Properties

Label 1890.2.bi.b.719.15
Level $1890$
Weight $2$
Character 1890.719
Analytic conductor $15.092$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1890,2,Mod(719,1890)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1890, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1890.719"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1890 = 2 \cdot 3^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1890.bi (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.0917259820\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 630)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 719.15
Character \(\chi\) \(=\) 1890.719
Dual form 1890.2.bi.b.899.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +(0.945479 - 2.02634i) q^{5} +(2.20085 - 1.46842i) q^{7} +1.00000 q^{8} +(0.945479 - 2.02634i) q^{10} +(0.123075 + 0.0710575i) q^{11} +(0.600465 - 1.04004i) q^{13} +(2.20085 - 1.46842i) q^{14} +1.00000 q^{16} +(-0.0902992 + 0.0521342i) q^{17} +(5.02533 + 2.90137i) q^{19} +(0.945479 - 2.02634i) q^{20} +(0.123075 + 0.0710575i) q^{22} +(-2.15286 - 3.72887i) q^{23} +(-3.21214 - 3.83173i) q^{25} +(0.600465 - 1.04004i) q^{26} +(2.20085 - 1.46842i) q^{28} +(-3.20977 + 1.85316i) q^{29} -3.59772i q^{31} +1.00000 q^{32} +(-0.0902992 + 0.0521342i) q^{34} +(-0.894657 - 5.84804i) q^{35} +(5.42899 + 3.13443i) q^{37} +(5.02533 + 2.90137i) q^{38} +(0.945479 - 2.02634i) q^{40} +(-3.96636 + 6.86994i) q^{41} +(1.49609 - 0.863766i) q^{43} +(0.123075 + 0.0710575i) q^{44} +(-2.15286 - 3.72887i) q^{46} +5.04557i q^{47} +(2.68750 - 6.46354i) q^{49} +(-3.21214 - 3.83173i) q^{50} +(0.600465 - 1.04004i) q^{52} +(1.34026 + 2.32140i) q^{53} +(0.260352 - 0.182209i) q^{55} +(2.20085 - 1.46842i) q^{56} +(-3.20977 + 1.85316i) q^{58} -9.80986 q^{59} -12.3067i q^{61} -3.59772i q^{62} +1.00000 q^{64} +(-1.53974 - 2.20008i) q^{65} -7.27754i q^{67} +(-0.0902992 + 0.0521342i) q^{68} +(-0.894657 - 5.84804i) q^{70} -12.4507i q^{71} +(4.01981 + 6.96252i) q^{73} +(5.42899 + 3.13443i) q^{74} +(5.02533 + 2.90137i) q^{76} +(0.375212 - 0.0243387i) q^{77} -8.41003 q^{79} +(0.945479 - 2.02634i) q^{80} +(-3.96636 + 6.86994i) q^{82} +(-2.03412 + 1.17440i) q^{83} +(0.0202659 + 0.232269i) q^{85} +(1.49609 - 0.863766i) q^{86} +(0.123075 + 0.0710575i) q^{88} +(0.748203 - 1.29593i) q^{89} +(-0.205672 - 3.17070i) q^{91} +(-2.15286 - 3.72887i) q^{92} +5.04557i q^{94} +(10.6305 - 7.43985i) q^{95} +(2.01118 + 3.48347i) q^{97} +(2.68750 - 6.46354i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 48 q^{2} + 48 q^{4} - 3 q^{7} + 48 q^{8} - 6 q^{11} - 3 q^{14} + 48 q^{16} - 6 q^{22} + 3 q^{23} + 18 q^{25} - 3 q^{28} + 3 q^{29} + 48 q^{32} + 18 q^{35} + 3 q^{41} - 6 q^{44} + 3 q^{46} + 3 q^{49}+ \cdots + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1890\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(1081\) \(1541\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0.945479 2.02634i 0.422831 0.906208i
\(6\) 0 0
\(7\) 2.20085 1.46842i 0.831844 0.555009i
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 0.945479 2.02634i 0.298987 0.640786i
\(11\) 0.123075 + 0.0710575i 0.0371086 + 0.0214246i 0.518440 0.855114i \(-0.326513\pi\)
−0.481331 + 0.876539i \(0.659846\pi\)
\(12\) 0 0
\(13\) 0.600465 1.04004i 0.166539 0.288454i −0.770662 0.637245i \(-0.780074\pi\)
0.937201 + 0.348790i \(0.113407\pi\)
\(14\) 2.20085 1.46842i 0.588203 0.392451i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −0.0902992 + 0.0521342i −0.0219008 + 0.0126444i −0.510910 0.859634i \(-0.670692\pi\)
0.489010 + 0.872278i \(0.337358\pi\)
\(18\) 0 0
\(19\) 5.02533 + 2.90137i 1.15289 + 0.665621i 0.949590 0.313495i \(-0.101500\pi\)
0.203300 + 0.979117i \(0.434833\pi\)
\(20\) 0.945479 2.02634i 0.211416 0.453104i
\(21\) 0 0
\(22\) 0.123075 + 0.0710575i 0.0262397 + 0.0151495i
\(23\) −2.15286 3.72887i −0.448903 0.777523i 0.549412 0.835552i \(-0.314852\pi\)
−0.998315 + 0.0580289i \(0.981518\pi\)
\(24\) 0 0
\(25\) −3.21214 3.83173i −0.642428 0.766346i
\(26\) 0.600465 1.04004i 0.117761 0.203968i
\(27\) 0 0
\(28\) 2.20085 1.46842i 0.415922 0.277505i
\(29\) −3.20977 + 1.85316i −0.596040 + 0.344124i −0.767482 0.641070i \(-0.778491\pi\)
0.171442 + 0.985194i \(0.445157\pi\)
\(30\) 0 0
\(31\) 3.59772i 0.646170i −0.946370 0.323085i \(-0.895280\pi\)
0.946370 0.323085i \(-0.104720\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −0.0902992 + 0.0521342i −0.0154862 + 0.00894095i
\(35\) −0.894657 5.84804i −0.151225 0.988499i
\(36\) 0 0
\(37\) 5.42899 + 3.13443i 0.892520 + 0.515296i 0.874766 0.484546i \(-0.161015\pi\)
0.0177539 + 0.999842i \(0.494348\pi\)
\(38\) 5.02533 + 2.90137i 0.815216 + 0.470665i
\(39\) 0 0
\(40\) 0.945479 2.02634i 0.149493 0.320393i
\(41\) −3.96636 + 6.86994i −0.619442 + 1.07290i 0.370146 + 0.928974i \(0.379308\pi\)
−0.989588 + 0.143931i \(0.954026\pi\)
\(42\) 0 0
\(43\) 1.49609 0.863766i 0.228151 0.131723i −0.381568 0.924341i \(-0.624616\pi\)
0.609719 + 0.792618i \(0.291282\pi\)
\(44\) 0.123075 + 0.0710575i 0.0185543 + 0.0107123i
\(45\) 0 0
\(46\) −2.15286 3.72887i −0.317422 0.549792i
\(47\) 5.04557i 0.735973i 0.929831 + 0.367986i \(0.119953\pi\)
−0.929831 + 0.367986i \(0.880047\pi\)
\(48\) 0 0
\(49\) 2.68750 6.46354i 0.383929 0.923363i
\(50\) −3.21214 3.83173i −0.454265 0.541889i
\(51\) 0 0
\(52\) 0.600465 1.04004i 0.0832696 0.144227i
\(53\) 1.34026 + 2.32140i 0.184099 + 0.318869i 0.943273 0.332019i \(-0.107730\pi\)
−0.759174 + 0.650888i \(0.774397\pi\)
\(54\) 0 0
\(55\) 0.260352 0.182209i 0.0351059 0.0245691i
\(56\) 2.20085 1.46842i 0.294101 0.196225i
\(57\) 0 0
\(58\) −3.20977 + 1.85316i −0.421464 + 0.243332i
\(59\) −9.80986 −1.27713 −0.638567 0.769566i \(-0.720473\pi\)
−0.638567 + 0.769566i \(0.720473\pi\)
\(60\) 0 0
\(61\) 12.3067i 1.57571i −0.615863 0.787853i \(-0.711192\pi\)
0.615863 0.787853i \(-0.288808\pi\)
\(62\) 3.59772i 0.456911i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −1.53974 2.20008i −0.190982 0.272887i
\(66\) 0 0
\(67\) 7.27754i 0.889093i −0.895756 0.444547i \(-0.853365\pi\)
0.895756 0.444547i \(-0.146635\pi\)
\(68\) −0.0902992 + 0.0521342i −0.0109504 + 0.00632221i
\(69\) 0 0
\(70\) −0.894657 5.84804i −0.106932 0.698975i
\(71\) 12.4507i 1.47762i −0.673912 0.738812i \(-0.735387\pi\)
0.673912 0.738812i \(-0.264613\pi\)
\(72\) 0 0
\(73\) 4.01981 + 6.96252i 0.470483 + 0.814901i 0.999430 0.0337541i \(-0.0107463\pi\)
−0.528947 + 0.848655i \(0.677413\pi\)
\(74\) 5.42899 + 3.13443i 0.631107 + 0.364370i
\(75\) 0 0
\(76\) 5.02533 + 2.90137i 0.576445 + 0.332811i
\(77\) 0.375212 0.0243387i 0.0427594 0.00277365i
\(78\) 0 0
\(79\) −8.41003 −0.946202 −0.473101 0.881008i \(-0.656865\pi\)
−0.473101 + 0.881008i \(0.656865\pi\)
\(80\) 0.945479 2.02634i 0.105708 0.226552i
\(81\) 0 0
\(82\) −3.96636 + 6.86994i −0.438011 + 0.758658i
\(83\) −2.03412 + 1.17440i −0.223274 + 0.128907i −0.607465 0.794346i \(-0.707814\pi\)
0.384191 + 0.923253i \(0.374480\pi\)
\(84\) 0 0
\(85\) 0.0202659 + 0.232269i 0.00219815 + 0.0251931i
\(86\) 1.49609 0.863766i 0.161327 0.0931423i
\(87\) 0 0
\(88\) 0.123075 + 0.0710575i 0.0131199 + 0.00757476i
\(89\) 0.748203 1.29593i 0.0793094 0.137368i −0.823643 0.567109i \(-0.808062\pi\)
0.902952 + 0.429741i \(0.141395\pi\)
\(90\) 0 0
\(91\) −0.205672 3.17070i −0.0215603 0.332380i
\(92\) −2.15286 3.72887i −0.224451 0.388761i
\(93\) 0 0
\(94\) 5.04557i 0.520411i
\(95\) 10.6305 7.43985i 1.09067 0.763313i
\(96\) 0 0
\(97\) 2.01118 + 3.48347i 0.204204 + 0.353693i 0.949879 0.312618i \(-0.101206\pi\)
−0.745674 + 0.666310i \(0.767873\pi\)
\(98\) 2.68750 6.46354i 0.271479 0.652916i
\(99\) 0 0
\(100\) −3.21214 3.83173i −0.321214 0.383173i
\(101\) −1.68050 + 2.91071i −0.167216 + 0.289626i −0.937440 0.348147i \(-0.886811\pi\)
0.770224 + 0.637773i \(0.220144\pi\)
\(102\) 0 0
\(103\) 9.57498 + 16.5843i 0.943450 + 1.63410i 0.758825 + 0.651295i \(0.225774\pi\)
0.184626 + 0.982809i \(0.440893\pi\)
\(104\) 0.600465 1.04004i 0.0588805 0.101984i
\(105\) 0 0
\(106\) 1.34026 + 2.32140i 0.130178 + 0.225474i
\(107\) −7.15043 + 12.3849i −0.691258 + 1.19729i 0.280168 + 0.959951i \(0.409610\pi\)
−0.971426 + 0.237343i \(0.923724\pi\)
\(108\) 0 0
\(109\) 8.89823 + 15.4122i 0.852296 + 1.47622i 0.879131 + 0.476580i \(0.158124\pi\)
−0.0268351 + 0.999640i \(0.508543\pi\)
\(110\) 0.260352 0.182209i 0.0248236 0.0173730i
\(111\) 0 0
\(112\) 2.20085 1.46842i 0.207961 0.138752i
\(113\) 8.09024 14.0127i 0.761066 1.31820i −0.181236 0.983440i \(-0.558010\pi\)
0.942302 0.334765i \(-0.108657\pi\)
\(114\) 0 0
\(115\) −9.59146 + 0.836873i −0.894408 + 0.0780388i
\(116\) −3.20977 + 1.85316i −0.298020 + 0.172062i
\(117\) 0 0
\(118\) −9.80986 −0.903071
\(119\) −0.122180 + 0.247337i −0.0112003 + 0.0226733i
\(120\) 0 0
\(121\) −5.48990 9.50879i −0.499082 0.864435i
\(122\) 12.3067i 1.11419i
\(123\) 0 0
\(124\) 3.59772i 0.323085i
\(125\) −10.8014 + 2.88607i −0.966108 + 0.258138i
\(126\) 0 0
\(127\) 11.0556i 0.981023i 0.871435 + 0.490511i \(0.163190\pi\)
−0.871435 + 0.490511i \(0.836810\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) −1.53974 2.20008i −0.135044 0.192960i
\(131\) 4.68485 + 8.11440i 0.409318 + 0.708959i 0.994813 0.101717i \(-0.0324335\pi\)
−0.585496 + 0.810675i \(0.699100\pi\)
\(132\) 0 0
\(133\) 15.3204 0.993780i 1.32845 0.0861717i
\(134\) 7.27754i 0.628684i
\(135\) 0 0
\(136\) −0.0902992 + 0.0521342i −0.00774309 + 0.00447047i
\(137\) 9.56078 16.5598i 0.816833 1.41480i −0.0911716 0.995835i \(-0.529061\pi\)
0.908004 0.418961i \(-0.137605\pi\)
\(138\) 0 0
\(139\) 0.954315 + 0.550974i 0.0809439 + 0.0467330i 0.539926 0.841713i \(-0.318452\pi\)
−0.458982 + 0.888446i \(0.651786\pi\)
\(140\) −0.894657 5.84804i −0.0756123 0.494250i
\(141\) 0 0
\(142\) 12.4507i 1.04484i
\(143\) 0.147805 0.0853352i 0.0123601 0.00713608i
\(144\) 0 0
\(145\) 0.720372 + 8.25623i 0.0598236 + 0.685643i
\(146\) 4.01981 + 6.96252i 0.332682 + 0.576222i
\(147\) 0 0
\(148\) 5.42899 + 3.13443i 0.446260 + 0.257648i
\(149\) 12.1146 6.99438i 0.992468 0.573002i 0.0864572 0.996256i \(-0.472445\pi\)
0.906011 + 0.423254i \(0.139112\pi\)
\(150\) 0 0
\(151\) 2.45666 4.25506i 0.199920 0.346272i −0.748582 0.663042i \(-0.769265\pi\)
0.948502 + 0.316770i \(0.102598\pi\)
\(152\) 5.02533 + 2.90137i 0.407608 + 0.235333i
\(153\) 0 0
\(154\) 0.375212 0.0243387i 0.0302355 0.00196126i
\(155\) −7.29022 3.40157i −0.585565 0.273221i
\(156\) 0 0
\(157\) −6.40902 −0.511495 −0.255748 0.966744i \(-0.582322\pi\)
−0.255748 + 0.966744i \(0.582322\pi\)
\(158\) −8.41003 −0.669066
\(159\) 0 0
\(160\) 0.945479 2.02634i 0.0747467 0.160197i
\(161\) −10.2137 5.04539i −0.804950 0.397632i
\(162\) 0 0
\(163\) −0.970831 0.560510i −0.0760414 0.0439025i 0.461497 0.887142i \(-0.347312\pi\)
−0.537539 + 0.843239i \(0.680646\pi\)
\(164\) −3.96636 + 6.86994i −0.309721 + 0.536452i
\(165\) 0 0
\(166\) −2.03412 + 1.17440i −0.157879 + 0.0911512i
\(167\) 0.739056 + 0.426694i 0.0571899 + 0.0330186i 0.528322 0.849044i \(-0.322821\pi\)
−0.471132 + 0.882062i \(0.656155\pi\)
\(168\) 0 0
\(169\) 5.77888 + 10.0093i 0.444529 + 0.769948i
\(170\) 0.0202659 + 0.232269i 0.00155432 + 0.0178142i
\(171\) 0 0
\(172\) 1.49609 0.863766i 0.114076 0.0658615i
\(173\) 25.1821i 1.91456i 0.289162 + 0.957280i \(0.406623\pi\)
−0.289162 + 0.957280i \(0.593377\pi\)
\(174\) 0 0
\(175\) −12.6960 3.71632i −0.959729 0.280927i
\(176\) 0.123075 + 0.0710575i 0.00927714 + 0.00535616i
\(177\) 0 0
\(178\) 0.748203 1.29593i 0.0560802 0.0971337i
\(179\) 14.0102 8.08881i 1.04717 0.604586i 0.125317 0.992117i \(-0.460005\pi\)
0.921857 + 0.387531i \(0.126672\pi\)
\(180\) 0 0
\(181\) 17.0243i 1.26540i −0.774396 0.632701i \(-0.781946\pi\)
0.774396 0.632701i \(-0.218054\pi\)
\(182\) −0.205672 3.17070i −0.0152454 0.235028i
\(183\) 0 0
\(184\) −2.15286 3.72887i −0.158711 0.274896i
\(185\) 11.4844 8.03746i 0.844351 0.590925i
\(186\) 0 0
\(187\) −0.0148181 −0.00108361
\(188\) 5.04557i 0.367986i
\(189\) 0 0
\(190\) 10.6305 7.43985i 0.771220 0.539744i
\(191\) 3.96791i 0.287108i −0.989643 0.143554i \(-0.954147\pi\)
0.989643 0.143554i \(-0.0458530\pi\)
\(192\) 0 0
\(193\) 1.29203i 0.0930026i −0.998918 0.0465013i \(-0.985193\pi\)
0.998918 0.0465013i \(-0.0148072\pi\)
\(194\) 2.01118 + 3.48347i 0.144394 + 0.250098i
\(195\) 0 0
\(196\) 2.68750 6.46354i 0.191964 0.461681i
\(197\) 0.983884 0.0700988 0.0350494 0.999386i \(-0.488841\pi\)
0.0350494 + 0.999386i \(0.488841\pi\)
\(198\) 0 0
\(199\) −20.6241 + 11.9073i −1.46200 + 0.844086i −0.999104 0.0423259i \(-0.986523\pi\)
−0.462897 + 0.886412i \(0.653190\pi\)
\(200\) −3.21214 3.83173i −0.227132 0.270944i
\(201\) 0 0
\(202\) −1.68050 + 2.91071i −0.118239 + 0.204797i
\(203\) −4.34302 + 8.79183i −0.304820 + 0.617065i
\(204\) 0 0
\(205\) 10.1707 + 14.5326i 0.710356 + 1.01500i
\(206\) 9.57498 + 16.5843i 0.667120 + 1.15549i
\(207\) 0 0
\(208\) 0.600465 1.04004i 0.0416348 0.0721136i
\(209\) 0.412329 + 0.714175i 0.0285214 + 0.0494005i
\(210\) 0 0
\(211\) −11.2221 + 19.4372i −0.772559 + 1.33811i 0.163597 + 0.986527i \(0.447690\pi\)
−0.936156 + 0.351585i \(0.885643\pi\)
\(212\) 1.34026 + 2.32140i 0.0920495 + 0.159434i
\(213\) 0 0
\(214\) −7.15043 + 12.3849i −0.488793 + 0.846614i
\(215\) −0.335768 3.84826i −0.0228992 0.262449i
\(216\) 0 0
\(217\) −5.28296 7.91805i −0.358630 0.537513i
\(218\) 8.89823 + 15.4122i 0.602664 + 1.04385i
\(219\) 0 0
\(220\) 0.260352 0.182209i 0.0175529 0.0122845i
\(221\) 0.125219i 0.00842316i
\(222\) 0 0
\(223\) 8.99621 + 15.5819i 0.602430 + 1.04344i 0.992452 + 0.122634i \(0.0391343\pi\)
−0.390021 + 0.920806i \(0.627532\pi\)
\(224\) 2.20085 1.46842i 0.147051 0.0981127i
\(225\) 0 0
\(226\) 8.09024 14.0127i 0.538155 0.932111i
\(227\) 17.5341 + 10.1233i 1.16378 + 0.671909i 0.952207 0.305453i \(-0.0988080\pi\)
0.211573 + 0.977362i \(0.432141\pi\)
\(228\) 0 0
\(229\) −0.650116 + 0.375345i −0.0429609 + 0.0248035i −0.521327 0.853357i \(-0.674563\pi\)
0.478366 + 0.878161i \(0.341229\pi\)
\(230\) −9.59146 + 0.836873i −0.632442 + 0.0551818i
\(231\) 0 0
\(232\) −3.20977 + 1.85316i −0.210732 + 0.121666i
\(233\) −9.57787 + 16.5894i −0.627467 + 1.08681i 0.360591 + 0.932724i \(0.382575\pi\)
−0.988058 + 0.154081i \(0.950758\pi\)
\(234\) 0 0
\(235\) 10.2241 + 4.77049i 0.666945 + 0.311192i
\(236\) −9.80986 −0.638567
\(237\) 0 0
\(238\) −0.122180 + 0.247337i −0.00791977 + 0.0160325i
\(239\) −1.15565 0.667217i −0.0747531 0.0431587i 0.462158 0.886798i \(-0.347075\pi\)
−0.536911 + 0.843639i \(0.680409\pi\)
\(240\) 0 0
\(241\) −17.1287 9.88925i −1.10336 0.637023i −0.166256 0.986083i \(-0.553168\pi\)
−0.937100 + 0.349060i \(0.886501\pi\)
\(242\) −5.48990 9.50879i −0.352904 0.611248i
\(243\) 0 0
\(244\) 12.3067i 0.787853i
\(245\) −10.5564 11.5569i −0.674422 0.738346i
\(246\) 0 0
\(247\) 6.03507 3.48435i 0.384002 0.221704i
\(248\) 3.59772i 0.228456i
\(249\) 0 0
\(250\) −10.8014 + 2.88607i −0.683142 + 0.182531i
\(251\) −28.8281 −1.81961 −0.909805 0.415035i \(-0.863769\pi\)
−0.909805 + 0.415035i \(0.863769\pi\)
\(252\) 0 0
\(253\) 0.611908i 0.0384703i
\(254\) 11.0556i 0.693688i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −15.5450 + 8.97493i −0.969672 + 0.559841i −0.899136 0.437669i \(-0.855804\pi\)
−0.0705361 + 0.997509i \(0.522471\pi\)
\(258\) 0 0
\(259\) 16.5510 1.07361i 1.02843 0.0667106i
\(260\) −1.53974 2.20008i −0.0954909 0.136443i
\(261\) 0 0
\(262\) 4.68485 + 8.11440i 0.289431 + 0.501310i
\(263\) −7.94184 + 13.7557i −0.489715 + 0.848211i −0.999930 0.0118356i \(-0.996233\pi\)
0.510215 + 0.860047i \(0.329566\pi\)
\(264\) 0 0
\(265\) 5.97114 0.520994i 0.366804 0.0320044i
\(266\) 15.3204 0.993780i 0.939356 0.0609326i
\(267\) 0 0
\(268\) 7.27754i 0.444547i
\(269\) −5.25345 9.09924i −0.320308 0.554790i 0.660243 0.751052i \(-0.270453\pi\)
−0.980552 + 0.196261i \(0.937120\pi\)
\(270\) 0 0
\(271\) 10.9732 + 6.33540i 0.666577 + 0.384848i 0.794778 0.606900i \(-0.207587\pi\)
−0.128202 + 0.991748i \(0.540920\pi\)
\(272\) −0.0902992 + 0.0521342i −0.00547519 + 0.00316110i
\(273\) 0 0
\(274\) 9.56078 16.5598i 0.577588 1.00041i
\(275\) −0.123061 0.699838i −0.00742087 0.0422018i
\(276\) 0 0
\(277\) 12.8968 + 7.44600i 0.774896 + 0.447387i 0.834619 0.550828i \(-0.185688\pi\)
−0.0597221 + 0.998215i \(0.519021\pi\)
\(278\) 0.954315 + 0.550974i 0.0572360 + 0.0330452i
\(279\) 0 0
\(280\) −0.894657 5.84804i −0.0534660 0.349487i
\(281\) −5.92114 + 3.41857i −0.353226 + 0.203935i −0.666105 0.745858i \(-0.732040\pi\)
0.312879 + 0.949793i \(0.398706\pi\)
\(282\) 0 0
\(283\) 11.6293 0.691292 0.345646 0.938365i \(-0.387660\pi\)
0.345646 + 0.938365i \(0.387660\pi\)
\(284\) 12.4507i 0.738812i
\(285\) 0 0
\(286\) 0.147805 0.0853352i 0.00873988 0.00504597i
\(287\) 1.35856 + 20.9440i 0.0801933 + 1.23629i
\(288\) 0 0
\(289\) −8.49456 + 14.7130i −0.499680 + 0.865472i
\(290\) 0.720372 + 8.25623i 0.0423017 + 0.484823i
\(291\) 0 0
\(292\) 4.01981 + 6.96252i 0.235242 + 0.407450i
\(293\) −8.60234 4.96657i −0.502554 0.290150i 0.227213 0.973845i \(-0.427038\pi\)
−0.729768 + 0.683695i \(0.760372\pi\)
\(294\) 0 0
\(295\) −9.27502 + 19.8781i −0.540013 + 1.15735i
\(296\) 5.42899 + 3.13443i 0.315553 + 0.182185i
\(297\) 0 0
\(298\) 12.1146 6.99438i 0.701781 0.405174i
\(299\) −5.17088 −0.299040
\(300\) 0 0
\(301\) 2.02430 4.09790i 0.116679 0.236199i
\(302\) 2.45666 4.25506i 0.141365 0.244851i
\(303\) 0 0
\(304\) 5.02533 + 2.90137i 0.288222 + 0.166405i
\(305\) −24.9375 11.6357i −1.42792 0.666258i
\(306\) 0 0
\(307\) −25.3226 −1.44524 −0.722618 0.691247i \(-0.757061\pi\)
−0.722618 + 0.691247i \(0.757061\pi\)
\(308\) 0.375212 0.0243387i 0.0213797 0.00138682i
\(309\) 0 0
\(310\) −7.29022 3.40157i −0.414057 0.193196i
\(311\) −7.32275 −0.415235 −0.207618 0.978210i \(-0.566571\pi\)
−0.207618 + 0.978210i \(0.566571\pi\)
\(312\) 0 0
\(313\) 8.48704 0.479716 0.239858 0.970808i \(-0.422899\pi\)
0.239858 + 0.970808i \(0.422899\pi\)
\(314\) −6.40902 −0.361682
\(315\) 0 0
\(316\) −8.41003 −0.473101
\(317\) 2.24351 0.126008 0.0630039 0.998013i \(-0.479932\pi\)
0.0630039 + 0.998013i \(0.479932\pi\)
\(318\) 0 0
\(319\) −0.526725 −0.0294909
\(320\) 0.945479 2.02634i 0.0528539 0.113276i
\(321\) 0 0
\(322\) −10.2137 5.04539i −0.569185 0.281168i
\(323\) −0.605044 −0.0336655
\(324\) 0 0
\(325\) −5.91392 + 1.03992i −0.328045 + 0.0576843i
\(326\) −0.970831 0.560510i −0.0537694 0.0310438i
\(327\) 0 0
\(328\) −3.96636 + 6.86994i −0.219006 + 0.379329i
\(329\) 7.40901 + 11.1046i 0.408472 + 0.612214i
\(330\) 0 0
\(331\) −5.04537 −0.277319 −0.138659 0.990340i \(-0.544279\pi\)
−0.138659 + 0.990340i \(0.544279\pi\)
\(332\) −2.03412 + 1.17440i −0.111637 + 0.0644536i
\(333\) 0 0
\(334\) 0.739056 + 0.426694i 0.0404394 + 0.0233477i
\(335\) −14.7468 6.88077i −0.805704 0.375936i
\(336\) 0 0
\(337\) −30.0990 17.3777i −1.63960 0.946623i −0.980971 0.194155i \(-0.937804\pi\)
−0.658629 0.752468i \(-0.728863\pi\)
\(338\) 5.77888 + 10.0093i 0.314330 + 0.544435i
\(339\) 0 0
\(340\) 0.0202659 + 0.232269i 0.00109907 + 0.0125966i
\(341\) 0.255645 0.442790i 0.0138440 0.0239784i
\(342\) 0 0
\(343\) −3.57637 18.1717i −0.193106 0.981178i
\(344\) 1.49609 0.863766i 0.0806636 0.0465711i
\(345\) 0 0
\(346\) 25.1821i 1.35380i
\(347\) −6.90143 −0.370488 −0.185244 0.982693i \(-0.559308\pi\)
−0.185244 + 0.982693i \(0.559308\pi\)
\(348\) 0 0
\(349\) −0.226488 + 0.130763i −0.0121237 + 0.00699959i −0.506050 0.862504i \(-0.668895\pi\)
0.493926 + 0.869504i \(0.335561\pi\)
\(350\) −12.6960 3.71632i −0.678631 0.198646i
\(351\) 0 0
\(352\) 0.123075 + 0.0710575i 0.00655993 + 0.00378738i
\(353\) 24.7213 + 14.2729i 1.31578 + 0.759668i 0.983047 0.183351i \(-0.0586946\pi\)
0.332737 + 0.943020i \(0.392028\pi\)
\(354\) 0 0
\(355\) −25.2294 11.7719i −1.33904 0.624786i
\(356\) 0.748203 1.29593i 0.0396547 0.0686839i
\(357\) 0 0
\(358\) 14.0102 8.08881i 0.740464 0.427507i
\(359\) 10.5441 + 6.08767i 0.556499 + 0.321295i 0.751739 0.659461i \(-0.229215\pi\)
−0.195240 + 0.980755i \(0.562549\pi\)
\(360\) 0 0
\(361\) 7.33595 + 12.7062i 0.386103 + 0.668750i
\(362\) 17.0243i 0.894775i
\(363\) 0 0
\(364\) −0.205672 3.17070i −0.0107801 0.166190i
\(365\) 17.9091 1.56260i 0.937405 0.0817904i
\(366\) 0 0
\(367\) −11.1198 + 19.2601i −0.580451 + 1.00537i 0.414975 + 0.909833i \(0.363790\pi\)
−0.995426 + 0.0955375i \(0.969543\pi\)
\(368\) −2.15286 3.72887i −0.112226 0.194381i
\(369\) 0 0
\(370\) 11.4844 8.03746i 0.597046 0.417847i
\(371\) 6.35850 + 3.14100i 0.330117 + 0.163072i
\(372\) 0 0
\(373\) 3.32049 1.91709i 0.171929 0.0992631i −0.411566 0.911380i \(-0.635018\pi\)
0.583495 + 0.812117i \(0.301685\pi\)
\(374\) −0.0148181 −0.000766227
\(375\) 0 0
\(376\) 5.04557i 0.260206i
\(377\) 4.45104i 0.229240i
\(378\) 0 0
\(379\) −29.0957 −1.49454 −0.747272 0.664519i \(-0.768637\pi\)
−0.747272 + 0.664519i \(0.768637\pi\)
\(380\) 10.6305 7.43985i 0.545335 0.381656i
\(381\) 0 0
\(382\) 3.96791i 0.203016i
\(383\) −12.2543 + 7.07501i −0.626164 + 0.361516i −0.779265 0.626695i \(-0.784407\pi\)
0.153101 + 0.988211i \(0.451074\pi\)
\(384\) 0 0
\(385\) 0.305437 0.783321i 0.0155665 0.0399217i
\(386\) 1.29203i 0.0657628i
\(387\) 0 0
\(388\) 2.01118 + 3.48347i 0.102102 + 0.176846i
\(389\) 29.9470 + 17.2899i 1.51837 + 0.876633i 0.999766 + 0.0216198i \(0.00688233\pi\)
0.518606 + 0.855013i \(0.326451\pi\)
\(390\) 0 0
\(391\) 0.388803 + 0.224476i 0.0196626 + 0.0113522i
\(392\) 2.68750 6.46354i 0.135739 0.326458i
\(393\) 0 0
\(394\) 0.983884 0.0495674
\(395\) −7.95151 + 17.0416i −0.400084 + 0.857456i
\(396\) 0 0
\(397\) 14.6731 25.4146i 0.736422 1.27552i −0.217674 0.976022i \(-0.569847\pi\)
0.954096 0.299500i \(-0.0968197\pi\)
\(398\) −20.6241 + 11.9073i −1.03379 + 0.596859i
\(399\) 0 0
\(400\) −3.21214 3.83173i −0.160607 0.191587i
\(401\) 22.8472 13.1908i 1.14093 0.658719i 0.194273 0.980948i \(-0.437765\pi\)
0.946662 + 0.322229i \(0.104432\pi\)
\(402\) 0 0
\(403\) −3.74176 2.16031i −0.186390 0.107613i
\(404\) −1.68050 + 2.91071i −0.0836079 + 0.144813i
\(405\) 0 0
\(406\) −4.34302 + 8.79183i −0.215541 + 0.436331i
\(407\) 0.445449 + 0.771540i 0.0220801 + 0.0382438i
\(408\) 0 0
\(409\) 12.8464i 0.635215i 0.948222 + 0.317607i \(0.102879\pi\)
−0.948222 + 0.317607i \(0.897121\pi\)
\(410\) 10.1707 + 14.5326i 0.502297 + 0.717714i
\(411\) 0 0
\(412\) 9.57498 + 16.5843i 0.471725 + 0.817052i
\(413\) −21.5901 + 14.4050i −1.06238 + 0.708822i
\(414\) 0 0
\(415\) 0.456520 + 5.23220i 0.0224097 + 0.256839i
\(416\) 0.600465 1.04004i 0.0294402 0.0509920i
\(417\) 0 0
\(418\) 0.412329 + 0.714175i 0.0201677 + 0.0349314i
\(419\) 5.13440 8.89304i 0.250832 0.434453i −0.712923 0.701242i \(-0.752629\pi\)
0.963755 + 0.266789i \(0.0859626\pi\)
\(420\) 0 0
\(421\) 3.18306 + 5.51323i 0.155133 + 0.268698i 0.933107 0.359598i \(-0.117086\pi\)
−0.777974 + 0.628296i \(0.783753\pi\)
\(422\) −11.2221 + 19.4372i −0.546282 + 0.946188i
\(423\) 0 0
\(424\) 1.34026 + 2.32140i 0.0650888 + 0.112737i
\(425\) 0.489818 + 0.178540i 0.0237597 + 0.00866045i
\(426\) 0 0
\(427\) −18.0713 27.0851i −0.874532 1.31074i
\(428\) −7.15043 + 12.3849i −0.345629 + 0.598647i
\(429\) 0 0
\(430\) −0.335768 3.84826i −0.0161922 0.185579i
\(431\) 3.37653 1.94944i 0.162642 0.0939012i −0.416470 0.909149i \(-0.636733\pi\)
0.579112 + 0.815248i \(0.303400\pi\)
\(432\) 0 0
\(433\) −20.9340 −1.00603 −0.503013 0.864279i \(-0.667775\pi\)
−0.503013 + 0.864279i \(0.667775\pi\)
\(434\) −5.28296 7.91805i −0.253590 0.380079i
\(435\) 0 0
\(436\) 8.89823 + 15.4122i 0.426148 + 0.738110i
\(437\) 24.9851i 1.19520i
\(438\) 0 0
\(439\) 16.4017i 0.782811i 0.920218 + 0.391406i \(0.128011\pi\)
−0.920218 + 0.391406i \(0.871989\pi\)
\(440\) 0.260352 0.182209i 0.0124118 0.00868649i
\(441\) 0 0
\(442\) 0.125219i 0.00595607i
\(443\) 26.3852 1.25360 0.626800 0.779180i \(-0.284364\pi\)
0.626800 + 0.779180i \(0.284364\pi\)
\(444\) 0 0
\(445\) −1.91858 2.74139i −0.0909494 0.129954i
\(446\) 8.99621 + 15.5819i 0.425983 + 0.737824i
\(447\) 0 0
\(448\) 2.20085 1.46842i 0.103981 0.0693762i
\(449\) 32.5310i 1.53523i 0.640911 + 0.767615i \(0.278557\pi\)
−0.640911 + 0.767615i \(0.721443\pi\)
\(450\) 0 0
\(451\) −0.976322 + 0.563680i −0.0459732 + 0.0265426i
\(452\) 8.09024 14.0127i 0.380533 0.659102i
\(453\) 0 0
\(454\) 17.5341 + 10.1233i 0.822917 + 0.475111i
\(455\) −6.61939 2.58107i −0.310322 0.121002i
\(456\) 0 0
\(457\) 35.0085i 1.63763i −0.574058 0.818814i \(-0.694632\pi\)
0.574058 0.818814i \(-0.305368\pi\)
\(458\) −0.650116 + 0.375345i −0.0303779 + 0.0175387i
\(459\) 0 0
\(460\) −9.59146 + 0.836873i −0.447204 + 0.0390194i
\(461\) 5.08610 + 8.80939i 0.236883 + 0.410294i 0.959818 0.280622i \(-0.0905407\pi\)
−0.722935 + 0.690916i \(0.757207\pi\)
\(462\) 0 0
\(463\) 27.5356 + 15.8977i 1.27969 + 0.738828i 0.976791 0.214195i \(-0.0687128\pi\)
0.302897 + 0.953023i \(0.402046\pi\)
\(464\) −3.20977 + 1.85316i −0.149010 + 0.0860310i
\(465\) 0 0
\(466\) −9.57787 + 16.5894i −0.443686 + 0.768487i
\(467\) −19.5141 11.2665i −0.903006 0.521351i −0.0248321 0.999692i \(-0.507905\pi\)
−0.878174 + 0.478341i \(0.841238\pi\)
\(468\) 0 0
\(469\) −10.6865 16.0168i −0.493455 0.739587i
\(470\) 10.2241 + 4.77049i 0.471601 + 0.220046i
\(471\) 0 0
\(472\) −9.80986 −0.451535
\(473\) 0.245508 0.0112885
\(474\) 0 0
\(475\) −5.02476 28.5753i −0.230552 1.31113i
\(476\) −0.122180 + 0.247337i −0.00560013 + 0.0113367i
\(477\) 0 0
\(478\) −1.15565 0.667217i −0.0528584 0.0305178i
\(479\) −4.81018 + 8.33147i −0.219783 + 0.380675i −0.954741 0.297437i \(-0.903868\pi\)
0.734959 + 0.678112i \(0.237201\pi\)
\(480\) 0 0
\(481\) 6.51984 3.76423i 0.297279 0.171634i
\(482\) −17.1287 9.88925i −0.780191 0.450443i
\(483\) 0 0
\(484\) −5.48990 9.50879i −0.249541 0.432218i
\(485\) 8.96023 0.781797i 0.406863 0.0354996i
\(486\) 0 0
\(487\) 8.50444 4.91004i 0.385373 0.222495i −0.294781 0.955565i \(-0.595247\pi\)
0.680153 + 0.733070i \(0.261913\pi\)
\(488\) 12.3067i 0.557096i
\(489\) 0 0
\(490\) −10.5564 11.5569i −0.476888 0.522090i
\(491\) −24.7333 14.2798i −1.11620 0.644437i −0.175770 0.984431i \(-0.556242\pi\)
−0.940428 + 0.339994i \(0.889575\pi\)
\(492\) 0 0
\(493\) 0.193227 0.334678i 0.00870249 0.0150732i
\(494\) 6.03507 3.48435i 0.271531 0.156768i
\(495\) 0 0
\(496\) 3.59772i 0.161542i
\(497\) −18.2828 27.4021i −0.820095 1.22915i
\(498\) 0 0
\(499\) −10.3032 17.8456i −0.461232 0.798878i 0.537790 0.843079i \(-0.319259\pi\)
−0.999023 + 0.0442006i \(0.985926\pi\)
\(500\) −10.8014 + 2.88607i −0.483054 + 0.129069i
\(501\) 0 0
\(502\) −28.8281 −1.28666
\(503\) 5.19287i 0.231539i 0.993276 + 0.115769i \(0.0369333\pi\)
−0.993276 + 0.115769i \(0.963067\pi\)
\(504\) 0 0
\(505\) 4.30922 + 6.15728i 0.191758 + 0.273995i
\(506\) 0.611908i 0.0272026i
\(507\) 0 0
\(508\) 11.0556i 0.490511i
\(509\) 17.7208 + 30.6933i 0.785461 + 1.36046i 0.928724 + 0.370773i \(0.120907\pi\)
−0.143263 + 0.989685i \(0.545759\pi\)
\(510\) 0 0
\(511\) 19.0709 + 9.42071i 0.843646 + 0.416748i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −15.5450 + 8.97493i −0.685662 + 0.395867i
\(515\) 42.6585 3.72204i 1.87976 0.164013i
\(516\) 0 0
\(517\) −0.358526 + 0.620985i −0.0157680 + 0.0273109i
\(518\) 16.5510 1.07361i 0.727211 0.0471715i
\(519\) 0 0
\(520\) −1.53974 2.20008i −0.0675222 0.0964800i
\(521\) 5.23647 + 9.06983i 0.229414 + 0.397356i 0.957635 0.287986i \(-0.0929858\pi\)
−0.728221 + 0.685343i \(0.759652\pi\)
\(522\) 0 0
\(523\) −16.1085 + 27.9007i −0.704375 + 1.22001i 0.262541 + 0.964921i \(0.415440\pi\)
−0.966916 + 0.255093i \(0.917894\pi\)
\(524\) 4.68485 + 8.11440i 0.204659 + 0.354479i
\(525\) 0 0
\(526\) −7.94184 + 13.7557i −0.346281 + 0.599776i
\(527\) 0.187564 + 0.324871i 0.00817044 + 0.0141516i
\(528\) 0 0
\(529\) 2.23036 3.86310i 0.0969723 0.167961i
\(530\) 5.97114 0.520994i 0.259370 0.0226305i
\(531\) 0 0
\(532\) 15.3204 0.993780i 0.664225 0.0430858i
\(533\) 4.76333 + 8.25032i 0.206323 + 0.357361i
\(534\) 0 0
\(535\) 18.3355 + 26.1989i 0.792712 + 1.13268i
\(536\) 7.27754i 0.314342i
\(537\) 0 0
\(538\) −5.25345 9.09924i −0.226492 0.392296i
\(539\) 0.790048 0.604534i 0.0340298 0.0260391i
\(540\) 0 0
\(541\) 12.4544 21.5717i 0.535457 0.927439i −0.463684 0.886001i \(-0.653473\pi\)
0.999141 0.0414381i \(-0.0131939\pi\)
\(542\) 10.9732 + 6.33540i 0.471341 + 0.272129i
\(543\) 0 0
\(544\) −0.0902992 + 0.0521342i −0.00387154 + 0.00223524i
\(545\) 39.6435 3.45897i 1.69814 0.148166i
\(546\) 0 0
\(547\) −23.6806 + 13.6720i −1.01251 + 0.584574i −0.911926 0.410355i \(-0.865405\pi\)
−0.100585 + 0.994928i \(0.532072\pi\)
\(548\) 9.56078 16.5598i 0.408416 0.707398i
\(549\) 0 0
\(550\) −0.123061 0.699838i −0.00524735 0.0298412i
\(551\) −21.5069 −0.916224
\(552\) 0 0
\(553\) −18.5092 + 12.3494i −0.787093 + 0.525151i
\(554\) 12.8968 + 7.44600i 0.547935 + 0.316350i
\(555\) 0 0
\(556\) 0.954315 + 0.550974i 0.0404720 + 0.0233665i
\(557\) −8.95463 15.5099i −0.379420 0.657175i 0.611558 0.791200i \(-0.290543\pi\)
−0.990978 + 0.134025i \(0.957210\pi\)
\(558\) 0 0
\(559\) 2.07465i 0.0877482i
\(560\) −0.894657 5.84804i −0.0378062 0.247125i
\(561\) 0 0
\(562\) −5.92114 + 3.41857i −0.249768 + 0.144204i
\(563\) 30.4638i 1.28390i 0.766748 + 0.641948i \(0.221874\pi\)
−0.766748 + 0.641948i \(0.778126\pi\)
\(564\) 0 0
\(565\) −20.7454 29.6423i −0.872766 1.24706i
\(566\) 11.6293 0.488817
\(567\) 0 0
\(568\) 12.4507i 0.522419i
\(569\) 39.6736i 1.66320i −0.555371 0.831602i \(-0.687424\pi\)
0.555371 0.831602i \(-0.312576\pi\)
\(570\) 0 0
\(571\) 3.24837 0.135940 0.0679699 0.997687i \(-0.478348\pi\)
0.0679699 + 0.997687i \(0.478348\pi\)
\(572\) 0.147805 0.0853352i 0.00618003 0.00356804i
\(573\) 0 0
\(574\) 1.35856 + 20.9440i 0.0567052 + 0.874186i
\(575\) −7.37273 + 20.2268i −0.307464 + 0.843517i
\(576\) 0 0
\(577\) −0.0635247 0.110028i −0.00264457 0.00458053i 0.864700 0.502289i \(-0.167508\pi\)
−0.867345 + 0.497708i \(0.834175\pi\)
\(578\) −8.49456 + 14.7130i −0.353327 + 0.611981i
\(579\) 0 0
\(580\) 0.720372 + 8.25623i 0.0299118 + 0.342821i
\(581\) −2.75229 + 5.57162i −0.114184 + 0.231150i
\(582\) 0 0
\(583\) 0.380942i 0.0157770i
\(584\) 4.01981 + 6.96252i 0.166341 + 0.288111i
\(585\) 0 0
\(586\) −8.60234 4.96657i −0.355360 0.205167i
\(587\) −2.49693 + 1.44160i −0.103059 + 0.0595014i −0.550644 0.834740i \(-0.685618\pi\)
0.447584 + 0.894242i \(0.352284\pi\)
\(588\) 0 0
\(589\) 10.4383 18.0797i 0.430104 0.744962i
\(590\) −9.27502 + 19.8781i −0.381847 + 0.818370i
\(591\) 0 0
\(592\) 5.42899 + 3.13443i 0.223130 + 0.128824i
\(593\) 40.6636 + 23.4772i 1.66986 + 0.964092i 0.967713 + 0.252055i \(0.0811065\pi\)
0.702143 + 0.712036i \(0.252227\pi\)
\(594\) 0 0
\(595\) 0.385670 + 0.481431i 0.0158109 + 0.0197367i
\(596\) 12.1146 6.99438i 0.496234 0.286501i
\(597\) 0 0
\(598\) −5.17088 −0.211453
\(599\) 5.67416i 0.231840i −0.993259 0.115920i \(-0.963018\pi\)
0.993259 0.115920i \(-0.0369816\pi\)
\(600\) 0 0
\(601\) −28.9131 + 16.6930i −1.17939 + 0.680921i −0.955873 0.293780i \(-0.905087\pi\)
−0.223516 + 0.974700i \(0.571753\pi\)
\(602\) 2.02430 4.09790i 0.0825042 0.167018i
\(603\) 0 0
\(604\) 2.45666 4.25506i 0.0999602 0.173136i
\(605\) −24.4587 + 2.13406i −0.994386 + 0.0867621i
\(606\) 0 0
\(607\) 22.3763 + 38.7570i 0.908228 + 1.57310i 0.816525 + 0.577310i \(0.195898\pi\)
0.0917027 + 0.995786i \(0.470769\pi\)
\(608\) 5.02533 + 2.90137i 0.203804 + 0.117666i
\(609\) 0 0
\(610\) −24.9375 11.6357i −1.00969 0.471116i
\(611\) 5.24758 + 3.02969i 0.212294 + 0.122568i
\(612\) 0 0
\(613\) 27.0024 15.5899i 1.09062 0.629668i 0.156877 0.987618i \(-0.449857\pi\)
0.933741 + 0.357950i \(0.116524\pi\)
\(614\) −25.3226 −1.02194
\(615\) 0 0
\(616\) 0.375212 0.0243387i 0.0151177 0.000980632i
\(617\) 0.359684 0.622991i 0.0144803 0.0250807i −0.858694 0.512488i \(-0.828724\pi\)
0.873175 + 0.487407i \(0.162057\pi\)
\(618\) 0 0
\(619\) 31.7674 + 18.3409i 1.27684 + 0.737184i 0.976266 0.216574i \(-0.0694884\pi\)
0.300574 + 0.953758i \(0.402822\pi\)
\(620\) −7.29022 3.40157i −0.292782 0.136610i
\(621\) 0 0
\(622\) −7.32275 −0.293616
\(623\) −0.256275 3.95081i −0.0102674 0.158286i
\(624\) 0 0
\(625\) −4.36434 + 24.6161i −0.174574 + 0.984644i
\(626\) 8.48704 0.339210
\(627\) 0 0
\(628\) −6.40902 −0.255748
\(629\) −0.653644 −0.0260625
\(630\) 0 0
\(631\) −15.5643 −0.619603 −0.309802 0.950801i \(-0.600263\pi\)
−0.309802 + 0.950801i \(0.600263\pi\)
\(632\) −8.41003 −0.334533
\(633\) 0 0
\(634\) 2.24351 0.0891010
\(635\) 22.4024 + 10.4528i 0.889011 + 0.414807i
\(636\) 0 0
\(637\) −5.10856 6.67623i −0.202409 0.264522i
\(638\) −0.526725 −0.0208532
\(639\) 0 0
\(640\) 0.945479 2.02634i 0.0373734 0.0800983i
\(641\) 16.3208 + 9.42280i 0.644632 + 0.372178i 0.786396 0.617722i \(-0.211944\pi\)
−0.141765 + 0.989900i \(0.545278\pi\)
\(642\) 0 0
\(643\) 5.39558 9.34542i 0.212781 0.368548i −0.739803 0.672824i \(-0.765081\pi\)
0.952584 + 0.304276i \(0.0984146\pi\)
\(644\) −10.2137 5.04539i −0.402475 0.198816i
\(645\) 0 0
\(646\) −0.605044 −0.0238051
\(647\) 43.7372 25.2517i 1.71949 0.992747i 0.799632 0.600491i \(-0.205028\pi\)
0.919856 0.392256i \(-0.128305\pi\)
\(648\) 0 0
\(649\) −1.20735 0.697064i −0.0473927 0.0273622i
\(650\) −5.91392 + 1.03992i −0.231963 + 0.0407889i
\(651\) 0 0
\(652\) −0.970831 0.560510i −0.0380207 0.0219513i
\(653\) −18.0024 31.1811i −0.704490 1.22021i −0.966875 0.255249i \(-0.917842\pi\)
0.262385 0.964963i \(-0.415491\pi\)
\(654\) 0 0
\(655\) 20.8720 1.82112i 0.815537 0.0711571i
\(656\) −3.96636 + 6.86994i −0.154860 + 0.268226i
\(657\) 0 0
\(658\) 7.40901 + 11.1046i 0.288833 + 0.432901i
\(659\) −4.91626 + 2.83840i −0.191510 + 0.110568i −0.592689 0.805431i \(-0.701934\pi\)
0.401179 + 0.916000i \(0.368600\pi\)
\(660\) 0 0
\(661\) 21.4910i 0.835902i −0.908470 0.417951i \(-0.862748\pi\)
0.908470 0.417951i \(-0.137252\pi\)
\(662\) −5.04537 −0.196094
\(663\) 0 0
\(664\) −2.03412 + 1.17440i −0.0789393 + 0.0455756i
\(665\) 12.4714 31.9841i 0.483621 1.24029i
\(666\) 0 0
\(667\) 13.8204 + 7.97922i 0.535128 + 0.308956i
\(668\) 0.739056 + 0.426694i 0.0285949 + 0.0165093i
\(669\) 0 0
\(670\) −14.7468 6.88077i −0.569719 0.265827i
\(671\) 0.874481 1.51465i 0.0337590 0.0584722i
\(672\) 0 0
\(673\) 6.60209 3.81172i 0.254492 0.146931i −0.367327 0.930092i \(-0.619727\pi\)
0.621819 + 0.783161i \(0.286394\pi\)
\(674\) −30.0990 17.3777i −1.15937 0.669364i
\(675\) 0 0
\(676\) 5.77888 + 10.0093i 0.222265 + 0.384974i
\(677\) 30.8268i 1.18477i −0.805654 0.592386i \(-0.798186\pi\)
0.805654 0.592386i \(-0.201814\pi\)
\(678\) 0 0
\(679\) 9.54150 + 4.71335i 0.366169 + 0.180882i
\(680\) 0.0202659 + 0.232269i 0.000777162 + 0.00890711i
\(681\) 0 0
\(682\) 0.255645 0.442790i 0.00978916 0.0169553i
\(683\) −18.8176 32.5930i −0.720036 1.24714i −0.960985 0.276601i \(-0.910792\pi\)
0.240949 0.970538i \(-0.422541\pi\)
\(684\) 0 0
\(685\) −24.5162 35.0303i −0.936718 1.33844i
\(686\) −3.57637 18.1717i −0.136547 0.693798i
\(687\) 0 0
\(688\) 1.49609 0.863766i 0.0570378 0.0329308i
\(689\) 3.21912 0.122639
\(690\) 0 0
\(691\) 11.9246i 0.453633i −0.973938 0.226816i \(-0.927168\pi\)
0.973938 0.226816i \(-0.0728317\pi\)
\(692\) 25.1821i 0.957280i
\(693\) 0 0
\(694\) −6.90143 −0.261975
\(695\) 2.01875 1.41284i 0.0765755 0.0535919i
\(696\) 0 0
\(697\) 0.827133i 0.0313299i
\(698\) −0.226488 + 0.130763i −0.00857272 + 0.00494946i
\(699\) 0 0
\(700\) −12.6960 3.71632i −0.479865 0.140464i
\(701\) 12.4716i 0.471046i −0.971869 0.235523i \(-0.924320\pi\)
0.971869 0.235523i \(-0.0756803\pi\)
\(702\) 0 0
\(703\) 18.1883 + 31.5030i 0.685984 + 1.18816i
\(704\) 0.123075 + 0.0710575i 0.00463857 + 0.00267808i
\(705\) 0 0
\(706\) 24.7213 + 14.2729i 0.930400 + 0.537167i
\(707\) 0.575605 + 8.87371i 0.0216479 + 0.333730i
\(708\) 0 0
\(709\) 28.2913 1.06250 0.531251 0.847215i \(-0.321722\pi\)
0.531251 + 0.847215i \(0.321722\pi\)
\(710\) −25.2294 11.7719i −0.946841 0.441790i
\(711\) 0 0
\(712\) 0.748203 1.29593i 0.0280401 0.0485669i
\(713\) −13.4154 + 7.74540i −0.502412 + 0.290068i
\(714\) 0 0
\(715\) −0.0331719 0.380186i −0.00124056 0.0142182i
\(716\) 14.0102 8.08881i 0.523587 0.302293i
\(717\) 0 0
\(718\) 10.5441 + 6.08767i 0.393504 + 0.227190i
\(719\) −3.47046 + 6.01101i −0.129426 + 0.224173i −0.923454 0.383708i \(-0.874647\pi\)
0.794028 + 0.607881i \(0.207980\pi\)
\(720\) 0 0
\(721\) 45.4258 + 22.4396i 1.69175 + 0.835696i
\(722\) 7.33595 + 12.7062i 0.273016 + 0.472877i
\(723\) 0 0
\(724\) 17.0243i 0.632701i
\(725\) 17.4111 + 6.34638i 0.646631 + 0.235699i
\(726\) 0 0
\(727\) −8.87166 15.3662i −0.329032 0.569899i 0.653288 0.757109i \(-0.273389\pi\)
−0.982320 + 0.187210i \(0.940056\pi\)
\(728\) −0.205672 3.17070i −0.00762270 0.117514i
\(729\) 0 0
\(730\) 17.9091 1.56260i 0.662845 0.0578345i
\(731\) −0.0900636 + 0.155995i −0.00333112 + 0.00576967i
\(732\) 0 0
\(733\) −9.39300 16.2692i −0.346939 0.600915i 0.638765 0.769402i \(-0.279445\pi\)
−0.985704 + 0.168486i \(0.946112\pi\)
\(734\) −11.1198 + 19.2601i −0.410441 + 0.710904i
\(735\) 0 0
\(736\) −2.15286 3.72887i −0.0793556 0.137448i
\(737\) 0.517124 0.895685i 0.0190485 0.0329930i
\(738\) 0 0
\(739\) −19.5906 33.9320i −0.720653 1.24821i −0.960738 0.277456i \(-0.910509\pi\)
0.240085 0.970752i \(-0.422825\pi\)
\(740\) 11.4844 8.03746i 0.422176 0.295463i
\(741\) 0 0
\(742\) 6.35850 + 3.14100i 0.233428 + 0.115310i
\(743\) −3.04957 + 5.28201i −0.111878 + 0.193778i −0.916527 0.399972i \(-0.869020\pi\)
0.804650 + 0.593750i \(0.202353\pi\)
\(744\) 0 0
\(745\) −2.71889 31.1614i −0.0996126 1.14167i
\(746\) 3.32049 1.91709i 0.121572 0.0701896i
\(747\) 0 0
\(748\) −0.0148181 −0.000541804
\(749\) 2.44917 + 37.7571i 0.0894906 + 1.37962i
\(750\) 0 0
\(751\) −26.9458 46.6715i −0.983266 1.70307i −0.649404 0.760444i \(-0.724981\pi\)
−0.333862 0.942622i \(-0.608352\pi\)
\(752\) 5.04557i 0.183993i
\(753\) 0 0
\(754\) 4.45104i 0.162097i
\(755\) −6.29950 9.00112i −0.229262 0.327584i
\(756\) 0 0
\(757\) 18.1765i 0.660637i −0.943870 0.330318i \(-0.892844\pi\)
0.943870 0.330318i \(-0.107156\pi\)
\(758\) −29.0957 −1.05680
\(759\) 0 0
\(760\) 10.6305 7.43985i 0.385610 0.269872i
\(761\) −14.9924 25.9677i −0.543476 0.941328i −0.998701 0.0509513i \(-0.983775\pi\)
0.455225 0.890376i \(-0.349559\pi\)
\(762\) 0 0
\(763\) 42.2152 + 20.8536i 1.52829 + 0.754952i
\(764\) 3.96791i 0.143554i
\(765\) 0 0
\(766\) −12.2543 + 7.07501i −0.442765 + 0.255630i
\(767\) −5.89048 + 10.2026i −0.212693 + 0.368395i
\(768\) 0 0
\(769\) −29.1902 16.8530i −1.05263 0.607734i −0.129242 0.991613i \(-0.541255\pi\)
−0.923383 + 0.383879i \(0.874588\pi\)
\(770\) 0.305437 0.783321i 0.0110072 0.0282289i
\(771\) 0 0
\(772\) 1.29203i 0.0465013i
\(773\) 27.1549 15.6779i 0.976694 0.563895i 0.0754237 0.997152i \(-0.475969\pi\)
0.901270 + 0.433257i \(0.142636\pi\)
\(774\) 0 0
\(775\) −13.7855 + 11.5564i −0.495190 + 0.415117i
\(776\) 2.01118 + 3.48347i 0.0721972 + 0.125049i
\(777\) 0 0
\(778\) 29.9470 + 17.2899i 1.07365 + 0.619873i
\(779\) −39.8645 + 23.0158i −1.42830 + 0.824627i
\(780\) 0 0
\(781\) 0.884714 1.53237i 0.0316576 0.0548325i
\(782\) 0.388803 + 0.224476i 0.0139036 + 0.00802724i
\(783\) 0 0
\(784\) 2.68750 6.46354i 0.0959822 0.230841i
\(785\) −6.05959 + 12.9869i −0.216276 + 0.463521i
\(786\) 0 0
\(787\) 33.3758 1.18972 0.594859 0.803830i \(-0.297208\pi\)
0.594859 + 0.803830i \(0.297208\pi\)
\(788\) 0.983884 0.0350494
\(789\) 0 0
\(790\) −7.95151 + 17.0416i −0.282902 + 0.606313i
\(791\) −2.77107 42.7197i −0.0985280 1.51894i
\(792\) 0 0
\(793\) −12.7994 7.38973i −0.454519 0.262417i
\(794\) 14.6731 25.4146i 0.520729 0.901930i
\(795\) 0 0
\(796\) −20.6241 + 11.9073i −0.731000 + 0.422043i
\(797\) 4.60415 + 2.65821i 0.163087 + 0.0941585i 0.579322 0.815099i \(-0.303317\pi\)
−0.416235 + 0.909257i \(0.636651\pi\)
\(798\) 0 0
\(799\) −0.263047 0.455611i −0.00930594 0.0161184i
\(800\) −3.21214 3.83173i −0.113566 0.135472i
\(801\) 0 0
\(802\) 22.8472 13.1908i 0.806762 0.465785i
\(803\) 1.14255i 0.0403197i
\(804\) 0 0
\(805\) −19.8805 + 15.9261i −0.700696 + 0.561321i
\(806\) −3.74176 2.16031i −0.131798 0.0760936i
\(807\) 0 0
\(808\) −1.68050 + 2.91071i −0.0591197 + 0.102398i
\(809\) −13.1171 + 7.57314i −0.461171 + 0.266257i −0.712537 0.701635i \(-0.752454\pi\)
0.251365 + 0.967892i \(0.419120\pi\)
\(810\) 0 0
\(811\) 25.5538i 0.897316i 0.893704 + 0.448658i \(0.148098\pi\)
−0.893704 + 0.448658i \(0.851902\pi\)
\(812\) −4.34302 + 8.79183i −0.152410 + 0.308533i
\(813\) 0 0
\(814\) 0.445449 + 0.771540i 0.0156130 + 0.0270425i
\(815\) −2.05369 + 1.43729i −0.0719375 + 0.0503460i
\(816\) 0 0
\(817\) 10.0244 0.350711
\(818\) 12.8464i 0.449164i
\(819\) 0 0
\(820\) 10.1707 + 14.5326i 0.355178 + 0.507500i
\(821\) 30.2878i 1.05705i −0.848918 0.528525i \(-0.822745\pi\)
0.848918 0.528525i \(-0.177255\pi\)
\(822\) 0 0
\(823\) 44.3997i 1.54768i 0.633383 + 0.773838i \(0.281666\pi\)
−0.633383 + 0.773838i \(0.718334\pi\)
\(824\) 9.57498 + 16.5843i 0.333560 + 0.577743i
\(825\) 0 0
\(826\) −21.5901 + 14.4050i −0.751214 + 0.501213i
\(827\) 8.05224 0.280004 0.140002 0.990151i \(-0.455289\pi\)
0.140002 + 0.990151i \(0.455289\pi\)
\(828\) 0 0
\(829\) 9.26932 5.35164i 0.321937 0.185870i −0.330319 0.943869i \(-0.607156\pi\)
0.652255 + 0.757999i \(0.273823\pi\)
\(830\) 0.456520 + 5.23220i 0.0158460 + 0.181612i
\(831\) 0 0
\(832\) 0.600465 1.04004i 0.0208174 0.0360568i
\(833\) 0.0942925 + 0.723763i 0.00326704 + 0.0250769i
\(834\) 0 0
\(835\) 1.56339 1.09415i 0.0541034 0.0378647i
\(836\) 0.412329 + 0.714175i 0.0142607 + 0.0247002i
\(837\) 0 0
\(838\) 5.13440 8.89304i 0.177365 0.307205i
\(839\) −24.9171 43.1577i −0.860234 1.48997i −0.871703 0.490034i \(-0.836984\pi\)
0.0114693 0.999934i \(-0.496349\pi\)
\(840\) 0 0
\(841\) −7.63157 + 13.2183i −0.263157 + 0.455802i
\(842\) 3.18306 + 5.51323i 0.109696 + 0.189998i
\(843\) 0 0
\(844\) −11.2221 + 19.4372i −0.386280 + 0.669056i
\(845\) 25.7461 2.24640i 0.885694 0.0772785i
\(846\) 0 0
\(847\) −26.0453 12.8660i −0.894928 0.442080i
\(848\) 1.34026 + 2.32140i 0.0460248 + 0.0797172i
\(849\) 0 0
\(850\) 0.489818 + 0.178540i 0.0168006 + 0.00612387i
\(851\) 26.9920i 0.925272i
\(852\) 0 0
\(853\) −9.14863 15.8459i −0.313243 0.542553i 0.665819 0.746113i \(-0.268082\pi\)
−0.979062 + 0.203560i \(0.934749\pi\)
\(854\) −18.0713 27.0851i −0.618388 0.926835i
\(855\) 0 0
\(856\) −7.15043 + 12.3849i −0.244397 + 0.423307i
\(857\) −12.0422 6.95257i −0.411354 0.237495i 0.280017 0.959995i \(-0.409660\pi\)
−0.691371 + 0.722500i \(0.742993\pi\)
\(858\) 0 0
\(859\) 33.8907 19.5668i 1.15634 0.667611i 0.205912 0.978570i \(-0.433984\pi\)
0.950423 + 0.310960i \(0.100650\pi\)
\(860\) −0.335768 3.84826i −0.0114496 0.131225i
\(861\) 0 0
\(862\) 3.37653 1.94944i 0.115005 0.0663982i
\(863\) 0.517393 0.896150i 0.0176122 0.0305053i −0.857085 0.515175i \(-0.827727\pi\)
0.874697 + 0.484670i \(0.161060\pi\)
\(864\) 0 0
\(865\) 51.0276 + 23.8092i 1.73499 + 0.809536i
\(866\) −20.9340 −0.711367
\(867\) 0 0
\(868\) −5.28296 7.91805i −0.179315 0.268756i
\(869\) −1.03507 0.597596i −0.0351122 0.0202720i
\(870\) 0 0
\(871\) −7.56891 4.36991i −0.256463 0.148069i
\(872\) 8.89823 + 15.4122i 0.301332 + 0.521923i
\(873\) 0 0
\(874\) 24.9851i 0.845132i
\(875\) −19.5344 + 22.2128i −0.660382 + 0.750930i
\(876\) 0 0
\(877\) −1.34680 + 0.777575i −0.0454782 + 0.0262568i −0.522567 0.852598i \(-0.675025\pi\)
0.477089 + 0.878855i \(0.341692\pi\)
\(878\) 16.4017i 0.553531i
\(879\) 0 0
\(880\) 0.260352 0.182209i 0.00877646 0.00614227i
\(881\) 11.9598 0.402937 0.201469 0.979495i \(-0.435429\pi\)
0.201469 + 0.979495i \(0.435429\pi\)
\(882\) 0 0
\(883\) 10.7656i 0.362292i −0.983456 0.181146i \(-0.942019\pi\)
0.983456 0.181146i \(-0.0579806\pi\)
\(884\) 0.125219i 0.00421158i
\(885\) 0 0
\(886\) 26.3852 0.886429
\(887\) −23.0704 + 13.3197i −0.774629 + 0.447232i −0.834524 0.550972i \(-0.814257\pi\)
0.0598943 + 0.998205i \(0.480924\pi\)
\(888\) 0 0
\(889\) 16.2342 + 24.3317i 0.544477 + 0.816058i
\(890\) −1.91858 2.74139i −0.0643110 0.0918915i
\(891\) 0 0
\(892\) 8.99621 + 15.5819i 0.301215 + 0.521720i
\(893\) −14.6391 + 25.3557i −0.489879 + 0.848495i
\(894\) 0 0
\(895\) −3.14433 36.0373i −0.105103 1.20460i
\(896\) 2.20085 1.46842i 0.0735253 0.0490564i
\(897\) 0 0
\(898\) 32.5310i 1.08557i
\(899\) 6.66717 + 11.5479i 0.222362 + 0.385143i
\(900\) 0 0
\(901\) −0.242049 0.139747i −0.00806382 0.00465565i
\(902\) −0.976322 + 0.563680i −0.0325080 + 0.0187685i
\(903\) 0 0
\(904\) 8.09024 14.0127i 0.269077 0.466056i
\(905\) −34.4970 16.0961i −1.14672 0.535052i
\(906\) 0 0
\(907\) 6.54032 + 3.77606i 0.217168 + 0.125382i 0.604638 0.796500i \(-0.293318\pi\)
−0.387470 + 0.921882i \(0.626651\pi\)
\(908\) 17.5341 + 10.1233i 0.581890 + 0.335954i
\(909\) 0 0
\(910\) −6.61939 2.58107i −0.219431 0.0855617i
\(911\) −21.2685 + 12.2794i −0.704656 + 0.406834i −0.809079 0.587699i \(-0.800034\pi\)
0.104423 + 0.994533i \(0.466700\pi\)
\(912\) 0 0
\(913\) −0.333800 −0.0110472
\(914\) 35.0085i 1.15798i
\(915\) 0 0
\(916\) −0.650116 + 0.375345i −0.0214804 + 0.0124017i
\(917\) 22.2260 + 10.9793i 0.733967 + 0.362568i
\(918\) 0 0
\(919\) −17.1584 + 29.7192i −0.566003 + 0.980345i 0.430953 + 0.902374i \(0.358177\pi\)
−0.996956 + 0.0779709i \(0.975156\pi\)
\(920\) −9.59146 + 0.836873i −0.316221 + 0.0275909i
\(921\) 0 0
\(922\) 5.08610 + 8.80939i 0.167502 + 0.290122i
\(923\) −12.9492 7.47620i −0.426227 0.246082i
\(924\) 0 0
\(925\) −5.42837 30.8706i −0.178484 1.01502i
\(926\) 27.5356 + 15.8977i 0.904876 + 0.522430i
\(927\) 0 0
\(928\) −3.20977 + 1.85316i −0.105366 + 0.0608331i
\(929\) −22.0312 −0.722821 −0.361411 0.932407i \(-0.617705\pi\)
−0.361411 + 0.932407i \(0.617705\pi\)
\(930\) 0 0
\(931\) 32.2587 24.6840i 1.05724 0.808984i
\(932\) −9.57787 + 16.5894i −0.313734 + 0.543403i
\(933\) 0 0
\(934\) −19.5141 11.2665i −0.638522 0.368651i
\(935\) −0.0140102 + 0.0300266i −0.000458183 + 0.000981975i
\(936\) 0 0
\(937\) −36.9235 −1.20624 −0.603120 0.797651i \(-0.706076\pi\)
−0.603120 + 0.797651i \(0.706076\pi\)
\(938\) −10.6865 16.0168i −0.348926 0.522967i
\(939\) 0 0
\(940\) 10.2241 + 4.77049i 0.333472 + 0.155596i
\(941\) −15.7517 −0.513492 −0.256746 0.966479i \(-0.582650\pi\)
−0.256746 + 0.966479i \(0.582650\pi\)
\(942\) 0 0
\(943\) 34.1561 1.11228
\(944\) −9.80986 −0.319284
\(945\) 0 0
\(946\) 0.245508 0.00798216
\(947\) 19.2361 0.625090 0.312545 0.949903i \(-0.398818\pi\)
0.312545 + 0.949903i \(0.398818\pi\)
\(948\) 0 0
\(949\) 9.65503 0.313415
\(950\) −5.02476 28.5753i −0.163025 0.927106i
\(951\) 0 0
\(952\) −0.122180 + 0.247337i −0.00395989 + 0.00801623i
\(953\) 21.0241 0.681036 0.340518 0.940238i \(-0.389398\pi\)
0.340518 + 0.940238i \(0.389398\pi\)
\(954\) 0 0
\(955\) −8.04034 3.75157i −0.260179 0.121398i
\(956\) −1.15565 0.667217i −0.0373765 0.0215794i
\(957\) 0 0
\(958\) −4.81018 + 8.33147i −0.155410 + 0.269178i
\(959\) −3.27476 50.4848i −0.105748 1.63024i
\(960\) 0 0
\(961\) 18.0564 0.582465
\(962\) 6.51984 3.76423i 0.210208 0.121364i
\(963\) 0 0
\(964\) −17.1287 9.88925i −0.551678 0.318511i
\(965\) −2.61810 1.22159i −0.0842798 0.0393244i
\(966\) 0 0
\(967\) 31.4041 + 18.1311i 1.00989 + 0.583058i 0.911158 0.412056i \(-0.135189\pi\)
0.0987282 + 0.995114i \(0.468523\pi\)
\(968\) −5.48990 9.50879i −0.176452 0.305624i
\(969\) 0 0
\(970\) 8.96023 0.781797i 0.287696 0.0251020i
\(971\) 19.6361 34.0108i 0.630153 1.09146i −0.357367 0.933964i \(-0.616325\pi\)
0.987520 0.157493i \(-0.0503412\pi\)
\(972\) 0 0
\(973\) 2.90937 0.188720i 0.0932700 0.00605008i
\(974\) 8.50444 4.91004i 0.272500 0.157328i
\(975\) 0 0
\(976\) 12.3067i 0.393927i
\(977\) 37.2951 1.19317 0.596587 0.802548i \(-0.296523\pi\)
0.596587 + 0.802548i \(0.296523\pi\)
\(978\) 0 0
\(979\) 0.184170 0.106331i 0.00588611 0.00339835i
\(980\) −10.5564 11.5569i −0.337211 0.369173i
\(981\) 0 0
\(982\) −24.7333 14.2798i −0.789271 0.455686i
\(983\) 35.5207 + 20.5079i 1.13293 + 0.654100i 0.944671 0.328018i \(-0.106381\pi\)
0.188264 + 0.982119i \(0.439714\pi\)
\(984\) 0 0
\(985\) 0.930242 1.99369i 0.0296400 0.0635241i
\(986\) 0.193227 0.334678i 0.00615359 0.0106583i
\(987\) 0 0
\(988\) 6.03507 3.48435i 0.192001 0.110852i
\(989\) −6.44174 3.71914i −0.204835 0.118262i
\(990\) 0 0
\(991\) 9.52837 + 16.5036i 0.302679 + 0.524255i 0.976742 0.214419i \(-0.0687858\pi\)
−0.674063 + 0.738674i \(0.735452\pi\)
\(992\) 3.59772i 0.114228i
\(993\) 0 0
\(994\) −18.2828 27.4021i −0.579895 0.869142i
\(995\) 4.62867 + 53.0495i 0.146739 + 1.68178i
\(996\) 0 0
\(997\) −17.8254 + 30.8745i −0.564536 + 0.977806i 0.432556 + 0.901607i \(0.357612\pi\)
−0.997093 + 0.0761986i \(0.975722\pi\)
\(998\) −10.3032 17.8456i −0.326141 0.564892i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1890.2.bi.b.719.15 48
3.2 odd 2 630.2.bi.a.509.8 yes 48
5.4 even 2 1890.2.bi.a.719.1 48
7.3 odd 6 1890.2.r.a.1529.8 48
9.2 odd 6 1890.2.r.b.89.8 48
9.7 even 3 630.2.r.a.299.9 yes 48
15.14 odd 2 630.2.bi.b.509.17 yes 48
21.17 even 6 630.2.r.b.59.16 yes 48
35.24 odd 6 1890.2.r.b.1529.8 48
45.29 odd 6 1890.2.r.a.89.8 48
45.34 even 6 630.2.r.b.299.16 yes 48
63.38 even 6 1890.2.bi.a.899.1 48
63.52 odd 6 630.2.bi.b.479.17 yes 48
105.59 even 6 630.2.r.a.59.9 48
315.164 even 6 inner 1890.2.bi.b.899.15 48
315.304 odd 6 630.2.bi.a.479.8 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.2.r.a.59.9 48 105.59 even 6
630.2.r.a.299.9 yes 48 9.7 even 3
630.2.r.b.59.16 yes 48 21.17 even 6
630.2.r.b.299.16 yes 48 45.34 even 6
630.2.bi.a.479.8 yes 48 315.304 odd 6
630.2.bi.a.509.8 yes 48 3.2 odd 2
630.2.bi.b.479.17 yes 48 63.52 odd 6
630.2.bi.b.509.17 yes 48 15.14 odd 2
1890.2.r.a.89.8 48 45.29 odd 6
1890.2.r.a.1529.8 48 7.3 odd 6
1890.2.r.b.89.8 48 9.2 odd 6
1890.2.r.b.1529.8 48 35.24 odd 6
1890.2.bi.a.719.1 48 5.4 even 2
1890.2.bi.a.899.1 48 63.38 even 6
1890.2.bi.b.719.15 48 1.1 even 1 trivial
1890.2.bi.b.899.15 48 315.164 even 6 inner