Properties

Label 630.2.bf.b.419.4
Level $630$
Weight $2$
Character 630.419
Analytic conductor $5.031$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [630,2,Mod(209,630)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("630.209"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(630, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 3, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 630.bf (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-4,0,-4,6,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.03057532734\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.856615824.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 11x^{6} + 36x^{4} + 32x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 419.4
Root \(0.385731i\) of defining polynomial
Character \(\chi\) \(=\) 630.419
Dual form 630.2.bf.b.209.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(1.73065 + 0.0696054i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(2.09155 + 0.790826i) q^{5} +(-0.805046 - 1.53359i) q^{6} +(-2.36975 - 1.17656i) q^{7} +1.00000 q^{8} +(2.99031 + 0.240925i) q^{9} +(-0.360902 - 2.20675i) q^{10} +(1.16595 - 0.673160i) q^{11} +(-0.925606 + 1.46399i) q^{12} +(1.23065 - 2.13155i) q^{13} +(0.165947 + 2.64054i) q^{14} +(3.56470 + 1.51423i) q^{15} +(-0.500000 - 0.866025i) q^{16} +0.246520i q^{17} +(-1.28651 - 2.71015i) q^{18} +1.47434i q^{19} +(-1.73065 + 1.41593i) q^{20} +(-4.01932 - 2.20116i) q^{21} +(-1.16595 - 0.673160i) q^{22} +(4.15626 - 7.19885i) q^{23} +(1.73065 + 0.0696054i) q^{24} +(3.74919 + 3.30811i) q^{25} -2.46130 q^{26} +(5.15842 + 0.625100i) q^{27} +(2.20380 - 1.46399i) q^{28} +(-4.56386 + 2.63495i) q^{29} +(-0.470993 - 3.84424i) q^{30} +(8.15842 + 4.71026i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(2.06470 - 1.08385i) q^{33} +(0.213493 - 0.123260i) q^{34} +(-4.02601 - 4.33489i) q^{35} +(-1.70380 + 2.46922i) q^{36} -1.87126i q^{37} +(1.27682 - 0.737171i) q^{38} +(2.27820 - 3.60331i) q^{39} +(2.09155 + 0.790826i) q^{40} +(-4.73065 + 8.19373i) q^{41} +(0.103401 + 4.58141i) q^{42} +(7.27682 - 4.20127i) q^{43} +1.34632i q^{44} +(6.06386 + 2.86872i) q^{45} -8.31252 q^{46} +(-8.27520 + 4.77769i) q^{47} +(-0.805046 - 1.53359i) q^{48} +(4.23143 + 5.57629i) q^{49} +(0.990310 - 4.90095i) q^{50} +(-0.0171591 + 0.426640i) q^{51} +(1.23065 + 2.13155i) q^{52} -8.10571 q^{53} +(-2.03786 - 4.77987i) q^{54} +(2.97099 - 0.485889i) q^{55} +(-2.36975 - 1.17656i) q^{56} +(-0.102622 + 2.55157i) q^{57} +(4.56386 + 2.63495i) q^{58} +(2.66673 - 4.61891i) q^{59} +(-3.09371 + 2.33001i) q^{60} +(-6.46877 + 3.73475i) q^{61} -9.42053i q^{62} +(-6.80283 - 4.08920i) q^{63} +1.00000 q^{64} +(4.25966 - 3.48502i) q^{65} +(-1.97099 - 1.24616i) q^{66} +(-1.74112 - 1.00524i) q^{67} +(-0.213493 - 0.123260i) q^{68} +(7.69411 - 12.1694i) q^{69} +(-1.74112 + 5.65407i) q^{70} -15.3040i q^{71} +(2.99031 + 0.240925i) q^{72} -5.92861 q^{73} +(-1.62056 + 0.935631i) q^{74} +(6.25828 + 5.98615i) q^{75} +(-1.27682 - 0.737171i) q^{76} +(-3.55501 + 0.223418i) q^{77} +(-4.25966 - 0.171320i) q^{78} +(0.270127 + 0.467874i) q^{79} +(-0.360902 - 2.20675i) q^{80} +(8.88391 + 1.44088i) q^{81} +9.46130 q^{82} +(-1.04539 + 0.603555i) q^{83} +(3.91592 - 2.38025i) q^{84} +(-0.194954 + 0.515610i) q^{85} +(-7.27682 - 4.20127i) q^{86} +(-8.08186 + 4.24251i) q^{87} +(1.16595 - 0.673160i) q^{88} -13.5043 q^{89} +(-0.547545 - 6.68582i) q^{90} +(-5.42423 + 3.60331i) q^{91} +(4.15626 + 7.19885i) q^{92} +(13.7915 + 8.71969i) q^{93} +(8.27520 + 4.77769i) q^{94} +(-1.16595 + 3.08366i) q^{95} +(-0.925606 + 1.46399i) q^{96} +(-5.12803 - 8.88201i) q^{97} +(2.71349 - 6.45267i) q^{98} +(3.64873 - 1.73205i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} - 4 q^{4} + 6 q^{5} - 3 q^{6} - 2 q^{7} + 8 q^{8} - 6 q^{10} + 9 q^{11} + 3 q^{12} - 4 q^{13} + q^{14} + 15 q^{15} - 4 q^{16} - 3 q^{18} - 12 q^{21} - 9 q^{22} + 9 q^{23} + 20 q^{25} + 8 q^{26}+ \cdots - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 1.73065 + 0.0696054i 0.999192 + 0.0401867i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 2.09155 + 0.790826i 0.935371 + 0.353668i
\(6\) −0.805046 1.53359i −0.328659 0.626086i
\(7\) −2.36975 1.17656i −0.895681 0.444696i
\(8\) 1.00000 0.353553
\(9\) 2.99031 + 0.240925i 0.996770 + 0.0803085i
\(10\) −0.360902 2.20675i −0.114127 0.697836i
\(11\) 1.16595 0.673160i 0.351546 0.202965i −0.313820 0.949483i \(-0.601609\pi\)
0.665366 + 0.746517i \(0.268275\pi\)
\(12\) −0.925606 + 1.46399i −0.267199 + 0.422616i
\(13\) 1.23065 2.13155i 0.341321 0.591186i −0.643357 0.765566i \(-0.722459\pi\)
0.984678 + 0.174380i \(0.0557922\pi\)
\(14\) 0.165947 + 2.64054i 0.0443513 + 0.705715i
\(15\) 3.56470 + 1.51423i 0.920403 + 0.390972i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0.246520i 0.0597899i 0.999553 + 0.0298949i \(0.00951727\pi\)
−0.999553 + 0.0298949i \(0.990483\pi\)
\(18\) −1.28651 2.71015i −0.303233 0.638788i
\(19\) 1.47434i 0.338237i 0.985596 + 0.169119i \(0.0540921\pi\)
−0.985596 + 0.169119i \(0.945908\pi\)
\(20\) −1.73065 + 1.41593i −0.386985 + 0.316611i
\(21\) −4.01932 2.20116i −0.877087 0.480332i
\(22\) −1.16595 0.673160i −0.248581 0.143518i
\(23\) 4.15626 7.19885i 0.866640 1.50106i 0.00122971 0.999999i \(-0.499609\pi\)
0.865410 0.501065i \(-0.167058\pi\)
\(24\) 1.73065 + 0.0696054i 0.353268 + 0.0142081i
\(25\) 3.74919 + 3.30811i 0.749838 + 0.661621i
\(26\) −2.46130 −0.482701
\(27\) 5.15842 + 0.625100i 0.992738 + 0.120301i
\(28\) 2.20380 1.46399i 0.416480 0.276667i
\(29\) −4.56386 + 2.63495i −0.847488 + 0.489297i −0.859803 0.510627i \(-0.829413\pi\)
0.0123145 + 0.999924i \(0.496080\pi\)
\(30\) −0.470993 3.84424i −0.0859912 0.701859i
\(31\) 8.15842 + 4.71026i 1.46529 + 0.845988i 0.999248 0.0387719i \(-0.0123446\pi\)
0.466047 + 0.884760i \(0.345678\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 2.06470 1.08385i 0.359419 0.188674i
\(34\) 0.213493 0.123260i 0.0366137 0.0211389i
\(35\) −4.02601 4.33489i −0.680519 0.732730i
\(36\) −1.70380 + 2.46922i −0.283967 + 0.411537i
\(37\) 1.87126i 0.307634i −0.988099 0.153817i \(-0.950843\pi\)
0.988099 0.153817i \(-0.0491565\pi\)
\(38\) 1.27682 0.737171i 0.207127 0.119585i
\(39\) 2.27820 3.60331i 0.364803 0.576992i
\(40\) 2.09155 + 0.790826i 0.330704 + 0.125040i
\(41\) −4.73065 + 8.19373i −0.738804 + 1.27965i 0.214231 + 0.976783i \(0.431276\pi\)
−0.953034 + 0.302862i \(0.902058\pi\)
\(42\) 0.103401 + 4.58141i 0.0159551 + 0.706927i
\(43\) 7.27682 4.20127i 1.10970 0.640688i 0.170952 0.985279i \(-0.445316\pi\)
0.938753 + 0.344591i \(0.111983\pi\)
\(44\) 1.34632i 0.202965i
\(45\) 6.06386 + 2.86872i 0.903947 + 0.427644i
\(46\) −8.31252 −1.22561
\(47\) −8.27520 + 4.77769i −1.20706 + 0.696897i −0.962116 0.272640i \(-0.912103\pi\)
−0.244945 + 0.969537i \(0.578770\pi\)
\(48\) −0.805046 1.53359i −0.116198 0.221355i
\(49\) 4.23143 + 5.57629i 0.604490 + 0.796613i
\(50\) 0.990310 4.90095i 0.140051 0.693099i
\(51\) −0.0171591 + 0.426640i −0.00240276 + 0.0597416i
\(52\) 1.23065 + 2.13155i 0.170661 + 0.295593i
\(53\) −8.10571 −1.11341 −0.556703 0.830712i \(-0.687934\pi\)
−0.556703 + 0.830712i \(0.687934\pi\)
\(54\) −2.03786 4.77987i −0.277317 0.650458i
\(55\) 2.97099 0.485889i 0.400609 0.0655173i
\(56\) −2.36975 1.17656i −0.316671 0.157224i
\(57\) −0.102622 + 2.55157i −0.0135926 + 0.337964i
\(58\) 4.56386 + 2.63495i 0.599265 + 0.345986i
\(59\) 2.66673 4.61891i 0.347178 0.601330i −0.638569 0.769565i \(-0.720473\pi\)
0.985747 + 0.168234i \(0.0538066\pi\)
\(60\) −3.09371 + 2.33001i −0.399396 + 0.300803i
\(61\) −6.46877 + 3.73475i −0.828241 + 0.478185i −0.853250 0.521502i \(-0.825372\pi\)
0.0250087 + 0.999687i \(0.492039\pi\)
\(62\) 9.42053i 1.19641i
\(63\) −6.80283 4.08920i −0.857075 0.515191i
\(64\) 1.00000 0.125000
\(65\) 4.25966 3.48502i 0.528346 0.432264i
\(66\) −1.97099 1.24616i −0.242612 0.153392i
\(67\) −1.74112 1.00524i −0.212712 0.122809i 0.389859 0.920874i \(-0.372524\pi\)
−0.602571 + 0.798065i \(0.705857\pi\)
\(68\) −0.213493 0.123260i −0.0258898 0.0149475i
\(69\) 7.69411 12.1694i 0.926262 1.46502i
\(70\) −1.74112 + 5.65407i −0.208104 + 0.675791i
\(71\) 15.3040i 1.81625i −0.418697 0.908126i \(-0.637513\pi\)
0.418697 0.908126i \(-0.362487\pi\)
\(72\) 2.99031 + 0.240925i 0.352411 + 0.0283933i
\(73\) −5.92861 −0.693891 −0.346945 0.937885i \(-0.612781\pi\)
−0.346945 + 0.937885i \(0.612781\pi\)
\(74\) −1.62056 + 0.935631i −0.188386 + 0.108765i
\(75\) 6.25828 + 5.98615i 0.722644 + 0.691221i
\(76\) −1.27682 0.737171i −0.146461 0.0845593i
\(77\) −3.55501 + 0.223418i −0.405131 + 0.0254609i
\(78\) −4.25966 0.171320i −0.482311 0.0193982i
\(79\) 0.270127 + 0.467874i 0.0303917 + 0.0526399i 0.880821 0.473449i \(-0.156991\pi\)
−0.850430 + 0.526089i \(0.823658\pi\)
\(80\) −0.360902 2.20675i −0.0403500 0.246722i
\(81\) 8.88391 + 1.44088i 0.987101 + 0.160098i
\(82\) 9.46130 1.04483
\(83\) −1.04539 + 0.603555i −0.114746 + 0.0662487i −0.556275 0.830999i \(-0.687770\pi\)
0.441528 + 0.897247i \(0.354436\pi\)
\(84\) 3.91592 2.38025i 0.427261 0.259707i
\(85\) −0.194954 + 0.515610i −0.0211458 + 0.0559257i
\(86\) −7.27682 4.20127i −0.784679 0.453035i
\(87\) −8.08186 + 4.24251i −0.866467 + 0.454844i
\(88\) 1.16595 0.673160i 0.124290 0.0717591i
\(89\) −13.5043 −1.43145 −0.715724 0.698383i \(-0.753903\pi\)
−0.715724 + 0.698383i \(0.753903\pi\)
\(90\) −0.547545 6.68582i −0.0577163 0.704747i
\(91\) −5.42423 + 3.60331i −0.568613 + 0.377730i
\(92\) 4.15626 + 7.19885i 0.433320 + 0.750532i
\(93\) 13.7915 + 8.71969i 1.43011 + 0.904190i
\(94\) 8.27520 + 4.77769i 0.853521 + 0.492781i
\(95\) −1.16595 + 3.08366i −0.119624 + 0.316377i
\(96\) −0.925606 + 1.46399i −0.0944693 + 0.149417i
\(97\) −5.12803 8.88201i −0.520673 0.901831i −0.999711 0.0240374i \(-0.992348\pi\)
0.479039 0.877794i \(-0.340985\pi\)
\(98\) 2.71349 6.45267i 0.274104 0.651818i
\(99\) 3.64873 1.73205i 0.366711 0.174078i
\(100\) −4.73950 + 1.59284i −0.473950 + 0.159284i
\(101\) −0.702424 1.21663i −0.0698938 0.121060i 0.828961 0.559307i \(-0.188933\pi\)
−0.898854 + 0.438247i \(0.855599\pi\)
\(102\) 0.378061 0.198460i 0.0374336 0.0196504i
\(103\) −4.86975 + 8.43465i −0.479831 + 0.831091i −0.999732 0.0231349i \(-0.992635\pi\)
0.519902 + 0.854226i \(0.325969\pi\)
\(104\) 1.23065 2.13155i 0.120675 0.209016i
\(105\) −6.66588 7.78241i −0.650524 0.759486i
\(106\) 4.05286 + 7.01975i 0.393648 + 0.681819i
\(107\) −14.8538 −1.43598 −0.717988 0.696056i \(-0.754937\pi\)
−0.717988 + 0.696056i \(0.754937\pi\)
\(108\) −3.12056 + 4.15477i −0.300276 + 0.399793i
\(109\) 1.09233 0.104626 0.0523132 0.998631i \(-0.483341\pi\)
0.0523132 + 0.998631i \(0.483341\pi\)
\(110\) −1.90629 2.33001i −0.181758 0.222158i
\(111\) 0.130250 3.23850i 0.0123628 0.307385i
\(112\) 0.165947 + 2.64054i 0.0156806 + 0.249508i
\(113\) 4.00963 6.94488i 0.377194 0.653319i −0.613459 0.789727i \(-0.710222\pi\)
0.990653 + 0.136408i \(0.0435557\pi\)
\(114\) 2.26104 1.18691i 0.211766 0.111165i
\(115\) 14.3861 11.7699i 1.34151 1.09755i
\(116\) 5.26989i 0.489297i
\(117\) 4.19358 6.07750i 0.387696 0.561865i
\(118\) −5.33345 −0.490984
\(119\) 0.290045 0.584191i 0.0265883 0.0535527i
\(120\) 3.56470 + 1.51423i 0.325411 + 0.138229i
\(121\) −4.59371 + 7.95654i −0.417610 + 0.723322i
\(122\) 6.46877 + 3.73475i 0.585655 + 0.338128i
\(123\) −8.75744 + 13.8512i −0.789632 + 1.24892i
\(124\) −8.15842 + 4.71026i −0.732647 + 0.422994i
\(125\) 5.22549 + 9.88404i 0.467382 + 0.884055i
\(126\) −0.139940 + 7.93602i −0.0124668 + 0.706997i
\(127\) 6.14992i 0.545717i −0.962054 0.272858i \(-0.912031\pi\)
0.962054 0.272858i \(-0.0879690\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 12.8861 6.76443i 1.13456 0.595575i
\(130\) −5.14795 1.94646i −0.451505 0.170716i
\(131\) −9.56170 + 16.5614i −0.835410 + 1.44697i 0.0582861 + 0.998300i \(0.481436\pi\)
−0.893696 + 0.448673i \(0.851897\pi\)
\(132\) −0.0937112 + 2.33001i −0.00815651 + 0.202801i
\(133\) 1.73465 3.49382i 0.150413 0.302953i
\(134\) 2.01047i 0.173678i
\(135\) 10.2948 + 5.38684i 0.886031 + 0.463625i
\(136\) 0.246520i 0.0211389i
\(137\) 6.25828 + 10.8397i 0.534681 + 0.926094i 0.999179 + 0.0405202i \(0.0129015\pi\)
−0.464498 + 0.885574i \(0.653765\pi\)
\(138\) −14.3861 0.578596i −1.22462 0.0492534i
\(139\) 4.02870 + 2.32597i 0.341710 + 0.197286i 0.661028 0.750361i \(-0.270120\pi\)
−0.319318 + 0.947648i \(0.603454\pi\)
\(140\) 5.76713 1.31918i 0.487411 0.111491i
\(141\) −14.6540 + 7.69251i −1.23409 + 0.647827i
\(142\) −13.2537 + 7.65200i −1.11222 + 0.642142i
\(143\) 3.31370i 0.277106i
\(144\) −1.28651 2.71015i −0.107209 0.225846i
\(145\) −11.6293 + 1.90191i −0.965765 + 0.157945i
\(146\) 2.96430 + 5.13432i 0.245327 + 0.424920i
\(147\) 6.93499 + 9.94514i 0.571989 + 0.820262i
\(148\) 1.62056 + 0.935631i 0.133209 + 0.0769084i
\(149\) −3.13672 1.81099i −0.256970 0.148362i 0.365981 0.930622i \(-0.380733\pi\)
−0.622952 + 0.782260i \(0.714067\pi\)
\(150\) 2.05501 8.41290i 0.167791 0.686911i
\(151\) −5.59071 9.68340i −0.454966 0.788024i 0.543721 0.839266i \(-0.317015\pi\)
−0.998686 + 0.0512427i \(0.983682\pi\)
\(152\) 1.47434i 0.119585i
\(153\) −0.0593929 + 0.737171i −0.00480163 + 0.0595967i
\(154\) 1.97099 + 2.96702i 0.158827 + 0.239090i
\(155\) 13.3388 + 16.3036i 1.07140 + 1.30954i
\(156\) 1.98146 + 3.77463i 0.158644 + 0.302212i
\(157\) −2.79836 + 4.84689i −0.223333 + 0.386824i −0.955818 0.293959i \(-0.905027\pi\)
0.732485 + 0.680783i \(0.238360\pi\)
\(158\) 0.270127 0.467874i 0.0214902 0.0372221i
\(159\) −14.0282 0.564202i −1.11251 0.0447441i
\(160\) −1.73065 + 1.41593i −0.136820 + 0.111939i
\(161\) −18.3191 + 12.1694i −1.44375 + 0.959083i
\(162\) −3.19411 8.41413i −0.250953 0.661077i
\(163\) 21.3334i 1.67096i 0.549522 + 0.835480i \(0.314810\pi\)
−0.549522 + 0.835480i \(0.685190\pi\)
\(164\) −4.73065 8.19373i −0.369402 0.639823i
\(165\) 5.17557 0.634107i 0.402918 0.0493652i
\(166\) 1.04539 + 0.603555i 0.0811378 + 0.0468449i
\(167\) 2.90007 + 1.67436i 0.224414 + 0.129566i 0.607993 0.793943i \(-0.291975\pi\)
−0.383578 + 0.923508i \(0.625308\pi\)
\(168\) −4.01932 2.20116i −0.310097 0.169823i
\(169\) 3.47099 + 6.01194i 0.266999 + 0.462457i
\(170\) 0.544008 0.0889694i 0.0417235 0.00682364i
\(171\) −0.355207 + 4.40874i −0.0271633 + 0.337145i
\(172\) 8.40255i 0.640688i
\(173\) 6.26050 3.61450i 0.475977 0.274805i −0.242761 0.970086i \(-0.578053\pi\)
0.718738 + 0.695281i \(0.244720\pi\)
\(174\) 7.71505 + 4.87785i 0.584876 + 0.369789i
\(175\) −4.99247 12.2505i −0.377395 0.926052i
\(176\) −1.16595 0.673160i −0.0878866 0.0507413i
\(177\) 4.93667 7.80810i 0.371063 0.586893i
\(178\) 6.75213 + 11.6950i 0.506093 + 0.876579i
\(179\) 7.87760i 0.588800i 0.955682 + 0.294400i \(0.0951197\pi\)
−0.955682 + 0.294400i \(0.904880\pi\)
\(180\) −5.51632 + 3.81710i −0.411162 + 0.284510i
\(181\) 7.54179i 0.560577i 0.959916 + 0.280288i \(0.0904301\pi\)
−0.959916 + 0.280288i \(0.909570\pi\)
\(182\) 5.83267 + 2.89586i 0.432347 + 0.214656i
\(183\) −11.4552 + 6.01329i −0.846789 + 0.444515i
\(184\) 4.15626 7.19885i 0.306403 0.530706i
\(185\) 1.47984 3.91384i 0.108800 0.287751i
\(186\) 0.655720 16.3036i 0.0480797 1.19544i
\(187\) 0.165947 + 0.287429i 0.0121353 + 0.0210189i
\(188\) 9.55537i 0.696897i
\(189\) −11.4887 7.55050i −0.835679 0.549218i
\(190\) 3.25351 0.532092i 0.236034 0.0386020i
\(191\) 3.09884 1.78912i 0.224224 0.129456i −0.383680 0.923466i \(-0.625344\pi\)
0.607905 + 0.794010i \(0.292010\pi\)
\(192\) 1.73065 + 0.0696054i 0.124899 + 0.00502334i
\(193\) 7.22120 + 4.16916i 0.519794 + 0.300103i 0.736850 0.676056i \(-0.236312\pi\)
−0.217057 + 0.976159i \(0.569646\pi\)
\(194\) −5.12803 + 8.88201i −0.368171 + 0.637691i
\(195\) 7.61456 5.73486i 0.545290 0.410682i
\(196\) −6.94492 + 0.876382i −0.496066 + 0.0625987i
\(197\) −0.503178 −0.0358499 −0.0179250 0.999839i \(-0.505706\pi\)
−0.0179250 + 0.999839i \(0.505706\pi\)
\(198\) −3.32436 2.29386i −0.236252 0.163018i
\(199\) 5.50523i 0.390255i −0.980778 0.195128i \(-0.937488\pi\)
0.980778 0.195128i \(-0.0625121\pi\)
\(200\) 3.74919 + 3.30811i 0.265108 + 0.233919i
\(201\) −2.94330 1.86091i −0.207605 0.131258i
\(202\) −0.702424 + 1.21663i −0.0494223 + 0.0856020i
\(203\) 13.9154 0.874525i 0.976668 0.0613796i
\(204\) −0.360902 0.228180i −0.0252682 0.0159758i
\(205\) −16.3742 + 13.3965i −1.14363 + 0.935652i
\(206\) 9.73950 0.678583
\(207\) 14.1629 20.5254i 0.984389 1.42662i
\(208\) −2.46130 −0.170661
\(209\) 0.992468 + 1.71901i 0.0686505 + 0.118906i
\(210\) −3.40683 + 9.66403i −0.235093 + 0.666882i
\(211\) 10.9269 18.9260i 0.752240 1.30292i −0.194494 0.980904i \(-0.562307\pi\)
0.946735 0.322015i \(-0.104360\pi\)
\(212\) 4.05286 7.01975i 0.278351 0.482119i
\(213\) 1.06524 26.4859i 0.0729892 1.81478i
\(214\) 7.42692 + 12.8638i 0.507694 + 0.879352i
\(215\) 18.5423 3.03249i 1.26458 0.206814i
\(216\) 5.15842 + 0.625100i 0.350986 + 0.0425327i
\(217\) −13.7915 20.7610i −0.936229 1.40935i
\(218\) −0.546166 0.945987i −0.0369910 0.0640703i
\(219\) −10.2604 0.412663i −0.693330 0.0278852i
\(220\) −1.06470 + 2.81590i −0.0717823 + 0.189848i
\(221\) 0.525470 + 0.303380i 0.0353469 + 0.0204076i
\(222\) −2.86975 + 1.50645i −0.192605 + 0.101106i
\(223\) 3.85337 + 6.67423i 0.258041 + 0.446940i 0.965717 0.259597i \(-0.0835898\pi\)
−0.707676 + 0.706537i \(0.750256\pi\)
\(224\) 2.20380 1.46399i 0.147248 0.0978167i
\(225\) 10.4142 + 10.7955i 0.694282 + 0.719703i
\(226\) −8.01925 −0.533433
\(227\) −17.4828 + 10.0937i −1.16037 + 0.669942i −0.951393 0.307979i \(-0.900348\pi\)
−0.208979 + 0.977920i \(0.567014\pi\)
\(228\) −2.15842 1.36466i −0.142945 0.0903768i
\(229\) −6.16057 3.55681i −0.407102 0.235041i 0.282442 0.959284i \(-0.408856\pi\)
−0.689544 + 0.724244i \(0.742189\pi\)
\(230\) −17.3861 6.57375i −1.14640 0.433460i
\(231\) −6.16804 + 0.139211i −0.405827 + 0.00915940i
\(232\) −4.56386 + 2.63495i −0.299632 + 0.172993i
\(233\) −22.8989 −1.50016 −0.750079 0.661349i \(-0.769984\pi\)
−0.750079 + 0.661349i \(0.769984\pi\)
\(234\) −7.36006 0.592991i −0.481142 0.0387650i
\(235\) −21.0863 + 3.44855i −1.37552 + 0.224959i
\(236\) 2.66673 + 4.61891i 0.173589 + 0.300665i
\(237\) 0.434929 + 0.828529i 0.0282517 + 0.0538188i
\(238\) −0.650946 + 0.0409093i −0.0421946 + 0.00265176i
\(239\) −13.9049 8.02800i −0.899434 0.519288i −0.0224174 0.999749i \(-0.507136\pi\)
−0.877016 + 0.480460i \(0.840470\pi\)
\(240\) −0.470993 3.84424i −0.0304025 0.248144i
\(241\) 5.76122 3.32624i 0.371113 0.214262i −0.302832 0.953044i \(-0.597932\pi\)
0.673944 + 0.738782i \(0.264599\pi\)
\(242\) 9.18742 0.590590
\(243\) 15.2747 + 3.11204i 0.979870 + 0.199637i
\(244\) 7.46950i 0.478185i
\(245\) 4.44039 + 15.0094i 0.283686 + 0.958917i
\(246\) 16.3742 + 0.658558i 1.04398 + 0.0419881i
\(247\) 3.14264 + 1.81440i 0.199961 + 0.115448i
\(248\) 8.15842 + 4.71026i 0.518060 + 0.299102i
\(249\) −1.85121 + 0.971778i −0.117316 + 0.0615839i
\(250\) 5.94708 9.46743i 0.376126 0.598773i
\(251\) 9.60841 0.606477 0.303239 0.952915i \(-0.401932\pi\)
0.303239 + 0.952915i \(0.401932\pi\)
\(252\) 6.94277 3.84682i 0.437353 0.242327i
\(253\) 11.1913i 0.703591i
\(254\) −5.32598 + 3.07496i −0.334182 + 0.192940i
\(255\) −0.373287 + 0.878771i −0.0233761 + 0.0550308i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 5.29727 + 3.05838i 0.330435 + 0.190777i 0.656034 0.754731i \(-0.272233\pi\)
−0.325599 + 0.945508i \(0.605566\pi\)
\(258\) −12.3012 7.77745i −0.765840 0.484203i
\(259\) −2.20164 + 4.43442i −0.136804 + 0.275542i
\(260\) 0.888288 + 5.43148i 0.0550893 + 0.336846i
\(261\) −14.2822 + 6.77976i −0.884045 + 0.419657i
\(262\) 19.1234 1.18145
\(263\) −8.13556 14.0912i −0.501660 0.868901i −0.999998 0.00191810i \(-0.999389\pi\)
0.498338 0.866983i \(-0.333944\pi\)
\(264\) 2.06470 1.08385i 0.127074 0.0667063i
\(265\) −16.9535 6.41020i −1.04145 0.393776i
\(266\) −3.89306 + 0.244663i −0.238699 + 0.0150013i
\(267\) −23.3712 0.939969i −1.43029 0.0575252i
\(268\) 1.74112 1.00524i 0.106356 0.0614046i
\(269\) 7.72288 0.470872 0.235436 0.971890i \(-0.424348\pi\)
0.235436 + 0.971890i \(0.424348\pi\)
\(270\) −0.482241 11.6089i −0.0293482 0.706497i
\(271\) 7.62672i 0.463290i −0.972800 0.231645i \(-0.925589\pi\)
0.972800 0.231645i \(-0.0744108\pi\)
\(272\) 0.213493 0.123260i 0.0129449 0.00747373i
\(273\) −9.63826 + 5.85852i −0.583334 + 0.354574i
\(274\) 6.25828 10.8397i 0.378076 0.654848i
\(275\) 6.59824 + 1.33327i 0.397889 + 0.0803995i
\(276\) 6.69195 + 12.7480i 0.402808 + 0.767339i
\(277\) 12.0531 6.95886i 0.724200 0.418117i −0.0920966 0.995750i \(-0.529357\pi\)
0.816297 + 0.577633i \(0.196024\pi\)
\(278\) 4.65195i 0.279005i
\(279\) 23.2614 + 16.0507i 1.39262 + 0.960931i
\(280\) −4.02601 4.33489i −0.240600 0.259059i
\(281\) −26.1618 + 15.1045i −1.56068 + 0.901060i −0.563494 + 0.826120i \(0.690543\pi\)
−0.997188 + 0.0749404i \(0.976123\pi\)
\(282\) 13.9889 + 8.84451i 0.833029 + 0.526683i
\(283\) −3.80151 + 6.58441i −0.225976 + 0.391402i −0.956612 0.291365i \(-0.905891\pi\)
0.730636 + 0.682768i \(0.239224\pi\)
\(284\) 13.2537 + 7.65200i 0.786460 + 0.454063i
\(285\) −2.23249 + 5.25559i −0.132241 + 0.311314i
\(286\) −2.86975 + 1.65685i −0.169692 + 0.0979717i
\(287\) 20.8508 13.8512i 1.23079 0.817611i
\(288\) −1.70380 + 2.46922i −0.100398 + 0.145500i
\(289\) 16.9392 0.996425
\(290\) 7.46178 + 9.12035i 0.438171 + 0.535566i
\(291\) −8.25660 15.7286i −0.484010 0.922027i
\(292\) 2.96430 5.13432i 0.173473 0.300464i
\(293\) 26.8981 + 15.5296i 1.57140 + 0.907249i 0.995998 + 0.0893804i \(0.0284887\pi\)
0.575404 + 0.817869i \(0.304845\pi\)
\(294\) 5.14525 10.9785i 0.300077 0.640276i
\(295\) 9.23035 7.55177i 0.537412 0.439681i
\(296\) 1.87126i 0.108765i
\(297\) 6.43523 2.74361i 0.373410 0.159200i
\(298\) 3.62198i 0.209815i
\(299\) −10.2298 17.7186i −0.591605 1.02469i
\(300\) −8.31329 + 2.42676i −0.479968 + 0.140109i
\(301\) −22.1873 + 1.39438i −1.27885 + 0.0803707i
\(302\) −5.59071 + 9.68340i −0.321709 + 0.557217i
\(303\) −1.13097 2.15446i −0.0649723 0.123771i
\(304\) 1.27682 0.737171i 0.0732305 0.0422797i
\(305\) −16.4833 + 2.69575i −0.943832 + 0.154358i
\(306\) 0.668105 0.317150i 0.0381930 0.0181302i
\(307\) 25.2516 1.44119 0.720593 0.693358i \(-0.243870\pi\)
0.720593 + 0.693358i \(0.243870\pi\)
\(308\) 1.58402 3.19044i 0.0902580 0.181792i
\(309\) −9.01494 + 14.2585i −0.512842 + 0.811137i
\(310\) 7.44999 19.7035i 0.423131 1.11909i
\(311\) 14.0520 24.3388i 0.796817 1.38013i −0.124863 0.992174i \(-0.539849\pi\)
0.921679 0.387953i \(-0.126818\pi\)
\(312\) 2.27820 3.60331i 0.128977 0.203997i
\(313\) 11.1704 + 19.3477i 0.631389 + 1.09360i 0.987268 + 0.159066i \(0.0508483\pi\)
−0.355879 + 0.934532i \(0.615818\pi\)
\(314\) 5.59671 0.315841
\(315\) −10.9946 13.9326i −0.619477 0.785015i
\(316\) −0.540254 −0.0303917
\(317\) −8.46214 14.6569i −0.475281 0.823212i 0.524318 0.851523i \(-0.324320\pi\)
−0.999599 + 0.0283112i \(0.990987\pi\)
\(318\) 6.52547 + 12.4308i 0.365930 + 0.697087i
\(319\) −3.54748 + 6.14442i −0.198621 + 0.344021i
\(320\) 2.09155 + 0.790826i 0.116921 + 0.0442085i
\(321\) −25.7068 1.03391i −1.43482 0.0577071i
\(322\) 19.6986 + 9.78014i 1.09776 + 0.545026i
\(323\) −0.363455 −0.0202232
\(324\) −5.68980 + 6.97325i −0.316100 + 0.387403i
\(325\) 11.6653 3.92046i 0.647077 0.217468i
\(326\) 18.4752 10.6667i 1.02325 0.590773i
\(327\) 1.89045 + 0.0760322i 0.104542 + 0.00420459i
\(328\) −4.73065 + 8.19373i −0.261207 + 0.452423i
\(329\) 25.2314 1.58569i 1.39105 0.0874219i
\(330\) −3.13694 4.16513i −0.172683 0.229283i
\(331\) −4.73518 8.20158i −0.260269 0.450800i 0.706044 0.708168i \(-0.250478\pi\)
−0.966313 + 0.257368i \(0.917145\pi\)
\(332\) 1.20711i 0.0662487i
\(333\) 0.450835 5.59565i 0.0247056 0.306640i
\(334\) 3.34872i 0.183234i
\(335\) −2.84668 3.47943i −0.155531 0.190101i
\(336\) 0.103401 + 4.58141i 0.00564099 + 0.249936i
\(337\) −26.2388 15.1490i −1.42932 0.825217i −0.432250 0.901754i \(-0.642280\pi\)
−0.997067 + 0.0765370i \(0.975614\pi\)
\(338\) 3.47099 6.01194i 0.188797 0.327006i
\(339\) 7.42267 11.7401i 0.403144 0.637633i
\(340\) −0.349054 0.426640i −0.0189301 0.0231378i
\(341\) 12.6830 0.686825
\(342\) 3.99568 1.89675i 0.216062 0.102565i
\(343\) −3.46661 18.1929i −0.187180 0.982326i
\(344\) 7.27682 4.20127i 0.392340 0.226517i
\(345\) 25.7165 19.3683i 1.38453 1.04275i
\(346\) −6.26050 3.61450i −0.336567 0.194317i
\(347\) 8.26551 14.3163i 0.443716 0.768538i −0.554246 0.832353i \(-0.686993\pi\)
0.997962 + 0.0638147i \(0.0203267\pi\)
\(348\) 0.366813 9.12035i 0.0196633 0.488902i
\(349\) 9.71689 5.61005i 0.520133 0.300299i −0.216856 0.976204i \(-0.569580\pi\)
0.736989 + 0.675905i \(0.236247\pi\)
\(350\) −8.11303 + 10.4489i −0.433660 + 0.558515i
\(351\) 7.68064 10.2261i 0.409962 0.545831i
\(352\) 1.34632i 0.0717591i
\(353\) 11.0368 6.37208i 0.587428 0.339152i −0.176652 0.984273i \(-0.556527\pi\)
0.764080 + 0.645122i \(0.223193\pi\)
\(354\) −9.23035 0.371237i −0.490587 0.0197310i
\(355\) 12.1028 32.0091i 0.642350 1.69887i
\(356\) 6.75213 11.6950i 0.357862 0.619835i
\(357\) 0.542629 0.990842i 0.0287190 0.0524409i
\(358\) 6.82220 3.93880i 0.360565 0.208172i
\(359\) 13.0046i 0.686355i −0.939271 0.343178i \(-0.888497\pi\)
0.939271 0.343178i \(-0.111503\pi\)
\(360\) 6.06386 + 2.86872i 0.319594 + 0.151195i
\(361\) 16.8263 0.885596
\(362\) 6.53138 3.77089i 0.343282 0.198194i
\(363\) −8.50393 + 13.4503i −0.446341 + 0.705955i
\(364\) −0.408447 6.49917i −0.0214084 0.340649i
\(365\) −12.4000 4.68849i −0.649045 0.245407i
\(366\) 10.9352 + 6.91381i 0.571594 + 0.361391i
\(367\) −15.1533 26.2462i −0.790994 1.37004i −0.925352 0.379108i \(-0.876231\pi\)
0.134359 0.990933i \(-0.457103\pi\)
\(368\) −8.31252 −0.433320
\(369\) −16.1202 + 23.3621i −0.839184 + 1.21618i
\(370\) −4.12941 + 0.675341i −0.214678 + 0.0351093i
\(371\) 19.2085 + 9.53683i 0.997256 + 0.495127i
\(372\) −14.4472 + 7.58396i −0.749054 + 0.393210i
\(373\) 24.9505 + 14.4052i 1.29189 + 0.745872i 0.978989 0.203915i \(-0.0653666\pi\)
0.312899 + 0.949786i \(0.398700\pi\)
\(374\) 0.165947 0.287429i 0.00858093 0.0148626i
\(375\) 8.35553 + 17.4695i 0.431478 + 0.902124i
\(376\) −8.27520 + 4.77769i −0.426761 + 0.246390i
\(377\) 12.9708i 0.668031i
\(378\) −0.794577 + 13.7247i −0.0408686 + 0.705925i
\(379\) 34.4133 1.76769 0.883846 0.467777i \(-0.154945\pi\)
0.883846 + 0.467777i \(0.154945\pi\)
\(380\) −2.08756 2.55157i −0.107089 0.130893i
\(381\) 0.428067 10.6434i 0.0219306 0.545276i
\(382\) −3.09884 1.78912i −0.158551 0.0915393i
\(383\) −9.86291 5.69435i −0.503971 0.290968i 0.226381 0.974039i \(-0.427311\pi\)
−0.730352 + 0.683071i \(0.760644\pi\)
\(384\) −0.805046 1.53359i −0.0410823 0.0782607i
\(385\) −7.61219 2.34411i −0.387953 0.119467i
\(386\) 8.33833i 0.424410i
\(387\) 22.7721 10.8099i 1.15757 0.549500i
\(388\) 10.2561 0.520673
\(389\) −10.6623 + 6.15591i −0.540602 + 0.312117i −0.745323 0.666703i \(-0.767705\pi\)
0.204721 + 0.978820i \(0.434371\pi\)
\(390\) −8.77382 3.72697i −0.444280 0.188723i
\(391\) 1.77466 + 1.02460i 0.0897484 + 0.0518163i
\(392\) 4.23143 + 5.57629i 0.213720 + 0.281645i
\(393\) −17.7007 + 27.9964i −0.892884 + 1.41223i
\(394\) 0.251589 + 0.435765i 0.0126749 + 0.0219535i
\(395\) 0.194979 + 1.19221i 0.00981044 + 0.0599864i
\(396\) −0.324363 + 4.02591i −0.0162998 + 0.202310i
\(397\) −33.1711 −1.66481 −0.832405 0.554168i \(-0.813037\pi\)
−0.832405 + 0.554168i \(0.813037\pi\)
\(398\) −4.76767 + 2.75261i −0.238981 + 0.137976i
\(399\) 3.24526 5.92585i 0.162466 0.296663i
\(400\) 0.990310 4.90095i 0.0495155 0.245047i
\(401\) 11.4991 + 6.63899i 0.574236 + 0.331535i 0.758839 0.651278i \(-0.225767\pi\)
−0.184603 + 0.982813i \(0.559100\pi\)
\(402\) −0.139940 + 3.47943i −0.00697956 + 0.173538i
\(403\) 20.0803 11.5934i 1.00027 0.577508i
\(404\) 1.40485 0.0698938
\(405\) 17.4417 + 10.0393i 0.866684 + 0.498857i
\(406\) −7.71505 11.6138i −0.382892 0.576384i
\(407\) −1.25966 2.18179i −0.0624390 0.108147i
\(408\) −0.0171591 + 0.426640i −0.000849503 + 0.0211218i
\(409\) −12.8060 7.39357i −0.633218 0.365589i 0.148779 0.988870i \(-0.452466\pi\)
−0.781997 + 0.623282i \(0.785799\pi\)
\(410\) 19.7888 + 7.48224i 0.977300 + 0.369522i
\(411\) 10.0764 + 19.1953i 0.497032 + 0.946833i
\(412\) −4.86975 8.43465i −0.239915 0.415546i
\(413\) −11.7539 + 7.80810i −0.578370 + 0.384211i
\(414\) −24.8570 2.00270i −1.22165 0.0984272i
\(415\) −2.66379 + 0.435648i −0.130760 + 0.0213851i
\(416\) 1.23065 + 2.13155i 0.0603377 + 0.104508i
\(417\) 6.81038 + 4.30587i 0.333506 + 0.210859i
\(418\) 0.992468 1.71901i 0.0485432 0.0840793i
\(419\) 0.587083 1.01686i 0.0286809 0.0496768i −0.851329 0.524633i \(-0.824203\pi\)
0.880010 + 0.474956i \(0.157536\pi\)
\(420\) 10.0727 1.88162i 0.491498 0.0918136i
\(421\) −9.97171 17.2715i −0.485991 0.841762i 0.513879 0.857863i \(-0.328208\pi\)
−0.999870 + 0.0161009i \(0.994875\pi\)
\(422\) −21.8538 −1.06383
\(423\) −25.8965 + 12.2931i −1.25913 + 0.597709i
\(424\) −8.10571 −0.393648
\(425\) −0.815514 + 0.924250i −0.0395583 + 0.0448327i
\(426\) −23.4701 + 12.3204i −1.13713 + 0.596927i
\(427\) 19.7235 1.23954i 0.954488 0.0599857i
\(428\) 7.42692 12.8638i 0.358994 0.621796i
\(429\) 0.230652 5.73486i 0.0111360 0.276882i
\(430\) −11.8974 14.5419i −0.573743 0.701272i
\(431\) 22.0124i 1.06030i 0.847903 + 0.530151i \(0.177865\pi\)
−0.847903 + 0.530151i \(0.822135\pi\)
\(432\) −2.03786 4.77987i −0.0980464 0.229972i
\(433\) 1.88985 0.0908202 0.0454101 0.998968i \(-0.485541\pi\)
0.0454101 + 0.998968i \(0.485541\pi\)
\(434\) −11.0838 + 22.3243i −0.532038 + 1.07160i
\(435\) −20.2587 + 2.48208i −0.971332 + 0.119007i
\(436\) −0.546166 + 0.945987i −0.0261566 + 0.0453046i
\(437\) 10.6136 + 6.12775i 0.507716 + 0.293130i
\(438\) 4.77280 + 9.09206i 0.228053 + 0.434435i
\(439\) −24.1785 + 13.9595i −1.15398 + 0.666249i −0.949853 0.312696i \(-0.898768\pi\)
−0.204124 + 0.978945i \(0.565435\pi\)
\(440\) 2.97099 0.485889i 0.141637 0.0231639i
\(441\) 11.3098 + 17.6943i 0.538563 + 0.842585i
\(442\) 0.606760i 0.0288606i
\(443\) −16.8221 29.1368i −0.799244 1.38433i −0.920109 0.391662i \(-0.871900\pi\)
0.120865 0.992669i \(-0.461433\pi\)
\(444\) 2.73950 + 1.73205i 0.130011 + 0.0821995i
\(445\) −28.2449 10.6795i −1.33893 0.506257i
\(446\) 3.85337 6.67423i 0.182462 0.316034i
\(447\) −5.30252 3.35252i −0.250801 0.158569i
\(448\) −2.36975 1.17656i −0.111960 0.0555871i
\(449\) 14.3956i 0.679373i 0.940539 + 0.339686i \(0.110321\pi\)
−0.940539 + 0.339686i \(0.889679\pi\)
\(450\) 4.14210 14.4168i 0.195260 0.679613i
\(451\) 12.7379i 0.599806i
\(452\) 4.00963 + 6.94488i 0.188597 + 0.326660i
\(453\) −9.00156 17.1477i −0.422930 0.805671i
\(454\) 17.4828 + 10.0937i 0.820507 + 0.473720i
\(455\) −14.1947 + 3.24690i −0.665455 + 0.152217i
\(456\) −0.102622 + 2.55157i −0.00480573 + 0.119488i
\(457\) −22.2454 + 12.8434i −1.04060 + 0.600789i −0.920002 0.391913i \(-0.871813\pi\)
−0.120594 + 0.992702i \(0.538480\pi\)
\(458\) 7.11362i 0.332398i
\(459\) −0.154100 + 1.27165i −0.00719275 + 0.0593556i
\(460\) 3.00000 + 18.3437i 0.139876 + 0.855277i
\(461\) −12.2680 21.2487i −0.571376 0.989653i −0.996425 0.0844823i \(-0.973076\pi\)
0.425049 0.905170i \(-0.360257\pi\)
\(462\) 3.20458 + 5.27208i 0.149091 + 0.245279i
\(463\) 19.5138 + 11.2663i 0.906883 + 0.523589i 0.879427 0.476034i \(-0.157926\pi\)
0.0274562 + 0.999623i \(0.491259\pi\)
\(464\) 4.56386 + 2.63495i 0.211872 + 0.122324i
\(465\) 21.9499 + 29.1444i 1.01790 + 1.35154i
\(466\) 11.4495 + 19.8310i 0.530386 + 0.918655i
\(467\) 30.4040i 1.40693i −0.710731 0.703464i \(-0.751635\pi\)
0.710731 0.703464i \(-0.248365\pi\)
\(468\) 3.16649 + 6.67049i 0.146371 + 0.308344i
\(469\) 2.94330 + 4.43068i 0.135909 + 0.204590i
\(470\) 13.5297 + 16.5370i 0.624078 + 0.762796i
\(471\) −5.18035 + 8.19350i −0.238698 + 0.377537i
\(472\) 2.66673 4.61891i 0.122746 0.212602i
\(473\) 5.65626 9.79693i 0.260075 0.450463i
\(474\) 0.500063 0.790925i 0.0229686 0.0363284i
\(475\) −4.87728 + 5.52759i −0.223785 + 0.253623i
\(476\) 0.360902 + 0.543281i 0.0165419 + 0.0249013i
\(477\) −24.2386 1.95287i −1.10981 0.0894159i
\(478\) 16.0560i 0.734385i
\(479\) 15.6602 + 27.1242i 0.715532 + 1.23934i 0.962754 + 0.270379i \(0.0871491\pi\)
−0.247222 + 0.968959i \(0.579518\pi\)
\(480\) −3.09371 + 2.33001i −0.141208 + 0.106350i
\(481\) −3.98869 2.30287i −0.181869 0.105002i
\(482\) −5.76122 3.32624i −0.262416 0.151506i
\(483\) −32.5511 + 19.7859i −1.48113 + 0.900289i
\(484\) −4.59371 7.95654i −0.208805 0.361661i
\(485\) −3.70143 22.6326i −0.168073 1.02769i
\(486\) −4.94223 14.7843i −0.224184 0.670628i
\(487\) 33.1308i 1.50130i 0.660700 + 0.750650i \(0.270259\pi\)
−0.660700 + 0.750650i \(0.729741\pi\)
\(488\) −6.46877 + 3.73475i −0.292828 + 0.169064i
\(489\) −1.48492 + 36.9206i −0.0671503 + 1.66961i
\(490\) 10.7784 11.3502i 0.486916 0.512750i
\(491\) 28.8188 + 16.6385i 1.30057 + 0.750886i 0.980502 0.196507i \(-0.0629599\pi\)
0.320071 + 0.947394i \(0.396293\pi\)
\(492\) −7.61678 14.5098i −0.343391 0.654151i
\(493\) −0.649567 1.12508i −0.0292550 0.0506712i
\(494\) 3.62880i 0.163268i
\(495\) 9.00125 0.737171i 0.404576 0.0331334i
\(496\) 9.42053i 0.422994i
\(497\) −18.0060 + 36.2667i −0.807681 + 1.62678i
\(498\) 1.76719 + 1.11731i 0.0791897 + 0.0500677i
\(499\) −11.1122 + 19.2470i −0.497453 + 0.861613i −0.999996 0.00293899i \(-0.999064\pi\)
0.502543 + 0.864552i \(0.332398\pi\)
\(500\) −11.1726 0.416608i −0.499653 0.0186313i
\(501\) 4.90247 + 3.09959i 0.219026 + 0.138480i
\(502\) −4.80420 8.32113i −0.214422 0.371390i
\(503\) 0.276757i 0.0123400i −0.999981 0.00616999i \(-0.998036\pi\)
0.999981 0.00616999i \(-0.00196398\pi\)
\(504\) −6.80283 4.08920i −0.303022 0.182148i
\(505\) −0.507012 3.10015i −0.0225617 0.137955i
\(506\) −9.69195 + 5.59565i −0.430860 + 0.248757i
\(507\) 5.58862 + 10.6462i 0.248199 + 0.472813i
\(508\) 5.32598 + 3.07496i 0.236302 + 0.136429i
\(509\) 0.741658 1.28459i 0.0328734 0.0569384i −0.849121 0.528199i \(-0.822868\pi\)
0.881994 + 0.471261i \(0.156201\pi\)
\(510\) 0.947681 0.116109i 0.0419640 0.00514140i
\(511\) 14.0493 + 6.97534i 0.621505 + 0.308571i
\(512\) 1.00000 0.0441942
\(513\) −0.921611 + 7.60527i −0.0406901 + 0.335781i
\(514\) 6.11676i 0.269799i
\(515\) −16.8557 + 13.7904i −0.742750 + 0.607678i
\(516\) −0.584863 + 14.5419i −0.0257471 + 0.640171i
\(517\) −6.43230 + 11.1411i −0.282892 + 0.489983i
\(518\) 4.94114 0.310531i 0.217101 0.0136439i
\(519\) 11.0863 5.81968i 0.486636 0.255456i
\(520\) 4.25966 3.48502i 0.186798 0.152828i
\(521\) 0.400049 0.0175265 0.00876323 0.999962i \(-0.497211\pi\)
0.00876323 + 0.999962i \(0.497211\pi\)
\(522\) 13.0125 + 8.97886i 0.569543 + 0.392994i
\(523\) 19.5235 0.853703 0.426852 0.904322i \(-0.359623\pi\)
0.426852 + 0.904322i \(0.359623\pi\)
\(524\) −9.56170 16.5614i −0.417705 0.723486i
\(525\) −7.78752 21.5489i −0.339875 0.940471i
\(526\) −8.13556 + 14.0912i −0.354727 + 0.614406i
\(527\) −1.16117 + 2.01121i −0.0505815 + 0.0876098i
\(528\) −1.97099 1.24616i −0.0857765 0.0542322i
\(529\) −23.0490 39.9220i −1.00213 1.73574i
\(530\) 2.92536 + 17.8873i 0.127070 + 0.776974i
\(531\) 9.08715 13.1695i 0.394349 0.571507i
\(532\) 2.15842 + 3.24916i 0.0935792 + 0.140869i
\(533\) 11.6436 + 20.1673i 0.504339 + 0.873541i
\(534\) 10.8715 + 20.7100i 0.470458 + 0.896209i
\(535\) −31.0676 11.7468i −1.34317 0.507858i
\(536\) −1.74112 1.00524i −0.0752049 0.0434196i
\(537\) −0.548324 + 13.6334i −0.0236619 + 0.588324i
\(538\) −3.86144 6.68821i −0.166478 0.288349i
\(539\) 8.68736 + 3.65323i 0.374191 + 0.157356i
\(540\) −9.81252 + 6.22210i −0.422263 + 0.267757i
\(541\) 14.1025 0.606315 0.303157 0.952941i \(-0.401959\pi\)
0.303157 + 0.952941i \(0.401959\pi\)
\(542\) −6.60493 + 3.81336i −0.283706 + 0.163798i
\(543\) −0.524949 + 13.0522i −0.0225277 + 0.560124i
\(544\) −0.213493 0.123260i −0.00915342 0.00528473i
\(545\) 2.28467 + 0.863844i 0.0978645 + 0.0370030i
\(546\) 9.89276 + 5.41771i 0.423371 + 0.231857i
\(547\) −16.1937 + 9.34946i −0.692395 + 0.399754i −0.804508 0.593941i \(-0.797571\pi\)
0.112114 + 0.993695i \(0.464238\pi\)
\(548\) −12.5166 −0.534681
\(549\) −20.2434 + 9.60956i −0.863969 + 0.410126i
\(550\) −2.14447 6.38088i −0.0914406 0.272082i
\(551\) −3.88481 6.72869i −0.165499 0.286652i
\(552\) 7.69411 12.1694i 0.327483 0.517964i
\(553\) −0.0896538 1.42656i −0.00381247 0.0606637i
\(554\) −12.0531 6.95886i −0.512087 0.295653i
\(555\) 2.83351 6.67049i 0.120276 0.283147i
\(556\) −4.02870 + 2.32597i −0.170855 + 0.0986432i
\(557\) 6.26944 0.265645 0.132822 0.991140i \(-0.457596\pi\)
0.132822 + 0.991140i \(0.457596\pi\)
\(558\) 2.26965 28.1703i 0.0960817 1.19254i
\(559\) 20.6812i 0.874722i
\(560\) −1.74112 + 5.65407i −0.0735758 + 0.238928i
\(561\) 0.267190 + 0.508991i 0.0112808 + 0.0214896i
\(562\) 26.1618 + 15.1045i 1.10357 + 0.637146i
\(563\) −24.8154 14.3272i −1.04584 0.603818i −0.124361 0.992237i \(-0.539688\pi\)
−0.921483 + 0.388419i \(0.873021\pi\)
\(564\) 0.665106 16.5370i 0.0280060 0.696334i
\(565\) 13.8785 11.3547i 0.583874 0.477694i
\(566\) 7.60302 0.319579
\(567\) −19.3574 13.8670i −0.812933 0.582357i
\(568\) 15.3040i 0.642142i
\(569\) 21.8423 12.6106i 0.915676 0.528666i 0.0334229 0.999441i \(-0.489359\pi\)
0.882253 + 0.470776i \(0.156026\pi\)
\(570\) 5.66772 0.694405i 0.237395 0.0290854i
\(571\) 18.7083 32.4037i 0.782917 1.35605i −0.147319 0.989089i \(-0.547064\pi\)
0.930236 0.366963i \(-0.119602\pi\)
\(572\) 2.86975 + 1.65685i 0.119990 + 0.0692764i
\(573\) 5.48755 2.88064i 0.229246 0.120341i
\(574\) −22.4209 11.1318i −0.935831 0.464631i
\(575\) 39.3972 13.2405i 1.64298 0.552167i
\(576\) 2.99031 + 0.240925i 0.124596 + 0.0100386i
\(577\) −3.79307 −0.157908 −0.0789538 0.996878i \(-0.525158\pi\)
−0.0789538 + 0.996878i \(0.525158\pi\)
\(578\) −8.46961 14.6698i −0.352289 0.610183i
\(579\) 12.2072 + 7.71800i 0.507314 + 0.320749i
\(580\) 4.16757 11.0223i 0.173049 0.457675i
\(581\) 3.18742 0.200317i 0.132237 0.00831053i
\(582\) −9.49307 + 15.0147i −0.393500 + 0.622380i
\(583\) −9.45083 + 5.45644i −0.391414 + 0.225983i
\(584\) −5.92861 −0.245327
\(585\) 13.5773 9.39504i 0.561354 0.388437i
\(586\) 31.0592i 1.28304i
\(587\) −32.9062 + 18.9984i −1.35818 + 0.784147i −0.989379 0.145360i \(-0.953566\pi\)
−0.368804 + 0.929507i \(0.620233\pi\)
\(588\) −12.0802 + 1.03331i −0.498181 + 0.0426129i
\(589\) −6.94454 + 12.0283i −0.286145 + 0.495617i
\(590\) −11.1552 4.21783i −0.459252 0.173645i
\(591\) −0.870826 0.0350239i −0.0358210 0.00144069i
\(592\) −1.62056 + 0.935631i −0.0666046 + 0.0384542i
\(593\) 12.0771i 0.495949i 0.968767 + 0.247974i \(0.0797648\pi\)
−0.968767 + 0.247974i \(0.920235\pi\)
\(594\) −5.59365 4.20127i −0.229510 0.172380i
\(595\) 1.06864 0.992491i 0.0438098 0.0406882i
\(596\) 3.13672 1.81099i 0.128485 0.0741810i
\(597\) 0.383194 9.52763i 0.0156831 0.389940i
\(598\) −10.2298 + 17.7186i −0.418328 + 0.724565i
\(599\) −5.14603 2.97106i −0.210261 0.121394i 0.391172 0.920318i \(-0.372070\pi\)
−0.601433 + 0.798923i \(0.705403\pi\)
\(600\) 6.25828 + 5.98615i 0.255493 + 0.244383i
\(601\) 21.7479 12.5562i 0.887115 0.512176i 0.0141176 0.999900i \(-0.495506\pi\)
0.872998 + 0.487724i \(0.162173\pi\)
\(602\) 12.3012 + 18.5176i 0.501360 + 0.754719i
\(603\) −4.96430 3.42545i −0.202162 0.139495i
\(604\) 11.1814 0.454966
\(605\) −15.9002 + 13.0087i −0.646436 + 0.528879i
\(606\) −1.30033 + 2.05668i −0.0528225 + 0.0835467i
\(607\) 11.7612 20.3710i 0.477372 0.826833i −0.522292 0.852767i \(-0.674923\pi\)
0.999664 + 0.0259343i \(0.00825608\pi\)
\(608\) −1.27682 0.737171i −0.0517818 0.0298962i
\(609\) 24.1435 0.544912i 0.978346 0.0220810i
\(610\) 10.5762 + 12.9271i 0.428220 + 0.523403i
\(611\) 23.5187i 0.951464i
\(612\) −0.608712 0.420021i −0.0246057 0.0169784i
\(613\) 24.0649i 0.971974i 0.873966 + 0.485987i \(0.161540\pi\)
−0.873966 + 0.485987i \(0.838460\pi\)
\(614\) −12.6258 21.8685i −0.509536 0.882543i
\(615\) −29.2705 + 22.0449i −1.18030 + 0.888938i
\(616\) −3.55501 + 0.223418i −0.143236 + 0.00900178i
\(617\) −15.9989 + 27.7108i −0.644090 + 1.11560i 0.340421 + 0.940273i \(0.389430\pi\)
−0.984511 + 0.175323i \(0.943903\pi\)
\(618\) 16.8557 + 0.677922i 0.678035 + 0.0272700i
\(619\) −25.1177 + 14.5017i −1.00956 + 0.582872i −0.911064 0.412265i \(-0.864738\pi\)
−0.0985003 + 0.995137i \(0.531405\pi\)
\(620\) −20.7888 + 3.39988i −0.834897 + 0.136543i
\(621\) 25.9397 34.5366i 1.04092 1.38591i
\(622\) −28.1040 −1.12687
\(623\) 32.0017 + 15.8885i 1.28212 + 0.636560i
\(624\) −4.25966 0.171320i −0.170523 0.00685829i
\(625\) 3.11285 + 24.8054i 0.124514 + 0.992218i
\(626\) 11.1704 19.3477i 0.446460 0.773291i
\(627\) 1.59796 + 3.04408i 0.0638166 + 0.121569i
\(628\) −2.79836 4.84689i −0.111667 0.193412i
\(629\) 0.461303 0.0183934
\(630\) −6.56870 + 16.4879i −0.261703 + 0.656895i
\(631\) 29.7780 1.18544 0.592722 0.805407i \(-0.298053\pi\)
0.592722 + 0.805407i \(0.298053\pi\)
\(632\) 0.270127 + 0.467874i 0.0107451 + 0.0186110i
\(633\) 20.2280 31.9937i 0.803993 1.27164i
\(634\) −8.46214 + 14.6569i −0.336075 + 0.582098i
\(635\) 4.86351 12.8629i 0.193003 0.510448i
\(636\) 7.50270 11.8666i 0.297501 0.470543i
\(637\) 17.0936 2.15704i 0.677272 0.0854651i
\(638\) 7.09497 0.280892
\(639\) 3.68713 45.7637i 0.145860 1.81039i
\(640\) −0.360902 2.20675i −0.0142659 0.0872295i
\(641\) 25.6437 14.8054i 1.01286 0.584777i 0.100835 0.994903i \(-0.467849\pi\)
0.912029 + 0.410126i \(0.134515\pi\)
\(642\) 11.9580 + 22.7797i 0.471946 + 0.899044i
\(643\) −6.37830 + 11.0475i −0.251536 + 0.435673i −0.963949 0.266088i \(-0.914269\pi\)
0.712413 + 0.701760i \(0.247602\pi\)
\(644\) −1.37944 21.9495i −0.0543575 0.864933i
\(645\) 32.3014 3.95754i 1.27187 0.155828i
\(646\) 0.181727 + 0.314761i 0.00714997 + 0.0123841i
\(647\) 17.0272i 0.669408i −0.942323 0.334704i \(-0.891364\pi\)
0.942323 0.334704i \(-0.108636\pi\)
\(648\) 8.88391 + 1.44088i 0.348993 + 0.0566033i
\(649\) 7.18053i 0.281861i
\(650\) −9.22789 8.14226i −0.361948 0.319366i
\(651\) −22.4232 36.8900i −0.878836 1.44583i
\(652\) −18.4752 10.6667i −0.723546 0.417740i
\(653\) 4.92585 8.53182i 0.192763 0.333876i −0.753402 0.657561i \(-0.771588\pi\)
0.946165 + 0.323685i \(0.104922\pi\)
\(654\) −0.879377 1.67519i −0.0343864 0.0655051i
\(655\) −33.0960 + 27.0773i −1.29317 + 1.05800i
\(656\) 9.46130 0.369402
\(657\) −17.7284 1.42835i −0.691650 0.0557253i
\(658\) −13.9889 21.0582i −0.545345 0.820933i
\(659\) −3.23356 + 1.86690i −0.125962 + 0.0727241i −0.561657 0.827370i \(-0.689836\pi\)
0.435695 + 0.900094i \(0.356503\pi\)
\(660\) −2.03863 + 4.79923i −0.0793537 + 0.186810i
\(661\) 13.3928 + 7.73237i 0.520921 + 0.300754i 0.737312 0.675553i \(-0.236095\pi\)
−0.216390 + 0.976307i \(0.569428\pi\)
\(662\) −4.73518 + 8.20158i −0.184038 + 0.318763i
\(663\) 0.888288 + 0.561621i 0.0344983 + 0.0218115i
\(664\) −1.04539 + 0.603555i −0.0405689 + 0.0234225i
\(665\) 6.39111 5.93571i 0.247837 0.230177i
\(666\) −5.07139 + 2.40739i −0.196513 + 0.0932846i
\(667\) 43.8061i 1.69618i
\(668\) −2.90007 + 1.67436i −0.112207 + 0.0647829i
\(669\) 6.20428 + 11.8190i 0.239871 + 0.456948i
\(670\) −1.58993 + 4.20501i −0.0614245 + 0.162454i
\(671\) −5.02817 + 8.70904i −0.194110 + 0.336209i
\(672\) 3.91592 2.38025i 0.151060 0.0918202i
\(673\) 43.3347 25.0193i 1.67043 0.964423i 0.703034 0.711156i \(-0.251828\pi\)
0.967396 0.253267i \(-0.0815052\pi\)
\(674\) 30.2979i 1.16703i
\(675\) 17.2720 + 19.4082i 0.664799 + 0.747022i
\(676\) −6.94199 −0.266999
\(677\) 7.34767 4.24218i 0.282394 0.163040i −0.352113 0.935958i \(-0.614537\pi\)
0.634507 + 0.772917i \(0.281203\pi\)
\(678\) −13.8785 0.558184i −0.533002 0.0214369i
\(679\) 1.70197 + 27.0816i 0.0653155 + 1.03929i
\(680\) −0.194954 + 0.515610i −0.00747615 + 0.0197727i
\(681\) −30.9592 + 16.2518i −1.18636 + 0.622769i
\(682\) −6.34152 10.9838i −0.242829 0.420593i
\(683\) −14.5396 −0.556344 −0.278172 0.960531i \(-0.589729\pi\)
−0.278172 + 0.960531i \(0.589729\pi\)
\(684\) −3.64048 2.51199i −0.139197 0.0960483i
\(685\) 4.51725 + 27.6209i 0.172595 + 1.05534i
\(686\) −14.0222 + 12.0986i −0.535371 + 0.461928i
\(687\) −10.4142 6.58441i −0.397328 0.251211i
\(688\) −7.27682 4.20127i −0.277426 0.160172i
\(689\) −9.97531 + 17.2777i −0.380029 + 0.658230i
\(690\) −29.6317 12.5870i −1.12806 0.479180i
\(691\) 40.3430 23.2920i 1.53472 0.886071i 0.535585 0.844482i \(-0.320091\pi\)
0.999135 0.0415892i \(-0.0132421\pi\)
\(692\) 7.22900i 0.274805i
\(693\) −10.6844 0.188404i −0.405868 0.00715687i
\(694\) −16.5310 −0.627509
\(695\) 6.58681 + 8.05090i 0.249852 + 0.305388i
\(696\) −8.08186 + 4.24251i −0.306342 + 0.160812i
\(697\) −2.01992 1.16620i −0.0765098 0.0441730i
\(698\) −9.71689 5.61005i −0.367790 0.212343i
\(699\) −39.6300 1.59389i −1.49895 0.0602864i
\(700\) 13.1055 + 1.80166i 0.495341 + 0.0680962i
\(701\) 0.630803i 0.0238251i −0.999929 0.0119125i \(-0.996208\pi\)
0.999929 0.0119125i \(-0.00379197\pi\)
\(702\) −12.6964 1.53856i −0.479196 0.0580692i
\(703\) 2.75888 0.104053
\(704\) 1.16595 0.673160i 0.0439433 0.0253707i
\(705\) −36.7331 + 4.50052i −1.38345 + 0.169499i
\(706\) −11.0368 6.37208i −0.415374 0.239817i
\(707\) 0.233131 + 3.70956i 0.00876778 + 0.139512i
\(708\) 4.29367 + 8.17933i 0.161366 + 0.307398i
\(709\) −24.6555 42.7046i −0.925957 1.60380i −0.790015 0.613088i \(-0.789927\pi\)
−0.135942 0.990717i \(-0.543406\pi\)
\(710\) −33.7721 + 5.52324i −1.26745 + 0.207284i
\(711\) 0.695041 + 1.46417i 0.0260661 + 0.0549106i
\(712\) −13.5043 −0.506093
\(713\) 67.8170 39.1541i 2.53976 1.46633i
\(714\) −1.12941 + 0.0254904i −0.0422671 + 0.000953955i
\(715\) 2.62056 6.93078i 0.0980034 0.259197i
\(716\) −6.82220 3.93880i −0.254958 0.147200i
\(717\) −23.5058 14.8615i −0.877839 0.555014i
\(718\) −11.2623 + 6.50229i −0.420305 + 0.242663i
\(719\) 30.6621 1.14350 0.571752 0.820427i \(-0.306264\pi\)
0.571752 + 0.820427i \(0.306264\pi\)
\(720\) −0.547545 6.68582i −0.0204058 0.249166i
\(721\) 21.4639 14.2585i 0.799359 0.531014i
\(722\) −8.41316 14.5720i −0.313105 0.542314i
\(723\) 10.2022 5.35555i 0.379423 0.199175i
\(724\) −6.53138 3.77089i −0.242737 0.140144i
\(725\) −25.8275 5.21883i −0.959208 0.193823i
\(726\) 15.9002 + 0.639494i 0.590113 + 0.0237339i
\(727\) 24.9478 + 43.2108i 0.925262 + 1.60260i 0.791140 + 0.611635i \(0.209488\pi\)
0.134122 + 0.990965i \(0.457179\pi\)
\(728\) −5.42423 + 3.60331i −0.201035 + 0.133548i
\(729\) 26.2185 + 6.44905i 0.971056 + 0.238854i
\(730\) 2.13964 + 13.0830i 0.0791917 + 0.484222i
\(731\) 1.03570 + 1.79388i 0.0383067 + 0.0663491i
\(732\) 0.519917 12.9271i 0.0192167 0.477799i
\(733\) −8.12326 + 14.0699i −0.300039 + 0.519683i −0.976145 0.217122i \(-0.930333\pi\)
0.676105 + 0.736805i \(0.263666\pi\)
\(734\) −15.1533 + 26.2462i −0.559317 + 0.968765i
\(735\) 6.64003 + 26.2852i 0.244921 + 0.969543i
\(736\) 4.15626 + 7.19885i 0.153202 + 0.265353i
\(737\) −2.70674 −0.0997040
\(738\) 28.2922 + 2.27947i 1.04145 + 0.0839084i
\(739\) 2.60884 0.0959678 0.0479839 0.998848i \(-0.484720\pi\)
0.0479839 + 0.998848i \(0.484720\pi\)
\(740\) 2.64957 + 3.23850i 0.0974000 + 0.119050i
\(741\) 5.31252 + 3.35884i 0.195160 + 0.123390i
\(742\) −1.34512 21.4035i −0.0493810 0.785746i
\(743\) 12.6044 21.8315i 0.462411 0.800920i −0.536669 0.843793i \(-0.680318\pi\)
0.999081 + 0.0428731i \(0.0136511\pi\)
\(744\) 13.7915 + 8.71969i 0.505621 + 0.319680i
\(745\) −5.12845 6.26838i −0.187892 0.229656i
\(746\) 28.8103i 1.05482i
\(747\) −3.27144 + 1.55296i −0.119696 + 0.0568197i
\(748\) −0.331895 −0.0121353
\(749\) 35.1999 + 17.4764i 1.28618 + 0.638573i
\(750\) 10.9513 15.9709i 0.399885 0.583174i
\(751\) −4.53086 + 7.84768i −0.165333 + 0.286366i −0.936774 0.349936i \(-0.886203\pi\)
0.771440 + 0.636302i \(0.219537\pi\)
\(752\) 8.27520 + 4.77769i 0.301765 + 0.174224i
\(753\) 16.6288 + 0.668797i 0.605987 + 0.0243723i
\(754\) 11.2331 6.48540i 0.409084 0.236185i
\(755\) −4.03539 24.6746i −0.146863 0.898001i
\(756\) 12.2833 6.17425i 0.446738 0.224555i
\(757\) 26.8628i 0.976346i −0.872747 0.488173i \(-0.837663\pi\)
0.872747 0.488173i \(-0.162337\pi\)
\(758\) −17.2067 29.8028i −0.624974 1.08249i
\(759\) 0.778976 19.3683i 0.0282750 0.703023i
\(760\) −1.16595 + 3.08366i −0.0422934 + 0.111856i
\(761\) −8.91154 + 15.4352i −0.323043 + 0.559527i −0.981114 0.193429i \(-0.938039\pi\)
0.658071 + 0.752956i \(0.271373\pi\)
\(762\) −9.43145 + 4.95096i −0.341666 + 0.179354i
\(763\) −2.58855 1.28519i −0.0937119 0.0465270i
\(764\) 3.57824i 0.129456i
\(765\) −0.707197 + 1.49486i −0.0255688 + 0.0540469i
\(766\) 11.3887i 0.411491i
\(767\) −6.56362 11.3685i −0.236999 0.410494i
\(768\) −0.925606 + 1.46399i −0.0333999 + 0.0528270i
\(769\) 11.7940 + 6.80929i 0.425304 + 0.245549i 0.697344 0.716737i \(-0.254365\pi\)
−0.272040 + 0.962286i \(0.587698\pi\)
\(770\) 1.77604 + 7.76440i 0.0640040 + 0.279810i
\(771\) 8.95485 + 5.66171i 0.322501 + 0.203902i
\(772\) −7.22120 + 4.16916i −0.259897 + 0.150051i
\(773\) 24.9560i 0.897603i −0.893631 0.448802i \(-0.851851\pi\)
0.893631 0.448802i \(-0.148149\pi\)
\(774\) −20.7477 14.3163i −0.745762 0.514588i
\(775\) 15.0054 + 44.6486i 0.539010 + 1.60382i
\(776\) −5.12803 8.88201i −0.184086 0.318845i
\(777\) −4.11894 + 7.52119i −0.147766 + 0.269821i
\(778\) 10.6623 + 6.15591i 0.382264 + 0.220700i
\(779\) −12.0804 6.97460i −0.432824 0.249891i
\(780\) 1.15926 + 9.46184i 0.0415081 + 0.338788i
\(781\) −10.3020 17.8437i −0.368636 0.638497i
\(782\) 2.04920i 0.0732793i
\(783\) −25.1894 + 10.7393i −0.900196 + 0.383791i
\(784\) 2.71349 6.45267i 0.0969104 0.230453i
\(785\) −9.68596 + 7.92452i −0.345707 + 0.282838i
\(786\) 33.0960 + 1.33109i 1.18049 + 0.0474785i
\(787\) 1.89429 3.28100i 0.0675240 0.116955i −0.830287 0.557336i \(-0.811823\pi\)
0.897811 + 0.440381i \(0.145157\pi\)
\(788\) 0.251589 0.435765i 0.00896248 0.0155235i
\(789\) −13.0990 24.9532i −0.466337 0.888359i
\(790\) 0.934992 0.764960i 0.0332655 0.0272161i
\(791\) −17.6729 + 11.7401i −0.628374 + 0.417429i
\(792\) 3.64873 1.73205i 0.129652 0.0615457i
\(793\) 18.3847i 0.652860i
\(794\) 16.5856 + 28.7270i 0.588599 + 1.01948i
\(795\) −28.8945 12.2739i −1.02478 0.435310i
\(796\) 4.76767 + 2.75261i 0.168985 + 0.0975638i
\(797\) 3.98925 + 2.30320i 0.141307 + 0.0815834i 0.568987 0.822347i \(-0.307336\pi\)
−0.427680 + 0.903930i \(0.640669\pi\)
\(798\) −6.75456 + 0.152448i −0.239109 + 0.00539662i
\(799\) −1.17780 2.04000i −0.0416674 0.0721700i
\(800\) −4.73950 + 1.59284i −0.167567 + 0.0563154i
\(801\) −40.3819 3.25352i −1.42682 0.114957i
\(802\) 13.2780i 0.468862i
\(803\) −6.91244 + 3.99090i −0.243935 + 0.140836i
\(804\) 3.08324 1.61852i 0.108738 0.0570809i
\(805\) −47.9393 + 10.9657i −1.68964 + 0.386490i
\(806\) −20.0803 11.5934i −0.707300 0.408360i
\(807\) 13.3656 + 0.537554i 0.470492 + 0.0189228i
\(808\) −0.702424 1.21663i −0.0247112 0.0428010i
\(809\) 10.5959i 0.372533i −0.982499 0.186266i \(-0.940361\pi\)
0.982499 0.186266i \(-0.0596387\pi\)
\(810\) −0.0265453 20.1246i −0.000932707 0.707106i
\(811\) 39.4452i 1.38511i 0.721366 + 0.692554i \(0.243515\pi\)
−0.721366 + 0.692554i \(0.756485\pi\)
\(812\) −6.20033 + 12.4883i −0.217589 + 0.438255i
\(813\) 0.530861 13.1992i 0.0186181 0.462916i
\(814\) −1.25966 + 2.18179i −0.0441510 + 0.0764718i
\(815\) −16.8710 + 44.6199i −0.590965 + 1.56297i
\(816\) 0.378061 0.198460i 0.0132348 0.00694748i
\(817\) 6.19411 + 10.7285i 0.216705 + 0.375343i
\(818\) 14.7871i 0.517020i
\(819\) −17.0883 + 9.46819i −0.597112 + 0.330845i
\(820\) −3.41460 20.8787i −0.119243 0.729117i
\(821\) −7.29853 + 4.21381i −0.254721 + 0.147063i −0.621924 0.783078i \(-0.713649\pi\)
0.367203 + 0.930141i \(0.380315\pi\)
\(822\) 11.5854 18.3241i 0.404087 0.639125i
\(823\) −13.8355 7.98791i −0.482274 0.278441i 0.239090 0.970998i \(-0.423151\pi\)
−0.721364 + 0.692556i \(0.756484\pi\)
\(824\) −4.86975 + 8.43465i −0.169646 + 0.293835i
\(825\) 11.3265 + 2.76671i 0.394337 + 0.0963244i
\(826\) 12.6389 + 6.27511i 0.439765 + 0.218339i
\(827\) 13.4764 0.468619 0.234310 0.972162i \(-0.424717\pi\)
0.234310 + 0.972162i \(0.424717\pi\)
\(828\) 10.6941 + 22.5281i 0.371646 + 0.782907i
\(829\) 0.478552i 0.0166208i −0.999965 0.00831040i \(-0.997355\pi\)
0.999965 0.00831040i \(-0.00264531\pi\)
\(830\) 1.70918 + 2.08909i 0.0593264 + 0.0725132i
\(831\) 21.3441 11.2044i 0.740418 0.388676i
\(832\) 1.23065 2.13155i 0.0426652 0.0738982i
\(833\) −1.37467 + 1.04313i −0.0476294 + 0.0361424i
\(834\) 0.323801 8.05090i 0.0112123 0.278780i
\(835\) 4.74153 + 5.79546i 0.164088 + 0.200560i
\(836\) −1.98494 −0.0686505
\(837\) 39.1401 + 29.3973i 1.35288 + 1.01612i
\(838\) −1.17417 −0.0405609
\(839\) −19.6086 33.9630i −0.676963 1.17253i −0.975891 0.218258i \(-0.929962\pi\)
0.298928 0.954276i \(-0.403371\pi\)
\(840\) −6.66588 7.78241i −0.229995 0.268519i
\(841\) −0.614104 + 1.06366i −0.0211760 + 0.0366779i
\(842\) −9.97171 + 17.2715i −0.343648 + 0.595215i
\(843\) −46.3283 + 24.3197i −1.59563 + 0.837614i
\(844\) 10.9269 + 18.9260i 0.376120 + 0.651459i
\(845\) 2.50537 + 15.3192i 0.0861875 + 0.526998i
\(846\) 23.5943 + 16.2805i 0.811190 + 0.559734i
\(847\) 20.2473 13.4503i 0.695704 0.462156i
\(848\) 4.05286 + 7.01975i 0.139176 + 0.241059i
\(849\) −7.03740 + 11.1307i −0.241523 + 0.382005i
\(850\) 1.20818 + 0.244131i 0.0414403 + 0.00837363i
\(851\) −13.4709 7.77745i −0.461778 0.266607i
\(852\) 22.4048 + 14.1655i 0.767577 + 0.485301i
\(853\) −18.8538 32.6557i −0.645541 1.11811i −0.984176 0.177192i \(-0.943299\pi\)
0.338636 0.940918i \(-0.390035\pi\)
\(854\) −10.9352 16.4613i −0.374196 0.563294i
\(855\) −4.22948 + 8.94021i −0.144645 + 0.305749i
\(856\) −14.8538 −0.507694
\(857\) 40.6733 23.4827i 1.38937 0.802155i 0.396129 0.918195i \(-0.370353\pi\)
0.993245 + 0.116040i \(0.0370201\pi\)
\(858\) −5.08186 + 2.66768i −0.173492 + 0.0910731i
\(859\) 28.5039 + 16.4568i 0.972542 + 0.561498i 0.900010 0.435869i \(-0.143559\pi\)
0.0725319 + 0.997366i \(0.476892\pi\)
\(860\) −6.64495 + 17.5744i −0.226591 + 0.599281i
\(861\) 37.0497 22.5203i 1.26265 0.767489i
\(862\) 19.0633 11.0062i 0.649299 0.374873i
\(863\) −16.5085 −0.561957 −0.280978 0.959714i \(-0.590659\pi\)
−0.280978 + 0.959714i \(0.590659\pi\)
\(864\) −3.12056 + 4.15477i −0.106164 + 0.141348i
\(865\) 15.9526 2.60896i 0.542405 0.0887073i
\(866\) −0.944923 1.63665i −0.0321098 0.0556158i
\(867\) 29.3159 + 1.17906i 0.995620 + 0.0400431i
\(868\) 24.8753 1.56331i 0.844323 0.0530622i
\(869\) 0.629908 + 0.363678i 0.0213682 + 0.0123369i
\(870\) 12.2789 + 16.3035i 0.416294 + 0.552742i
\(871\) −4.28543 + 2.47419i −0.145206 + 0.0838348i
\(872\) 1.09233 0.0369910
\(873\) −13.1945 27.7954i −0.446566 0.940733i
\(874\) 12.2555i 0.414548i
\(875\) −0.753988 29.5708i −0.0254894 0.999675i
\(876\) 5.48755 8.67939i 0.185407 0.293249i
\(877\) −21.8550 12.6180i −0.737991 0.426079i 0.0833476 0.996521i \(-0.473439\pi\)
−0.821338 + 0.570441i \(0.806772\pi\)
\(878\) 24.1785 + 13.9595i 0.815985 + 0.471109i
\(879\) 45.4702 + 28.7486i 1.53367 + 0.969666i
\(880\) −1.90629 2.33001i −0.0642610 0.0785447i
\(881\) 19.1314 0.644553 0.322277 0.946646i \(-0.395552\pi\)
0.322277 + 0.946646i \(0.395552\pi\)
\(882\) 9.66880 18.6417i 0.325565 0.627700i
\(883\) 6.39685i 0.215271i −0.994190 0.107636i \(-0.965672\pi\)
0.994190 0.107636i \(-0.0343280\pi\)
\(884\) −0.525470 + 0.303380i −0.0176735 + 0.0102038i
\(885\) 16.5002 12.4270i 0.554647 0.417729i
\(886\) −16.8221 + 29.1368i −0.565151 + 0.978870i
\(887\) 22.3665 + 12.9133i 0.750993 + 0.433586i 0.826053 0.563593i \(-0.190581\pi\)
−0.0750597 + 0.997179i \(0.523915\pi\)
\(888\) 0.130250 3.23850i 0.00437090 0.108677i
\(889\) −7.23572 + 14.5738i −0.242678 + 0.488788i
\(890\) 4.87371 + 29.8005i 0.163367 + 0.998916i
\(891\) 11.3281 4.30030i 0.379506 0.144065i
\(892\) −7.70674 −0.258041
\(893\) −7.04395 12.2005i −0.235717 0.408273i
\(894\) −0.252109 + 6.26838i −0.00843179 + 0.209646i
\(895\) −6.22981 + 16.4764i −0.208240 + 0.550746i
\(896\) 0.165947 + 2.64054i 0.00554391 + 0.0882143i
\(897\) −16.4709 31.3767i −0.549948 1.04764i
\(898\) 12.4670 7.19782i 0.416029 0.240195i
\(899\) −49.6452 −1.65576
\(900\) −14.5563 + 3.62122i −0.485211 + 0.120707i
\(901\) 1.99822i 0.0665704i
\(902\) 11.0314 6.36897i 0.367305 0.212064i
\(903\) −38.4955 + 0.868832i −1.28105 + 0.0289129i
\(904\) 4.00963 6.94488i 0.133358 0.230983i
\(905\) −5.96424 + 15.7741i −0.198258 + 0.524347i
\(906\) −10.3496 + 16.3694i −0.343842 + 0.543838i
\(907\) 18.8255 10.8689i 0.625089 0.360895i −0.153759 0.988108i \(-0.549138\pi\)
0.778848 + 0.627213i \(0.215804\pi\)
\(908\) 20.1874i 0.669942i
\(909\) −1.80735 3.80734i −0.0599459 0.126282i
\(910\) 9.90923 + 10.6695i 0.328488 + 0.353690i
\(911\) 5.89807 3.40525i 0.195412 0.112821i −0.399102 0.916907i \(-0.630678\pi\)
0.594514 + 0.804086i \(0.297345\pi\)
\(912\) 2.26104 1.18691i 0.0748704 0.0393026i
\(913\) −0.812578 + 1.40743i −0.0268924 + 0.0465790i
\(914\) 22.2454 + 12.8434i 0.735813 + 0.424822i
\(915\) −28.7145 + 3.51808i −0.949273 + 0.116304i
\(916\) 6.16057 3.55681i 0.203551 0.117520i
\(917\) 42.1442 27.9964i 1.39172 0.924522i
\(918\) 1.17833 0.502372i 0.0388908 0.0165807i
\(919\) −51.1270 −1.68652 −0.843262 0.537503i \(-0.819368\pi\)
−0.843262 + 0.537503i \(0.819368\pi\)
\(920\) 14.3861 11.7699i 0.474295 0.388042i
\(921\) 43.7018 + 1.75765i 1.44002 + 0.0579165i
\(922\) −12.2680 + 21.2487i −0.404024 + 0.699790i
\(923\) −32.6213 18.8339i −1.07374 0.619925i
\(924\) 2.96346 5.41129i 0.0974907 0.178018i
\(925\) 6.19033 7.01572i 0.203537 0.230675i
\(926\) 22.5326i 0.740467i
\(927\) −16.5942 + 24.0490i −0.545025 + 0.789872i
\(928\) 5.26989i 0.172993i
\(929\) 10.0757 + 17.4516i 0.330573 + 0.572570i 0.982624 0.185605i \(-0.0594246\pi\)
−0.652051 + 0.758175i \(0.726091\pi\)
\(930\) 14.2648 33.5814i 0.467762 1.10118i
\(931\) −8.22136 + 6.23858i −0.269444 + 0.204461i
\(932\) 11.4495 19.8310i 0.375039 0.649587i
\(933\) 26.0133 41.1439i 0.851636 1.34699i
\(934\) −26.3306 + 15.2020i −0.861564 + 0.497424i
\(935\) 0.119781 + 0.732409i 0.00391727 + 0.0239523i
\(936\) 4.19358 6.07750i 0.137071 0.198649i
\(937\) 20.0761 0.655859 0.327930 0.944702i \(-0.393649\pi\)
0.327930 + 0.944702i \(0.393649\pi\)
\(938\) 2.36543 4.76432i 0.0772342 0.155560i
\(939\) 17.9854 + 34.2617i 0.586931 + 1.11809i
\(940\) 7.55663 19.9856i 0.246470 0.651858i
\(941\) 11.0888 19.2063i 0.361484 0.626108i −0.626722 0.779243i \(-0.715604\pi\)
0.988205 + 0.153135i \(0.0489370\pi\)
\(942\) 9.68596 + 0.389561i 0.315586 + 0.0126926i
\(943\) 39.3236 + 68.1105i 1.28055 + 2.21798i
\(944\) −5.33345 −0.173589
\(945\) −18.0581 24.8778i −0.587429 0.809275i
\(946\) −11.3125 −0.367802
\(947\) −20.7581 35.9541i −0.674549 1.16835i −0.976601 0.215061i \(-0.931005\pi\)
0.302052 0.953291i \(-0.402328\pi\)
\(948\) −0.934992 0.0376046i −0.0303671 0.00122134i
\(949\) −7.29605 + 12.6371i −0.236840 + 0.410218i
\(950\) 7.22567 + 1.46006i 0.234432 + 0.0473705i
\(951\) −13.6248 25.9549i −0.441815 0.841647i
\(952\) 0.290045 0.584191i 0.00940040 0.0189337i
\(953\) 54.9073 1.77862 0.889311 0.457303i \(-0.151185\pi\)
0.889311 + 0.457303i \(0.151185\pi\)
\(954\) 10.4281 + 21.9677i 0.337621 + 0.711230i
\(955\) 7.89628 1.29139i 0.255518 0.0417884i
\(956\) 13.9049 8.02800i 0.449717 0.259644i
\(957\) −6.56714 + 10.3869i −0.212286 + 0.335762i
\(958\) 15.6602 27.1242i 0.505958 0.876345i
\(959\) −2.07709 33.0505i −0.0670727 1.06726i
\(960\) 3.56470 + 1.51423i 0.115050 + 0.0488715i
\(961\) 28.8732 + 50.0098i 0.931392 + 1.61322i
\(962\) 4.60574i 0.148495i
\(963\) −44.4176 3.57867i −1.43134 0.115321i
\(964\) 6.65248i 0.214262i
\(965\) 11.8064 + 14.4307i 0.380063 + 0.464542i
\(966\) 33.4106 + 18.2971i 1.07497 + 0.588701i
\(967\) −30.0780 17.3656i −0.967244 0.558439i −0.0688491 0.997627i \(-0.521933\pi\)
−0.898395 + 0.439189i \(0.855266\pi\)
\(968\) −4.59371 + 7.95654i −0.147647 + 0.255733i
\(969\) −0.629013 0.0252984i −0.0202068 0.000812702i
\(970\) −17.7497 + 14.5218i −0.569907 + 0.466267i
\(971\) −39.1395 −1.25605 −0.628024 0.778194i \(-0.716136\pi\)
−0.628024 + 0.778194i \(0.716136\pi\)
\(972\) −10.3324 + 11.6722i −0.331413 + 0.374387i
\(973\) −6.81038 10.2520i −0.218331 0.328663i
\(974\) 28.6921 16.5654i 0.919354 0.530790i
\(975\) 20.4615 5.97298i 0.655294 0.191289i
\(976\) 6.46877 + 3.73475i 0.207060 + 0.119546i
\(977\) 1.99898 3.46234i 0.0639530 0.110770i −0.832276 0.554361i \(-0.812963\pi\)
0.896229 + 0.443591i \(0.146296\pi\)
\(978\) 32.7167 17.1743i 1.04616 0.549175i
\(979\) −15.7452 + 9.09052i −0.503220 + 0.290534i
\(980\) −15.2187 3.65922i −0.486145 0.116890i
\(981\) 3.26641 + 0.263171i 0.104288 + 0.00840239i
\(982\) 33.2771i 1.06191i
\(983\) −9.34495 + 5.39531i −0.298058 + 0.172084i −0.641570 0.767064i \(-0.721717\pi\)
0.343512 + 0.939148i \(0.388383\pi\)
\(984\) −8.75744 + 13.8512i −0.279177 + 0.441560i
\(985\) −1.05242 0.397926i −0.0335330 0.0126790i
\(986\) −0.649567 + 1.12508i −0.0206864 + 0.0358299i
\(987\) 43.7771 0.988035i 1.39344 0.0314495i
\(988\) −3.14264 + 1.81440i −0.0999806 + 0.0577238i
\(989\) 69.8463i 2.22098i
\(990\) −5.13904 7.42673i −0.163329 0.236037i
\(991\) −7.10079 −0.225564 −0.112782 0.993620i \(-0.535976\pi\)
−0.112782 + 0.993620i \(0.535976\pi\)
\(992\) −8.15842 + 4.71026i −0.259030 + 0.149551i
\(993\) −7.62408 14.5237i −0.241943 0.460895i
\(994\) 40.4109 2.53966i 1.28176 0.0805531i
\(995\) 4.35367 11.5145i 0.138021 0.365033i
\(996\) 0.0840213 2.08909i 0.00266232 0.0661952i
\(997\) 18.5660 + 32.1573i 0.587992 + 1.01843i 0.994495 + 0.104782i \(0.0334146\pi\)
−0.406503 + 0.913649i \(0.633252\pi\)
\(998\) 22.2245 0.703504
\(999\) 1.16973 9.65275i 0.0370085 0.305399i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.2.bf.b.419.4 yes 8
3.2 odd 2 1890.2.bf.c.1259.2 8
5.4 even 2 630.2.bf.c.419.1 yes 8
7.6 odd 2 630.2.bf.a.419.1 yes 8
9.2 odd 6 630.2.bf.d.209.4 yes 8
9.7 even 3 1890.2.bf.a.629.1 8
15.14 odd 2 1890.2.bf.b.1259.4 8
21.20 even 2 1890.2.bf.d.1259.3 8
35.34 odd 2 630.2.bf.d.419.4 yes 8
45.29 odd 6 630.2.bf.a.209.1 8
45.34 even 6 1890.2.bf.d.629.3 8
63.20 even 6 630.2.bf.c.209.1 yes 8
63.34 odd 6 1890.2.bf.b.629.4 8
105.104 even 2 1890.2.bf.a.1259.1 8
315.34 odd 6 1890.2.bf.c.629.2 8
315.209 even 6 inner 630.2.bf.b.209.4 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.2.bf.a.209.1 8 45.29 odd 6
630.2.bf.a.419.1 yes 8 7.6 odd 2
630.2.bf.b.209.4 yes 8 315.209 even 6 inner
630.2.bf.b.419.4 yes 8 1.1 even 1 trivial
630.2.bf.c.209.1 yes 8 63.20 even 6
630.2.bf.c.419.1 yes 8 5.4 even 2
630.2.bf.d.209.4 yes 8 9.2 odd 6
630.2.bf.d.419.4 yes 8 35.34 odd 2
1890.2.bf.a.629.1 8 9.7 even 3
1890.2.bf.a.1259.1 8 105.104 even 2
1890.2.bf.b.629.4 8 63.34 odd 6
1890.2.bf.b.1259.4 8 15.14 odd 2
1890.2.bf.c.629.2 8 315.34 odd 6
1890.2.bf.c.1259.2 8 3.2 odd 2
1890.2.bf.d.629.3 8 45.34 even 6
1890.2.bf.d.1259.3 8 21.20 even 2