) −0.980671 11.2395i −0.0452350 0.518441i
\(471\) 4.10453 10.3140i 0.189127 0.475246i
\(472\) 9.80986 0.451535
\(473\) 0.245508 0.0112885
\(474\) −5.38603 + 13.5343i −0.247389 + 0.621650i
\(475\) 22.2346 18.6392i 1.02019 0.855227i
\(476\) 0.122180 + 0.247337i 0.00560013 + 0.0113367i
\(477\) −7.70644 + 2.29729i −0.352854 + 0.105186i
\(478\) 1.15565 0.667217i 0.0528584 0.0305178i
\(479\) 4.81018 + 8.33147i 0.219783 + 0.380675i 0.954741 0.297437i \(-0.0961318\pi\)
−0.734959 + 0.678112i \(0.762799\pi\)
\(480\) 1.11384 3.70936i 0.0508394 0.169308i
\(481\) 6.51984 + 3.76423i 0.297279 + 0.171634i
\(482\) −17.1287 + 9.88925i −0.780191 + 0.450443i
\(483\) −1.57841 19.6681i −0.0718201 0.894929i
\(484\) −5.48990 + 9.50879i −0.249541 + 0.432218i
\(485\) −3.80306 + 8.15069i −0.172688 + 0.370104i
\(486\) 14.7828 + 4.94674i 0.670559 + 0.224388i
\(487\) −8.50444 4.91004i −0.385373 0.222495i 0.294781 0.955565i \(-0.404753\pi\)
−0.680153 + 0.733070i \(0.738087\pi\)
\(488\) 12.3067i 0.557096i
\(489\) −0.280280 1.92133i −0.0126747 0.0868854i
\(490\) 7.24296 + 13.8759i 0.327204 + 0.626847i
\(491\) 24.7333 14.2798i 1.11620 0.644437i 0.175770 0.984431i \(-0.443758\pi\)
0.940428 + 0.339994i \(0.110425\pi\)
\(492\) 13.5960 1.98336i 0.612954 0.0894166i
\(493\) −0.193227 0.334678i −0.00870249 0.0150732i
\(494\) −6.03507 3.48435i −0.271531 0.156768i
\(495\) 0.943075 + 0.139499i 0.0423881 + 0.00627002i
\(496\) 3.59772i 0.161542i
\(497\) −18.2828 + 27.4021i −0.820095 + 1.22915i
\(498\) −3.19268 + 2.52139i −0.143067 + 0.112986i
\(499\) −10.3032 + 17.8456i −0.461232 + 0.798878i −0.999023 0.0442006i \(-0.985926\pi\)
0.537790 + 0.843079i \(0.319259\pi\)
\(500\) 10.8014 2.88607i 0.483054 0.129069i
\(501\) −0.213366 1.46263i −0.00953248 0.0653456i
\(502\) 28.8281 1.28666
\(503\) 5.19287i 0.231539i −0.993276 0.115769i \(-0.963067\pi\)
0.993276 0.115769i \(-0.0369333\pi\)
\(504\) 1.77036 + 7.73730i 0.0788583 + 0.344647i
\(505\) 4.30922 + 6.15728i 0.191758 + 0.273995i
\(506\) 0.611908i 0.0272026i
\(507\) −12.4070 15.7102i −0.551016 0.697716i
\(508\) 11.0556i 0.490511i
\(509\) −17.7208 + 30.6933i −0.785461 + 1.36046i 0.143263 + 0.989685i \(0.454241\pi\)
−0.928724 + 0.370773i \(0.879093\pi\)
\(510\) −0.293963 + 0.276883i −0.0130169 + 0.0122606i
\(511\) 19.0709 9.42071i 0.843646 0.416748i
\(512\) 1.00000 0.0441942
\(513\) −17.3380 + 24.6685i −0.765491 + 1.08914i
\(514\) −15.5450 8.97493i −0.685662 0.395867i
\(515\) −18.1059 + 38.8044i −0.797840 + 1.70993i
\(516\) −2.34820 + 1.85447i −0.103374 + 0.0816386i
\(517\) 0.358526 + 0.620985i 0.0157680 + 0.0273109i
\(518\) 16.5510 + 1.07361i 0.727211 + 0.0471715i
\(519\) −40.5256 16.1274i −1.77888 0.707913i
\(520\) −1.53974 2.20008i −0.0675222 0.0964800i
\(521\) −5.23647 + 9.06983i −0.229414 + 0.397356i −0.957635 0.287986i \(-0.907014\pi\)
0.728221 + 0.685343i \(0.240348\pi\)
\(522\) −3.17644 10.6556i −0.139029 0.466383i
\(523\) 16.1085 + 27.9007i 0.704375 + 1.22001i 0.966916 + 0.255093i \(0.0821062\pi\)
−0.262541 + 0.964921i \(0.584560\pi\)
\(524\) −4.68485 + 8.11440i −0.204659 + 0.354479i
\(525\) −16.3254 + 16.0773i −0.712499 + 0.701673i
\(526\) −7.94184 13.7557i −0.346281 0.599776i
\(527\) 0.187564 0.324871i 0.00817044 0.0141516i
\(528\) 0.0355319 + 0.243572i 0.00154633 + 0.0106001i
\(529\) 2.23036 + 3.86310i 0.0969723 + 0.167961i
\(530\) 2.53438 5.43166i 0.110086 0.235936i
\(531\) −21.3825 20.2210i −0.927923 0.877515i
\(532\) −15.3204 0.993780i −0.664225 0.0430858i
\(533\) 4.76333 8.25032i 0.206323 0.357361i
\(534\) −2.56471 + 0.374134i −0.110986 + 0.0161904i
\(535\) −18.3355 26.1989i −0.792712 1.13268i
\(536\) 7.27754i 0.314342i
\(537\) −21.9899 + 17.3664i −0.948934 + 0.749414i
\(538\) 5.25345 9.09924i 0.226492 0.392296i
\(539\) −0.790048 0.604534i −0.0340298 0.0260391i
\(540\) −10.0739 + 5.78936i −0.433511 + 0.249134i
\(541\) 12.4544 + 21.5717i 0.535457 + 0.927439i 0.999141 + 0.0414381i \(0.0131939\pi\)
−0.463684 + 0.886001i \(0.653473\pi\)
\(542\) 10.9732 6.33540i 0.471341 0.272129i
\(543\) 27.3972 + 10.9028i 1.17572 + 0.467886i
\(544\) −0.0902992 0.0521342i −0.00387154 0.00223524i
\(545\) 16.8262 36.0617i 0.720755 1.54472i
\(546\) 4.97089 + 2.36160i 0.212735 + 0.101067i
\(547\) 23.6806 + 13.6720i 1.01251 + 0.584574i 0.911926 0.410355i \(-0.134595\pi\)
0.100585 + 0.994928i \(0.467928\pi\)
\(548\) 9.56078 + 16.5598i 0.408416 + 0.707398i
\(549\) 25.3676 26.8248i 1.08266 1.14486i
\(550\) −0.544547 + 0.456493i −0.0232195 + 0.0194649i
\(551\) 21.5069 0.916224
\(552\) 4.62211 + 5.85268i 0.196730 + 0.249107i
\(553\) 18.5092 + 12.3494i 0.787093 + 0.525151i
\(554\) −12.8968 + 7.44600i −0.547935 + 0.316350i
\(555\) 5.57972 + 23.6293i 0.236846 + 1.00301i
\(556\) 0.954315 0.550974i 0.0404720 0.0233665i
\(557\) −8.95463 + 15.5099i −0.379420 + 0.657175i −0.990978 0.134025i \(-0.957210\pi\)
0.611558 + 0.791200i \(0.290543\pi\)
\(558\) 7.41594 7.84195i 0.313942 0.331976i
\(559\) 2.07465i 0.0877482i
\(560\) −5.18803 2.84329i −0.219234 0.120151i
\(561\) 0.00948997 0.0238468i 0.000400667 0.00100681i
\(562\) 5.92114 + 3.41857i 0.249768 + 0.144204i
\(563\) 30.4638i 1.28390i −0.766748 0.641948i \(-0.778126\pi\)
0.766748 0.641948i \(-0.221874\pi\)
\(564\) −8.11985 3.23134i −0.341907 0.136064i
\(565\) 20.7454 + 29.6423i 0.872766 + 1.24706i
\(566\) −11.6293 −0.488817
\(567\) 12.0899 20.5142i 0.507730 0.861516i
\(568\) 12.4507i 0.522419i
\(569\) 39.6736i 1.66320i −0.555371 0.831602i \(-0.687424\pi\)
0.555371 0.831602i \(-0.312576\pi\)
\(570\) −5.16486 21.8724i −0.216332 0.916135i
\(571\) 3.24837 0.135940 0.0679699 0.997687i \(-0.478348\pi\)
0.0679699 + 0.997687i \(0.478348\pi\)
\(572\) 0.147805 + 0.0853352i 0.00618003 + 0.00356804i
\(573\) −6.38556 2.54117i −0.266760 0.106159i
\(574\) 1.35856 20.9440i 0.0567052 0.874186i
\(575\) −7.37273 + 20.2268i −0.307464 + 0.843517i
\(576\) −2.17970 2.06129i −0.0908208 0.0858870i
\(577\) 0.0635247 0.110028i 0.00264457 0.00458053i −0.864700 0.502289i \(-0.832492\pi\)
0.867345 + 0.497708i \(0.165825\pi\)
\(578\) −8.49456 14.7130i −0.353327 0.611981i
\(579\) −2.07927 0.827457i −0.0864116 0.0343879i
\(580\) 7.51029 + 3.50426i 0.311848 + 0.145506i
\(581\) 2.75229 + 5.57162i 0.114184 + 0.231150i
\(582\) 4.31793 + 5.46751i 0.178984 + 0.226636i
\(583\) 0.380942i 0.0157770i
\(584\) −4.01981 + 6.96252i −0.166341 + 0.288111i
\(585\) −1.17883 + 7.96938i −0.0487385 + 0.329493i
\(586\) −8.60234 + 4.96657i −0.355360 + 0.205167i
\(587\) −2.49693 1.44160i −0.103059 0.0595014i 0.447584 0.894242i \(-0.352284\pi\)
−0.550644 + 0.834740i \(0.685618\pi\)
\(588\) 12.1229 0.185558i 0.499941 0.00765227i
\(589\) 10.4383 + 18.0797i 0.430104 + 0.744962i
\(590\) 21.8525 1.90667i 0.899653 0.0784964i
\(591\) 0.630109 1.58337i 0.0259192 0.0651309i
\(592\) −5.42899 + 3.13443i −0.223130 + 0.128824i
\(593\) 40.6636 23.4772i 1.66986 0.964092i 0.702143 0.712036i \(-0.252227\pi\)
0.967713 0.252055i \(-0.0811065\pi\)
\(594\) 0.424624 0.604156i 0.0174225 0.0247888i
\(595\) 0.320242 + 0.527221i 0.0131287 + 0.0216139i
\(596\) −12.1146 6.99438i −0.496234 0.286501i
\(597\) −32.3707 + 25.5645i −1.32484 + 1.04629i
\(598\) 5.17088 0.211453
\(599\) 5.67416i 0.231840i −0.993259 0.115920i \(-0.963018\pi\)
0.993259 0.115920i \(-0.0369816\pi\)
\(600\) 1.76023 8.47948i 0.0718609 0.346173i
\(601\) −28.9131 16.6930i −1.17939 0.680921i −0.223516 0.974700i \(-0.571753\pi\)
−0.955873 + 0.293780i \(0.905087\pi\)
\(602\) 2.02430 + 4.09790i 0.0825042 + 0.167018i
\(603\) −15.0011 + 15.8629i −0.610893 + 0.645985i
\(604\) 2.45666 + 4.25506i 0.0999602 + 0.173136i
\(605\) −10.3812 + 22.2489i −0.422055 + 0.904545i
\(606\) 5.76045 0.840323i 0.234002 0.0341358i
\(607\) −22.3763 + 38.7570i −0.908228 + 1.57310i −0.0917027 + 0.995786i \(0.529231\pi\)
−0.816525 + 0.577310i \(0.804102\pi\)
\(608\) 5.02533 2.90137i 0.203804 0.117666i
\(609\) −16.9301 + 1.35868i −0.686042 + 0.0550565i
\(610\) 2.39196 + 27.4144i 0.0968475 + 1.10998i
\(611\) −5.24758 + 3.02969i −0.212294 + 0.122568i
\(612\) 0.0893613 + 0.299770i 0.00361222 + 0.0121175i
\(613\) −27.0024 15.5899i −1.09062 0.629668i −0.156877 0.987618i \(-0.550143\pi\)
−0.933741 + 0.357950i \(0.883476\pi\)
\(614\) 25.3226 1.02194
\(615\) 29.9010 7.06068i 1.20572 0.284714i
\(616\) 0.375212 + 0.0243387i 0.0151177 + 0.000980632i
\(617\) 0.359684 + 0.622991i 0.0144803 + 0.0250807i 0.873175 0.487407i \(-0.162057\pi\)
−0.858694 + 0.512488i \(0.828724\pi\)
\(618\) 20.5571 + 26.0301i 0.826928 + 1.04709i
\(619\) 31.7674 18.3409i 1.27684 0.737184i 0.300574 0.953758i \(-0.402822\pi\)
0.976266 + 0.216574i \(0.0694884\pi\)
\(620\) 0.699263 + 8.01430i 0.0280831 + 0.321862i
\(621\) 1.98925 22.2846i 0.0798260 0.894250i
\(622\) 7.32275 0.293616
\(623\) −0.256275 + 3.95081i −0.0102674 + 0.158286i
\(624\) −2.05829 + 0.300259i −0.0823975 + 0.0120200i
\(625\) 23.5003 8.52842i 0.940014 0.341137i
\(626\) −8.48704 −0.339210
\(627\) 0.885254 + 1.12094i 0.0353536 + 0.0447660i
\(628\) 6.40902 0.255748
\(629\) 0.653644 0.0260625
\(630\) 5.44752 + 16.8916i 0.217034 + 0.672976i
\(631\) −15.5643 −0.619603 −0.309802 0.950801i \(-0.600263\pi\)
−0.309802 + 0.950801i \(0.600263\pi\)
\(632\) −8.41003 −0.334533
\(633\) −38.4673 + 5.61153i −1.52894 + 0.223038i
\(634\) 2.24351 0.0891010
\(635\) 2.14879 + 24.6274i 0.0852721 + 0.977310i
\(636\) −2.87749 3.64358i −0.114100 0.144477i
\(637\) 5.10856 6.67623i 0.202409 0.264522i
\(638\) −0.526725 −0.0208532
\(639\) −25.6644 + 27.1387i −1.01527 + 1.07359i
\(640\) 2.22760 0.194363i 0.0880538 0.00768286i
\(641\) −16.3208 + 9.42280i −0.644632 + 0.372178i −0.786396 0.617722i \(-0.788056\pi\)
0.141765 + 0.989900i \(0.454722\pi\)
\(642\) −24.5104 + 3.57553i −0.967348 + 0.141115i
\(643\) −5.39558 9.34542i −0.212781 0.368548i 0.739803 0.672824i \(-0.234919\pi\)
−0.952584 + 0.304276i \(0.901585\pi\)
\(644\) 10.2137 5.04539i 0.402475 0.198816i
\(645\) −4.87042 + 4.58743i −0.191772 + 0.180630i
\(646\) −0.605044 −0.0238051
\(647\) 43.7372 + 25.2517i 1.71949 + 0.992747i 0.919856 + 0.392256i \(0.128305\pi\)
0.799632 + 0.600491i \(0.205028\pi\)
\(648\) 0.502177 + 8.98598i 0.0197274 + 0.353003i
\(649\) −1.20735 + 0.697064i −0.0473927 + 0.0273622i
\(650\) −3.85756 4.60165i −0.151306 0.180491i
\(651\) −9.35917 13.5728i −0.366815 0.531961i
\(652\) 0.970831 0.560510i 0.0380207 0.0219513i
\(653\) −18.0024 + 31.1811i −0.704490 + 1.22021i 0.262385 + 0.964963i \(0.415491\pi\)
−0.966875 + 0.255249i \(0.917842\pi\)
\(654\) −19.1042 24.1904i −0.747032 0.945918i
\(655\) −8.85886 + 18.9862i −0.346144 + 0.741854i
\(656\) 3.96636 + 6.86994i 0.154860 + 0.268226i
\(657\) 23.1137 6.89020i 0.901753 0.268812i
\(658\) −7.40901 + 11.1046i −0.288833 + 0.432901i
\(659\) 4.91626 + 2.83840i 0.191510 + 0.110568i 0.592689 0.805431i \(-0.298066\pi\)
−0.401179 + 0.916000i \(0.631400\pi\)
\(660\) 0.126492 + 0.535677i 0.00492371 + 0.0208512i
\(661\) 21.4910i 0.835902i 0.908470 + 0.417951i \(0.137252\pi\)
−0.908470 + 0.417951i \(0.862748\pi\)
\(662\) −5.04537 −0.196094
\(663\) 0.201515 + 0.0801941i 0.00782621 + 0.00311448i
\(664\) −2.03412 1.17440i −0.0789393 0.0455756i
\(665\) −34.3210 + 0.763972i −1.33091 + 0.0296255i
\(666\) 18.2945 + 4.35860i 0.708898 + 0.168892i
\(667\) −13.8204 + 7.97922i −0.535128 + 0.308956i
\(668\) 0.739056 0.426694i 0.0285949 0.0165093i
\(669\) 19.3145 + 24.4567i 0.746742 + 0.945551i
\(670\) −1.41448 16.2115i −0.0546462 0.626304i
\(671\) −0.874481 1.51465i −0.0337590 0.0584722i
\(672\) −3.77262 + 2.60142i −0.145532 + 0.100352i
\(673\) −6.60209 3.81172i −0.254492 0.146931i 0.367327 0.930092i \(-0.380273\pi\)
−0.621819 + 0.783161i \(0.713606\pi\)
\(674\) 30.0990 17.3777i 1.15937 0.669364i
\(675\) −21.3154 + 14.8544i −0.820431 + 0.571746i
\(676\) 5.77888 10.0093i 0.222265 0.384974i
\(677\) 30.8268i 1.18477i 0.805654 + 0.592386i \(0.201814\pi\)
−0.805654 + 0.592386i \(0.798186\pi\)
\(678\) 27.7319 4.04547i 1.06504 0.155366i
\(679\) 9.54150 4.71335i 0.366169 0.180882i
\(680\) −0.211284 0.0985837i −0.00810236 0.00378051i
\(681\) −5.06211 34.7010i −0.193980 1.32974i
\(682\) −0.255645 0.442790i −0.00978916 0.0169553i
\(683\) −18.8176 + 32.5930i −0.720036 + 1.24714i 0.240949 + 0.970538i \(0.422541\pi\)
−0.960985 + 0.276601i \(0.910792\pi\)
\(684\) −16.9343 4.03453i −0.647498 0.154264i
\(685\) 24.5162 + 35.0303i 0.936718 + 1.33844i
\(686\) 3.57637 18.1717i 0.136547 0.693798i
\(687\) −1.02040 + 0.805850i −0.0389305 + 0.0307451i
\(688\) −1.49609 0.863766i −0.0570378 0.0329308i
\(689\) −3.21912 −0.122639
\(690\) 11.4338 + 12.1391i 0.435277 + 0.462128i
\(691\) 11.9246i 0.453633i 0.973938 + 0.226816i \(0.0728317\pi\)
−0.973938 + 0.226816i \(0.927168\pi\)
\(692\) 25.1821i 0.957280i
\(693\) −0.767681 0.826472i −0.0291618 0.0313951i
\(694\) −6.90143 −0.261975
\(695\) 2.01875 1.41284i 0.0765755 0.0535919i
\(696\) 5.03793 3.97867i 0.190962 0.150811i
\(697\) 0.827133i 0.0313299i
\(698\) −0.226488 0.130763i −0.00857272 0.00494946i
\(699\) −32.8312 + 4.78936i −1.24179 + 0.181150i
\(700\) −12.1095 5.32536i −0.457697 0.201280i
\(701\) 12.4716i 0.471046i −0.971869 0.235523i \(-0.924320\pi\)
0.971869 0.235523i \(-0.0756803\pi\)
\(702\) 5.10537 + 3.58825i 0.192690 + 0.135430i
\(703\) −18.1883 + 31.5030i −0.685984 + 1.18816i
\(704\) −0.123075 + 0.0710575i −0.00463857 + 0.00267808i
\(705\) −18.7159 5.61994i −0.704880 0.211659i
\(706\) 24.7213 14.2729i 0.930400 0.537167i
\(707\) 0.575605 8.87371i 0.0216479 0.333730i
\(708\) 6.28253 15.7870i 0.236112 0.593312i
\(709\) 28.2913 1.06250 0.531251 0.847215i \(-0.321722\pi\)
0.531251 + 0.847215i \(0.321722\pi\)
\(710\) −2.41995 27.7352i −0.0908190 1.04088i
\(711\) 18.3313 + 17.3355i 0.687479 + 0.650132i
\(712\) −0.748203 1.29593i −0.0280401 0.0485669i
\(713\) −13.4154 7.74540i −0.502412 0.290068i
\(714\) 0.476287 0.0382231i 0.0178246 0.00143047i
\(715\) 0.345837 + 0.161365i 0.0129336 + 0.00603472i
\(716\) −14.0102 8.08881i −0.523587 0.302293i
\(717\) −0.333638 2.28710i −0.0124599 0.0854134i
\(718\) −10.5441 + 6.08767i −0.393504 + 0.227190i
\(719\) 3.47046 + 6.01101i 0.129426 + 0.224173i 0.923454 0.383708i \(-0.125353\pi\)
−0.794028 + 0.607881i \(0.792020\pi\)
\(720\) −5.25615 4.16808i −0.195885 0.155335i
\(721\) 45.4258 22.4396i 1.69175 0.835696i
\(722\) 7.33595 12.7062i 0.273016 0.472877i
\(723\) 4.94506 + 33.8986i 0.183909 + 1.26070i
\(724\) 17.0243i 0.632701i
\(725\) 17.4111 + 6.34638i 0.646631 + 0.235699i
\(726\) 11.7866 + 14.9246i 0.437442 + 0.553904i
\(727\) 8.87166 15.3662i 0.329032 0.569899i −0.653288 0.757109i \(-0.726611\pi\)
0.982320 + 0.187210i \(0.0599444\pi\)
\(728\) −0.205672 + 3.17070i −0.00762270 + 0.117514i
\(729\) 17.4281 20.6219i 0.645485 0.763773i
\(730\) −7.60130 + 16.2910i −0.281337 + 0.602958i
\(731\) 0.0900636 + 0.155995i 0.00333112 + 0.00576967i
\(732\) 19.8051 + 7.88155i 0.732018 + 0.291311i
\(733\) 9.39300 16.2692i 0.346939 0.600915i −0.638765 0.769402i \(-0.720555\pi\)
0.985704 + 0.168486i \(0.0538879\pi\)
\(734\) 11.1198 + 19.2601i 0.410441 + 0.710904i
\(735\) 26.9690 2.76960i 0.994768 0.102158i
\(736\) −2.15286 + 3.72887i −0.0793556 + 0.137448i
\(737\) 0.517124 + 0.895685i 0.0190485 + 0.0329930i
\(738\) 5.51546 23.1502i 0.203027 0.852171i
\(739\) −19.5906 + 33.9320i −0.720653 + 1.24821i 0.240085 + 0.970752i \(0.422825\pi\)
−0.960738 + 0.277456i \(0.910509\pi\)
\(740\) −11.4844 + 8.03746i −0.422176 + 0.295463i
\(741\) −9.47241 + 7.48077i −0.347978 + 0.274813i
\(742\) −6.35850 + 3.14100i −0.233428 + 0.115310i
\(743\) −3.04957 5.28201i −0.111878 0.193778i 0.804650 0.593750i \(-0.202353\pi\)
−0.916527 + 0.399972i \(0.869020\pi\)
\(744\) 5.78982 + 2.30409i 0.212265 + 0.0844720i
\(745\) −28.3460 13.2261i −1.03852 0.484566i
\(746\) −3.32049 1.91709i −0.121572 0.0701896i
\(747\) 2.01300 + 6.75276i 0.0736517 + 0.247070i
\(748\) 0.0148181 0.000541804
\(749\) −2.44917 + 37.7571i −0.0894906 + 1.37962i
\(750\) 2.27299 19.2311i 0.0829979 0.702219i
\(751\) −26.9458 + 46.6715i −0.983266 + 1.70307i −0.333862 + 0.942622i \(0.608352\pi\)
−0.649404 + 0.760444i \(0.724981\pi\)
\(752\) 5.04557i 0.183993i
\(753\) 18.4623 46.3930i 0.672805 1.69066i
\(754\) 4.45104i 0.162097i
\(755\) 6.29950 + 9.00112i 0.229262 + 0.327584i
\(756\) 13.5854 + 2.10615i 0.494098 + 0.0765999i
\(757\) 18.1765i 0.660637i −0.943870 0.330318i \(-0.892844\pi\)
0.943870 0.330318i \(-0.107156\pi\)
\(758\) −29.0957 −1.05680
\(759\) −0.984745 0.391884i −0.0357440 0.0142245i
\(760\) 10.6305 7.43985i 0.385610 0.269872i
\(761\) 14.9924 25.9677i 0.543476 0.941328i −0.455225 0.890376i \(-0.650441\pi\)
0.998701 0.0509513i \(-0.0162253\pi\)
\(762\) 17.7917 + 7.08031i 0.644526 + 0.256493i
\(763\) −42.2152 + 20.8536i −1.52829 + 0.754952i
\(764\) 3.96791i 0.143554i
\(765\) 0.257326 + 0.650400i 0.00930363 + 0.0235153i
\(766\) −12.2543 7.07501i −0.442765 0.255630i
\(767\) −5.89048 10.2026i −0.212693 0.368395i
\(768\) 0.640430 1.60930i 0.0231095 0.0580706i
\(769\) −29.1902 + 16.8530i −1.05263 + 0.607734i −0.923383 0.383879i \(-0.874588\pi\)
−0.129242 + 0.991613i \(0.541255\pi\)
\(770\) 0.840556 0.0187104i 0.0302915 0.000674276i
\(771\) −24.3989 + 19.2688i −0.878704 + 0.693950i
\(772\) 1.29203i 0.0465013i
\(773\) 27.1549 + 15.6779i 0.976694 + 0.563895i 0.901270 0.433257i \(-0.142636\pi\)
0.0754237 + 0.997152i \(0.475969\pi\)
\(774\) 1.48055 + 4.96662i 0.0532172 + 0.178521i
\(775\) 3.11536 + 17.7168i 0.111907 + 0.636406i
\(776\) −2.01118 + 3.48347i −0.0721972 + 0.125049i
\(777\) 12.3275 25.9480i 0.442248 0.930881i
\(778\) −29.9470 + 17.2899i −1.07365 + 0.619873i
\(779\) 39.8645 + 23.0158i 1.42830 + 0.824627i
\(780\) −4.52669 + 1.06891i −0.162082 + 0.0382732i
\(781\) 0.884714 + 1.53237i 0.0316576 + 0.0548325i
\(782\) 0.388803 0.224476i 0.0139036 0.00802724i
\(783\) −19.1824 1.71233i −0.685522 0.0611937i
\(784\) 2.68750 + 6.46354i 0.0959822 + 0.230841i
\(785\) 14.2768 1.24567i 0.509559 0.0444600i
\(786\) 10.0582 + 12.7360i 0.358764 + 0.454280i
\(787\) −33.3758 −1.18972 −0.594859 0.803830i \(-0.702792\pi\)
−0.594859 + 0.803830i \(0.702792\pi\)
\(788\) 0.983884 0.0350494
\(789\) −27.2232 + 3.97127i −0.969172 + 0.141381i
\(790\) −18.7342 + 1.63460i −0.666534 + 0.0581563i
\(791\) 2.77107 42.7197i 0.0985280 1.51894i
\(792\) 0.414737 + 0.0988096i 0.0147370 + 0.00351105i
\(793\) 12.7994 7.38973i 0.454519 0.262417i
\(794\) −14.6731 25.4146i −0.520729 0.901930i
\(795\) −7.11808 7.55717i −0.252452 0.268025i
\(796\) −20.6241 11.9073i −0.731000 0.422043i
\(797\) 4.60415 2.65821i 0.163087 0.0941585i −0.416235 0.909257i \(-0.636651\pi\)
0.579322 + 0.815099i \(0.303317\pi\)
\(798\) −11.4110 + 24.0187i −0.403943 + 0.850254i
\(799\) −0.263047 + 0.455611i −0.00930594 + 0.0161184i
\(800\) 4.92445 0.865927i 0.174105 0.0306151i
\(801\) −1.04042 + 4.36699i −0.0367614 + 0.154300i
\(802\) −22.8472 13.1908i −0.806762 0.465785i
\(803\) 1.14255i 0.0403197i
\(804\) −11.7118 4.66076i −0.413042 0.164372i
\(805\) 21.7714 13.2243i 0.767340 0.466095i
\(806\) 3.74176 2.16031i 0.131798 0.0760936i
\(807\) −11.2790 14.2818i −0.397038 0.502743i
\(808\) 1.68050 + 2.91071i 0.0591197 + 0.102398i
\(809\) 13.1171 + 7.57314i 0.461171 + 0.266257i 0.712537 0.701635i \(-0.247546\pi\)
−0.251365 + 0.967892i \(0.580880\pi\)
\(810\) 2.86519 + 19.9196i 0.100673 + 0.699904i
\(811\) 25.5538i 0.897316i −0.893704 0.448658i \(-0.851902\pi\)
0.893704 0.448658i \(-0.148098\pi\)
\(812\) −4.34302 8.79183i −0.152410 0.308533i
\(813\) −3.16798 21.7166i −0.111106 0.761635i
\(814\) 0.445449 0.771540i 0.0156130 0.0270425i
\(815\) 2.05369 1.43729i 0.0719375 0.0503460i
\(816\) −0.141730 + 0.111930i −0.00496154 + 0.00391834i
\(817\) −10.0244 −0.350711
\(818\) 12.8464i 0.449164i
\(819\) 6.98403 6.48723i 0.244042 0.226682i
\(820\) 10.1707 + 14.5326i 0.355178 + 0.507500i
\(821\) 30.2878i 1.05705i −0.848918 0.528525i \(-0.822745\pi\)
0.848918 0.528525i \(-0.177255\pi\)
\(822\) 32.7726 4.78081i 1.14308 0.166750i
\(823\) 44.3997i 1.54768i 0.633383 + 0.773838i \(0.281666\pi\)
−0.633383 + 0.773838i \(0.718334\pi\)
\(824\) −9.57498 + 16.5843i −0.333560 + 0.577743i
\(825\) 0.385891 + 1.16869i 0.0134350 + 0.0406886i
\(826\) −21.5901 14.4050i −0.751214 0.501213i
\(827\) 8.05224 0.280004 0.140002 0.990151i \(-0.455289\pi\)
0.140002 + 0.990151i \(0.455289\pi\)
\(828\) 12.3789 3.69014i 0.430195 0.128241i
\(829\) 9.26932 + 5.35164i 0.321937 + 0.185870i 0.652255 0.757999i \(-0.273823\pi\)
−0.330319 + 0.943869i \(0.607156\pi\)
\(830\) −4.75948 2.22074i −0.165204 0.0770832i
\(831\) 3.72333 + 25.5235i 0.129161 + 0.885402i
\(832\) −0.600465 1.04004i −0.0208174 0.0360568i
\(833\) 0.0942925 0.723763i 0.00326704 0.0250769i
\(834\) −0.275511 1.88864i −0.00954017 0.0653982i
\(835\) 1.56339 1.09415i 0.0541034 0.0378647i
\(836\) −0.412329 + 0.714175i −0.0142607 + 0.0247002i
\(837\) −7.87067 16.9567i −0.272050 0.586109i
\(838\) −5.13440 8.89304i −0.177365 0.307205i
\(839\) 24.9171 43.1577i 0.860234 1.48997i −0.0114693 0.999934i \(-0.503651\pi\)
0.871703 0.490034i \(-0.163016\pi\)
\(840\) −7.89828 + 6.52818i −0.272517 + 0.225244i
\(841\) −7.63157 13.2183i −0.263157 0.455802i
\(842\) 3.18306 5.51323i 0.109696 0.189998i
\(843\) 9.29359 7.33954i 0.320088 0.252787i
\(844\) −11.2221 19.4372i −0.386280 0.669056i
\(845\) 10.9276 23.4200i 0.375922 0.805673i
\(846\) −10.4004 + 10.9978i −0.357573 + 0.378113i
\(847\) 26.0453 12.8660i 0.894928 0.442080i
\(848\) 1.34026 2.32140i 0.0460248 0.0797172i
\(849\) −7.44777 + 18.7151i −0.255607 + 0.642301i
\(850\) −0.489818 0.178540i −0.0168006 0.00612387i
\(851\) 26.9920i 0.925272i
\(852\) −20.0369 7.97379i −0.686453 0.273177i
\(853\) 9.14863 15.8459i 0.313243 0.542553i −0.665819 0.746113i \(-0.731918\pi\)
0.979062 + 0.203560i \(0.0652512\pi\)
\(854\) 18.0713 27.0851i 0.618388 0.926835i
\(855\) −38.5070 5.69594i −1.31691 0.194797i
\(856\) −7.15043 12.3849i −0.244397 0.423307i
\(857\) −12.0422 + 6.95257i −0.411354 + 0.237495i −0.691371 0.722500i \(-0.742993\pi\)
0.280017 + 0.959995i \(0.409660\pi\)
\(858\) 0.231989 0.183211i 0.00791996 0.00625473i
\(859\) 33.8907 + 19.5668i 1.15634 + 0.667611i 0.950423 0.310960i \(-0.100650\pi\)
0.205912 + 0.978570i \(0.433984\pi\)
\(860\) −3.50057 1.63335i −0.119369 0.0556966i
\(861\) −32.8351 15.5995i −1.11902 0.531629i
\(862\) −3.37653 1.94944i −0.115005 0.0663982i
\(863\) 0.517393 + 0.896150i 0.0176122 + 0.0305053i 0.874697 0.484670i \(-0.161060\pi\)
−0.857085 + 0.515175i \(0.827727\pi\)
\(864\) −4.71318 + 2.18768i −0.160346 + 0.0744264i
\(865\) −4.89446 56.0958i −0.166417 1.90731i
\(866\) 20.9340 0.711367
\(867\) −29.1178 + 4.24766i −0.988894 + 0.144258i
\(868\) 5.28296 7.91805i 0.179315 0.268756i
\(869\) 1.03507 0.597596i 0.0351122 0.0202720i
\(870\) 10.4492 9.84209i 0.354262 0.333678i
\(871\) −7.56891 + 4.36991i −0.256463 + 0.148069i
\(872\) 8.89823 15.4122i 0.301332 0.521923i
\(873\) 11.5642 3.44729i 0.391389 0.116673i
\(874\) 24.9851i 0.845132i
\(875\) −28.0103 9.50917i −0.946920 0.321469i
\(876\) 8.63038 + 10.9281i 0.291593 + 0.369226i
\(877\) 1.34680 + 0.777575i 0.0454782 + 0.0262568i 0.522567 0.852598i \(-0.324975\pi\)
−0.477089 + 0.878855i \(0.658308\pi\)
\(878\) 16.4017i 0.553531i
\(879\) 2.48350 + 17.0245i 0.0837664 + 0.574222i
\(880\) −0.260352 + 0.182209i −0.00877646 + 0.00614227i
\(881\) −11.9598 −0.402937 −0.201469 0.979495i \(-0.564571\pi\)
−0.201469 + 0.979495i \(0.564571\pi\)
\(882\) 7.46527 19.6283i 0.251369 0.660919i
\(883\) 10.7656i 0.362292i −0.983456 0.181146i \(-0.942019\pi\)
0.983456 0.181146i \(-0.0579806\pi\)
\(884\) 0.125219i 0.00421158i
\(885\) 10.9266 36.3883i 0.367293 1.22318i
\(886\) 26.3852 0.886429
\(887\) −23.0704 13.3197i −0.774629 0.447232i 0.0598943 0.998205i \(-0.480924\pi\)
−0.834524 + 0.550972i \(0.814257\pi\)
\(888\) 1.56735 + 10.7443i 0.0525968 + 0.360553i
\(889\) 16.2342 24.3317i 0.544477 0.816058i
\(890\) −1.91858 2.74139i −0.0643110 0.0918915i
\(891\) −0.700327 1.07027i −0.0234618 0.0358553i
\(892\) −8.99621 + 15.5819i −0.301215 + 0.521720i
\(893\) −14.6391 25.3557i −0.489879 0.848495i
\(894\) −19.0146 + 15.0167i −0.635944 + 0.502232i
\(895\) −32.7814 15.2956i −1.09576 0.511276i
\(896\) −2.20085 1.46842i −0.0735253 0.0490564i
\(897\) 3.31159 8.32150i 0.110571 0.277847i
\(898\) 32.5310i 1.08557i
\(899\) −6.66717 + 11.5479i −0.222362 + 0.385143i
\(900\) −12.5187 8.26325i −0.417291 0.275442i
\(901\) −0.242049 + 0.139747i −0.00806382 + 0.00465565i
\(902\) −0.976322 0.563680i −0.0325080 0.0187685i
\(903\) 7.89117 0.633285i 0.262602 0.0210744i
\(904\) 8.09024 + 14.0127i 0.269077 + 0.466056i
\(905\) 3.30888 + 37.9233i 0.109991 + 1.26061i
\(906\) 8.42100 1.22844i 0.279769 0.0408122i
\(907\) −6.54032 + 3.77606i −0.217168 + 0.125382i −0.604638 0.796500i \(-0.706682\pi\)
0.387470 + 0.921882i \(0.373349\pi\)
\(908\) 17.5341 10.1233i 0.581890 0.335954i
\(909\) 2.33683 9.80846i 0.0775078 0.325326i
\(910\) 0.158111 + 7.10304i 0.00524132 + 0.235464i
\(911\) 21.2685 + 12.2794i 0.704656 + 0.406834i 0.809079 0.587699i \(-0.199966\pi\)
−0.104423 + 0.994533i \(0.533300\pi\)
\(912\) −1.45081 9.94539i −0.0480413 0.329325i
\(913\) 0.333800 0.0110472
\(914\) 35.0085i 1.15798i
\(915\) 45.6499 + 13.7076i 1.50914 + 0.453160i
\(916\) −0.650116 0.375345i −0.0214804 0.0124017i
\(917\) 22.2260 10.9793i 0.733967 0.362568i
\(918\) 0.539649 + 0.0481722i 0.0178111 + 0.00158992i
\(919\) −17.1584 29.7192i −0.566003 0.980345i −0.996956 0.0779709i \(-0.975156\pi\)
0.430953 0.902374i \(-0.358177\pi\)
\(920\) −4.07097 + 8.72488i −0.134216 + 0.287651i
\(921\) 16.2173 40.7517i 0.534380 1.34281i
\(922\) −5.08610 + 8.80939i −0.167502 + 0.290122i
\(923\) −12.9492 + 7.47620i −0.426227 + 0.246082i
\(924\) 0.279465 0.588243i 0.00919374 0.0193518i
\(925\) −24.0206 + 20.1364i −0.789791 + 0.662081i
\(926\) −27.5356 + 15.8977i −0.904876 + 0.522430i
\(927\) 55.0557 16.4121i 1.80827 0.539044i
\(928\) 3.20977 + 1.85316i 0.105366 + 0.0608331i
\(929\) 22.0312 0.722821 0.361411 0.932407i \(-0.382295\pi\)
0.361411 + 0.932407i \(0.382295\pi\)
\(930\) 13.3453 + 4.00727i 0.437608 + 0.131404i
\(931\) 32.2587 + 24.6840i 1.05724 + 0.808984i
\(932\) −9.57787 16.5894i −0.313734 0.543403i
\(933\) 4.68971 11.7845i 0.153534 0.385808i
\(934\) −19.5141 + 11.2665i −0.638522 + 0.368651i
\(935\) 0.0330089 0.00288009i 0.00107951 9.41890e-5i
\(936\) −0.834982 + 3.50470i −0.0272922 + 0.114555i
\(937\) 36.9235 1.20624 0.603120 0.797651i \(-0.293924\pi\)
0.603120 + 0.797651i \(0.293924\pi\)
\(938\) −10.6865 + 16.0168i −0.348926 + 0.522967i
\(939\) −5.43535 + 13.6582i −0.177376 + 0.445718i
\(940\) −0.980671 11.2395i −0.0319860 0.366593i
\(941\) 15.7517 0.513492 0.256746 0.966479i \(-0.417350\pi\)
0.256746 + 0.966479i \(0.417350\pi\)
\(942\) 4.10453 10.3140i 0.133733 0.336050i
\(943\) −34.1561 −1.11228
\(944\) 9.80986 0.319284
\(945\) 30.6723 + 2.05116i 0.997771 + 0.0667243i
\(946\) 0.245508 0.00798216
\(947\) 19.2361 0.625090 0.312545 0.949903i \(-0.398818\pi\)
0.312545 + 0.949903i \(0.398818\pi\)
\(948\) −5.38603 + 13.5343i −0.174930 + 0.439573i
\(949\) 9.65503 0.313415
\(950\) 22.2346 18.6392i 0.721385 0.604737i
\(951\) 1.43681 3.61048i 0.0465917 0.117078i
\(952\) 0.122180 + 0.247337i 0.00395989 + 0.00801623i
\(953\) 21.0241 0.681036 0.340518 0.940238i \(-0.389398\pi\)
0.340518 + 0.940238i \(0.389398\pi\)
\(954\) −7.70644 + 2.29729i −0.249505 + 0.0743775i
\(955\) −0.771213 8.83893i −0.0249559 0.286021i
\(956\) 1.15565 0.667217i 0.0373765 0.0215794i
\(957\) −0.337330 + 0.847659i −0.0109043 + 0.0274009i
\(958\) 4.81018 + 8.33147i 0.155410 + 0.269178i
\(959\) 3.27476 50.4848i 0.105748 1.63024i
\(960\) 1.11384 3.70936i 0.0359489 0.119719i
\(961\) 18.0564 0.582465
\(962\) 6.51984 + 3.76423i 0.210208 + 0.121364i
\(963\) −9.94308 + 41.7345i −0.320411 + 1.34487i
\(964\) −17.1287 + 9.88925i −0.551678 + 0.318511i
\(965\) −0.251123 2.87814i −0.00808394 0.0926506i
\(966\) −1.57841 19.6681i −0.0507845 0.632810i
\(967\) −31.4041 + 18.1311i −1.00989 + 0.583058i −0.911158 0.412056i \(-0.864811\pi\)
−0.0987282 + 0.995114i \(0.531477\pi\)
\(968\) −5.48990 + 9.50879i −0.176452 + 0.305624i
\(969\) −0.387488 + 0.973698i −0.0124479 + 0.0312797i
\(970\) −3.80306 + 8.15069i −0.122109 + 0.261703i
\(971\) −19.6361 34.0108i −0.630153 1.09146i −0.987520 0.157493i \(-0.949659\pi\)
0.357367 0.933964i \(-0.383675\pi\)
\(972\) 14.7828 + 4.94674i 0.474157 + 0.158667i
\(973\) −2.90937 0.188720i −0.0932700 0.00605008i
\(974\) −8.50444 4.91004i −0.272500 0.157328i
\(975\) −9.87593 + 3.26094i −0.316283 + 0.104434i
\(976\) 12.3067i 0.393927i
\(977\) 37.2951 1.19317 0.596587 0.802548i \(-0.296523\pi\)
0.596587 + 0.802548i \(0.296523\pi\)
\(978\) −0.280280 1.92133i −0.00896235 0.0614373i
\(979\) 0.184170 + 0.106331i 0.00588611 + 0.00339835i
\(980\) 7.24296 + 13.8759i 0.231368 + 0.443248i
\(981\) −51.1644 + 15.2521i −1.63355 + 0.486962i
\(982\) 24.7333 14.2798i 0.789271 0.455686i
\(983\) 35.5207 20.5079i 1.13293 0.654100i 0.188264 0.982119i \(-0.439714\pi\)
0.944671 + 0.328018i \(0.106381\pi\)
\(984\) 13.5960 1.98336i 0.433424 0.0632271i
\(985\) 2.19170 0.191230i 0.0698335 0.00609311i
\(986\) −0.193227 0.334678i −0.00615359 0.0106583i
\(987\) 13.1256 + 19.0350i 0.417794 + 0.605891i
\(988\) −6.03507 3.48435i −0.192001 0.110852i
\(989\) 6.44174 3.71914i 0.204835 0.118262i
\(990\) 0.943075 + 0.139499i 0.0299729 + 0.00443358i
\(991\) 9.52837 16.5036i 0.302679 0.524255i −0.674063 0.738674i \(-0.735452\pi\)
0.976742 + 0.214419i \(0.0687858\pi\)
\(992\) 3.59772i 0.114228i
\(993\) −3.23121 + 8.11952i −0.102539 + 0.257665i
\(994\) −18.2828 + 27.4021i −0.579895 + 0.869142i
\(995\) −48.2566 22.5162i −1.52984 0.713812i
\(996\) −3.19268 + 2.52139i −0.101164 + 0.0798934i
\(997\) 17.8254 + 30.8745i 0.564536 + 0.977806i 0.997093 + 0.0761986i \(0.0242783\pi\)
−0.432556 + 0.901607i \(0.642388\pi\)
\(998\) −10.3032 + 17.8456i −0.326141 + 0.564892i
\(999\) 18.7307 26.6500i 0.592612 0.843169i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.2.bi.b.479.17 yes 48
3.2 odd 2 1890.2.bi.a.899.1 48
5.4 even 2 630.2.bi.a.479.8 yes 48
7.5 odd 6 630.2.r.a.299.9 yes 48
9.4 even 3 1890.2.r.a.1529.8 48
9.5 odd 6 630.2.r.b.59.16 yes 48
15.14 odd 2 1890.2.bi.b.899.15 48
21.5 even 6 1890.2.r.b.89.8 48
35.19 odd 6 630.2.r.b.299.16 yes 48
45.4 even 6 1890.2.r.b.1529.8 48
45.14 odd 6 630.2.r.a.59.9 48
63.5 even 6 630.2.bi.a.509.8 yes 48
63.40 odd 6 1890.2.bi.b.719.15 48
105.89 even 6 1890.2.r.a.89.8 48
315.194 even 6 inner 630.2.bi.b.509.17 yes 48
315.229 odd 6 1890.2.bi.a.719.1 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.2.r.a.59.9 48 45.14 odd 6
630.2.r.a.299.9 yes 48 7.5 odd 6
630.2.r.b.59.16 yes 48 9.5 odd 6
630.2.r.b.299.16 yes 48 35.19 odd 6
630.2.bi.a.479.8 yes 48 5.4 even 2
630.2.bi.a.509.8 yes 48 63.5 even 6
630.2.bi.b.479.17 yes 48 1.1 even 1 trivial
630.2.bi.b.509.17 yes 48 315.194 even 6 inner
1890.2.r.a.89.8 48 105.89 even 6
1890.2.r.a.1529.8 48 9.4 even 3
1890.2.r.b.89.8 48 21.5 even 6
1890.2.r.b.1529.8 48 45.4 even 6
1890.2.bi.a.719.1 48 315.229 odd 6
1890.2.bi.a.899.1 48 3.2 odd 2
1890.2.bi.b.719.15 48 63.40 odd 6
1890.2.bi.b.899.15 48 15.14 odd 2