Properties

Label 63.8.e.b.46.2
Level $63$
Weight $8$
Character 63.46
Analytic conductor $19.680$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [63,8,Mod(37,63)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("63.37"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(63, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 63.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.6802566055\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 103x^{6} - 378x^{5} + 9744x^{4} - 22680x^{3} + 149400x^{2} + 216000x + 810000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8}\cdot 3\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 7)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 46.2
Root \(2.57145 - 4.45388i\) of defining polynomial
Character \(\chi\) \(=\) 63.46
Dual form 63.8.e.b.37.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.69038 - 6.39193i) q^{2} +(36.7621 - 63.6739i) q^{4} +(-145.409 - 251.857i) q^{5} +(358.327 - 833.753i) q^{7} -1487.40 q^{8} +(-1073.23 + 1858.89i) q^{10} +(1596.44 - 2765.12i) q^{11} +5186.70 q^{13} +(-6651.66 + 786.465i) q^{14} +(783.535 + 1357.12i) q^{16} +(-1224.56 + 2120.99i) q^{17} +(-16159.1 - 27988.4i) q^{19} -21382.2 q^{20} -23565.9 q^{22} +(31470.7 + 54508.9i) q^{23} +(-3225.30 + 5586.38i) q^{25} +(-19140.9 - 33153.0i) q^{26} +(-39915.4 - 53466.7i) q^{28} -141752. q^{29} +(-141188. + 244545. i) q^{31} +(-89410.7 + 154864. i) q^{32} +18076.3 q^{34} +(-262090. + 30988.5i) q^{35} +(65683.8 + 113768. i) q^{37} +(-119267. + 206576. i) q^{38} +(216283. + 374612. i) q^{40} +65254.0 q^{41} -257876. q^{43} +(-117377. - 203303. i) q^{44} +(232278. - 402317. i) q^{46} +(63728.7 + 110381. i) q^{47} +(-566746. - 597513. i) q^{49} +47610.4 q^{50} +(190674. - 330257. i) q^{52} +(395323. - 684719. i) q^{53} -928551. q^{55} +(-532978. + 1.24013e6i) q^{56} +(523119. + 906068. i) q^{58} +(607173. - 1.05165e6i) q^{59} +(-381042. - 659985. i) q^{61} +2.08415e6 q^{62} +1.52042e6 q^{64} +(-754195. - 1.30630e6i) q^{65} +(1.72143e6 - 2.98160e6i) q^{67} +(90034.6 + 155944. i) q^{68} +(1.16529e6 + 1.56090e6i) q^{70} +3.99576e6 q^{71} +(384669. - 666266. i) q^{73} +(484797. - 839693. i) q^{74} -2.37617e6 q^{76} +(-1.73338e6 - 2.32186e6i) q^{77} +(2.91690e6 + 5.05222e6i) q^{79} +(227867. - 394677. i) q^{80} +(-240812. - 417099. i) q^{82} -1.39747e6 q^{83} +712248. q^{85} +(951662. + 1.64833e6i) q^{86} +(-2.37455e6 + 4.11285e6i) q^{88} +(808509. + 1.40038e6i) q^{89} +(1.85854e6 - 4.32443e6i) q^{91} +4.62772e6 q^{92} +(470367. - 814699. i) q^{94} +(-4.69937e6 + 8.13955e6i) q^{95} -5.68544e6 q^{97} +(-1.72775e6 + 5.82765e6i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{2} - 348 q^{4} + 252 q^{5} + 672 q^{7} + 1968 q^{8} - 4774 q^{10} - 3972 q^{11} - 2352 q^{13} - 47502 q^{14} - 57264 q^{16} + 56364 q^{17} - 41748 q^{19} - 324744 q^{20} - 305908 q^{22} + 131748 q^{23}+ \cdots - 60255006 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.69038 6.39193i −0.326187 0.564972i 0.655565 0.755139i \(-0.272431\pi\)
−0.981752 + 0.190167i \(0.939097\pi\)
\(3\) 0 0
\(4\) 36.7621 63.6739i 0.287204 0.497452i
\(5\) −145.409 251.857i −0.520233 0.901069i −0.999723 0.0235223i \(-0.992512\pi\)
0.479491 0.877547i \(-0.340821\pi\)
\(6\) 0 0
\(7\) 358.327 833.753i 0.394854 0.918744i
\(8\) −1487.40 −1.02710
\(9\) 0 0
\(10\) −1073.23 + 1858.89i −0.339386 + 0.587834i
\(11\) 1596.44 2765.12i 0.361642 0.626382i −0.626589 0.779350i \(-0.715550\pi\)
0.988231 + 0.152967i \(0.0488830\pi\)
\(12\) 0 0
\(13\) 5186.70 0.654771 0.327385 0.944891i \(-0.393832\pi\)
0.327385 + 0.944891i \(0.393832\pi\)
\(14\) −6651.66 + 786.465i −0.647861 + 0.0766004i
\(15\) 0 0
\(16\) 783.535 + 1357.12i 0.0478232 + 0.0828322i
\(17\) −1224.56 + 2120.99i −0.0604515 + 0.104705i −0.894667 0.446733i \(-0.852587\pi\)
0.834216 + 0.551438i \(0.185921\pi\)
\(18\) 0 0
\(19\) −16159.1 27988.4i −0.540480 0.936139i −0.998876 0.0473912i \(-0.984909\pi\)
0.458396 0.888748i \(-0.348424\pi\)
\(20\) −21382.2 −0.597652
\(21\) 0 0
\(22\) −23565.9 −0.471851
\(23\) 31470.7 + 54508.9i 0.539335 + 0.934156i 0.998940 + 0.0460327i \(0.0146578\pi\)
−0.459604 + 0.888124i \(0.652009\pi\)
\(24\) 0 0
\(25\) −3225.30 + 5586.38i −0.0412838 + 0.0715057i
\(26\) −19140.9 33153.0i −0.213578 0.369927i
\(27\) 0 0
\(28\) −39915.4 53466.7i −0.343627 0.460288i
\(29\) −141752. −1.07928 −0.539642 0.841895i \(-0.681440\pi\)
−0.539642 + 0.841895i \(0.681440\pi\)
\(30\) 0 0
\(31\) −141188. + 244545.i −0.851200 + 1.47432i 0.0289267 + 0.999582i \(0.490791\pi\)
−0.880126 + 0.474739i \(0.842542\pi\)
\(32\) −89410.7 + 154864.i −0.482353 + 0.835460i
\(33\) 0 0
\(34\) 18076.3 0.0788740
\(35\) −262090. + 30988.5i −1.03327 + 0.122169i
\(36\) 0 0
\(37\) 65683.8 + 113768.i 0.213183 + 0.369244i 0.952709 0.303884i \(-0.0982836\pi\)
−0.739526 + 0.673128i \(0.764950\pi\)
\(38\) −119267. + 206576.i −0.352595 + 0.610713i
\(39\) 0 0
\(40\) 216283. + 374612.i 0.534332 + 0.925491i
\(41\) 65254.0 0.147864 0.0739322 0.997263i \(-0.476445\pi\)
0.0739322 + 0.997263i \(0.476445\pi\)
\(42\) 0 0
\(43\) −257876. −0.494620 −0.247310 0.968936i \(-0.579547\pi\)
−0.247310 + 0.968936i \(0.579547\pi\)
\(44\) −117377. 203303.i −0.207730 0.359799i
\(45\) 0 0
\(46\) 232278. 402317.i 0.351848 0.609419i
\(47\) 63728.7 + 110381.i 0.0895349 + 0.155079i 0.907315 0.420452i \(-0.138129\pi\)
−0.817780 + 0.575531i \(0.804795\pi\)
\(48\) 0 0
\(49\) −566746. 597513.i −0.688180 0.725540i
\(50\) 47610.4 0.0538650
\(51\) 0 0
\(52\) 190674. 330257.i 0.188053 0.325717i
\(53\) 395323. 684719.i 0.364743 0.631753i −0.623992 0.781431i \(-0.714490\pi\)
0.988735 + 0.149678i \(0.0478237\pi\)
\(54\) 0 0
\(55\) −928551. −0.752552
\(56\) −532978. + 1.24013e6i −0.405556 + 0.943644i
\(57\) 0 0
\(58\) 523119. + 906068.i 0.352048 + 0.609765i
\(59\) 607173. 1.05165e6i 0.384884 0.666639i −0.606869 0.794802i \(-0.707575\pi\)
0.991753 + 0.128163i \(0.0409080\pi\)
\(60\) 0 0
\(61\) −381042. 659985.i −0.214941 0.372288i 0.738314 0.674458i \(-0.235622\pi\)
−0.953254 + 0.302169i \(0.902289\pi\)
\(62\) 2.08415e6 1.11060
\(63\) 0 0
\(64\) 1.52042e6 0.724995
\(65\) −754195. 1.30630e6i −0.340633 0.589994i
\(66\) 0 0
\(67\) 1.72143e6 2.98160e6i 0.699241 1.21112i −0.269488 0.963004i \(-0.586855\pi\)
0.968730 0.248118i \(-0.0798121\pi\)
\(68\) 90034.6 + 155944.i 0.0347239 + 0.0601435i
\(69\) 0 0
\(70\) 1.16529e6 + 1.56090e6i 0.406061 + 0.543918i
\(71\) 3.99576e6 1.32494 0.662469 0.749089i \(-0.269509\pi\)
0.662469 + 0.749089i \(0.269509\pi\)
\(72\) 0 0
\(73\) 384669. 666266.i 0.115733 0.200455i −0.802340 0.596868i \(-0.796412\pi\)
0.918073 + 0.396412i \(0.129745\pi\)
\(74\) 484797. 839693.i 0.139075 0.240885i
\(75\) 0 0
\(76\) −2.37617e6 −0.620913
\(77\) −1.73338e6 2.32186e6i −0.432689 0.579586i
\(78\) 0 0
\(79\) 2.91690e6 + 5.05222e6i 0.665620 + 1.15289i 0.979117 + 0.203299i \(0.0651663\pi\)
−0.313496 + 0.949589i \(0.601500\pi\)
\(80\) 227867. 394677.i 0.0497584 0.0861840i
\(81\) 0 0
\(82\) −240812. 417099.i −0.0482314 0.0835393i
\(83\) −1.39747e6 −0.268267 −0.134134 0.990963i \(-0.542825\pi\)
−0.134134 + 0.990963i \(0.542825\pi\)
\(84\) 0 0
\(85\) 712248. 0.125795
\(86\) 951662. + 1.64833e6i 0.161339 + 0.279447i
\(87\) 0 0
\(88\) −2.37455e6 + 4.11285e6i −0.371443 + 0.643359i
\(89\) 808509. + 1.40038e6i 0.121568 + 0.210562i 0.920386 0.391010i \(-0.127874\pi\)
−0.798818 + 0.601573i \(0.794541\pi\)
\(90\) 0 0
\(91\) 1.85854e6 4.32443e6i 0.258539 0.601567i
\(92\) 4.62772e6 0.619598
\(93\) 0 0
\(94\) 470367. 814699.i 0.0584102 0.101170i
\(95\) −4.69937e6 + 8.13955e6i −0.562351 + 0.974020i
\(96\) 0 0
\(97\) −5.68544e6 −0.632504 −0.316252 0.948675i \(-0.602424\pi\)
−0.316252 + 0.948675i \(0.602424\pi\)
\(98\) −1.72775e6 + 5.82765e6i −0.185435 + 0.625464i
\(99\) 0 0
\(100\) 237138. + 410735.i 0.0237138 + 0.0410735i
\(101\) 5.04402e6 8.73650e6i 0.487138 0.843748i −0.512752 0.858537i \(-0.671374\pi\)
0.999891 + 0.0147883i \(0.00470742\pi\)
\(102\) 0 0
\(103\) −4.66877e6 8.08655e6i −0.420991 0.729177i 0.575046 0.818121i \(-0.304984\pi\)
−0.996037 + 0.0889438i \(0.971651\pi\)
\(104\) −7.71471e6 −0.672517
\(105\) 0 0
\(106\) −5.83557e6 −0.475897
\(107\) −7.20247e6 1.24750e7i −0.568379 0.984462i −0.996726 0.0808474i \(-0.974237\pi\)
0.428347 0.903614i \(-0.359096\pi\)
\(108\) 0 0
\(109\) −4.27999e6 + 7.41316e6i −0.316556 + 0.548291i −0.979767 0.200142i \(-0.935860\pi\)
0.663211 + 0.748432i \(0.269193\pi\)
\(110\) 3.42671e6 + 5.93523e6i 0.245472 + 0.425171i
\(111\) 0 0
\(112\) 1.41227e6 166981.i 0.0949848 0.0112306i
\(113\) −1.15607e7 −0.753722 −0.376861 0.926270i \(-0.622997\pi\)
−0.376861 + 0.926270i \(0.622997\pi\)
\(114\) 0 0
\(115\) 9.15227e6 1.58522e7i 0.561160 0.971957i
\(116\) −5.21110e6 + 9.02589e6i −0.309975 + 0.536892i
\(117\) 0 0
\(118\) −8.96280e6 −0.502177
\(119\) 1.32959e6 + 1.78099e6i 0.0723276 + 0.0968827i
\(120\) 0 0
\(121\) 4.64633e6 + 8.04768e6i 0.238430 + 0.412973i
\(122\) −2.81238e6 + 4.87119e6i −0.140222 + 0.242871i
\(123\) 0 0
\(124\) 1.03807e7 + 1.79800e7i 0.488936 + 0.846862i
\(125\) −2.08443e7 −0.954556
\(126\) 0 0
\(127\) 2.65100e7 1.14841 0.574204 0.818712i \(-0.305312\pi\)
0.574204 + 0.818712i \(0.305312\pi\)
\(128\) 5.83363e6 + 1.01041e7i 0.245869 + 0.425857i
\(129\) 0 0
\(130\) −5.56654e6 + 9.64152e6i −0.222220 + 0.384896i
\(131\) 2.27287e6 + 3.93672e6i 0.0883333 + 0.152998i 0.906807 0.421547i \(-0.138513\pi\)
−0.818473 + 0.574544i \(0.805179\pi\)
\(132\) 0 0
\(133\) −2.91257e7 + 3.44370e6i −1.07348 + 0.126924i
\(134\) −2.54109e7 −0.912334
\(135\) 0 0
\(136\) 1.82141e6 3.15477e6i 0.0620899 0.107543i
\(137\) 2.46771e7 4.27420e7i 0.819922 1.42015i −0.0858166 0.996311i \(-0.527350\pi\)
0.905739 0.423836i \(-0.139317\pi\)
\(138\) 0 0
\(139\) −4.41231e7 −1.39352 −0.696761 0.717303i \(-0.745376\pi\)
−0.696761 + 0.717303i \(0.745376\pi\)
\(140\) −7.66185e6 + 1.78275e7i −0.235985 + 0.549089i
\(141\) 0 0
\(142\) −1.47459e7 2.55406e7i −0.432177 0.748553i
\(143\) 8.28026e6 1.43418e7i 0.236793 0.410137i
\(144\) 0 0
\(145\) 2.06121e7 + 3.57011e7i 0.561479 + 0.972509i
\(146\) −5.67830e6 −0.151002
\(147\) 0 0
\(148\) 9.65872e6 0.244908
\(149\) 1.11368e7 + 1.92894e7i 0.275808 + 0.477714i 0.970339 0.241750i \(-0.0777212\pi\)
−0.694531 + 0.719463i \(0.744388\pi\)
\(150\) 0 0
\(151\) 3.47581e7 6.02027e7i 0.821554 1.42297i −0.0829702 0.996552i \(-0.526441\pi\)
0.904524 0.426422i \(-0.140226\pi\)
\(152\) 2.40351e7 + 4.16300e7i 0.555129 + 0.961511i
\(153\) 0 0
\(154\) −8.44432e6 + 1.96482e7i −0.186313 + 0.433511i
\(155\) 8.21202e7 1.77129
\(156\) 0 0
\(157\) 6.14609e6 1.06453e7i 0.126751 0.219538i −0.795665 0.605737i \(-0.792879\pi\)
0.922416 + 0.386198i \(0.126212\pi\)
\(158\) 2.15289e7 3.72892e7i 0.434233 0.752114i
\(159\) 0 0
\(160\) 5.20047e7 1.00374
\(161\) 5.67237e7 6.70678e6i 1.07121 0.126655i
\(162\) 0 0
\(163\) 8.80901e6 + 1.52577e7i 0.159320 + 0.275950i 0.934624 0.355638i \(-0.115736\pi\)
−0.775304 + 0.631589i \(0.782403\pi\)
\(164\) 2.39888e6 4.15498e6i 0.0424673 0.0735555i
\(165\) 0 0
\(166\) 5.15718e6 + 8.93250e6i 0.0875053 + 0.151564i
\(167\) −1.13558e8 −1.88673 −0.943367 0.331751i \(-0.892361\pi\)
−0.943367 + 0.331751i \(0.892361\pi\)
\(168\) 0 0
\(169\) −3.58467e7 −0.571275
\(170\) −2.62847e6 4.55264e6i −0.0410328 0.0710709i
\(171\) 0 0
\(172\) −9.48008e6 + 1.64200e7i −0.142057 + 0.246050i
\(173\) −1.08140e7 1.87304e7i −0.158791 0.275034i 0.775642 0.631173i \(-0.217426\pi\)
−0.934433 + 0.356139i \(0.884093\pi\)
\(174\) 0 0
\(175\) 3.50195e6 + 4.69086e6i 0.0493943 + 0.0661636i
\(176\) 5.00348e6 0.0691795
\(177\) 0 0
\(178\) 5.96742e6 1.03359e7i 0.0793079 0.137365i
\(179\) 5.41432e7 9.37787e7i 0.705599 1.22213i −0.260875 0.965372i \(-0.584011\pi\)
0.966475 0.256761i \(-0.0826555\pi\)
\(180\) 0 0
\(181\) 6.56731e7 0.823214 0.411607 0.911361i \(-0.364968\pi\)
0.411607 + 0.911361i \(0.364968\pi\)
\(182\) −3.45002e7 + 4.07915e6i −0.424200 + 0.0501557i
\(183\) 0 0
\(184\) −4.68096e7 8.10767e7i −0.553953 0.959475i
\(185\) 1.91021e7 3.30858e7i 0.221809 0.384185i
\(186\) 0 0
\(187\) 3.90986e6 + 6.77208e6i 0.0437236 + 0.0757315i
\(188\) 9.37121e6 0.102859
\(189\) 0 0
\(190\) 6.93699e7 0.733726
\(191\) −7.23000e6 1.25227e7i −0.0750795 0.130042i 0.826041 0.563610i \(-0.190588\pi\)
−0.901121 + 0.433568i \(0.857254\pi\)
\(192\) 0 0
\(193\) 3.11856e7 5.40150e7i 0.312251 0.540834i −0.666599 0.745417i \(-0.732250\pi\)
0.978849 + 0.204583i \(0.0655838\pi\)
\(194\) 2.09815e7 + 3.63410e7i 0.206314 + 0.357347i
\(195\) 0 0
\(196\) −5.88808e7 + 1.41211e7i −0.558570 + 0.133959i
\(197\) 1.35525e7 0.126296 0.0631478 0.998004i \(-0.479886\pi\)
0.0631478 + 0.998004i \(0.479886\pi\)
\(198\) 0 0
\(199\) 1.48623e7 2.57423e7i 0.133691 0.231559i −0.791406 0.611291i \(-0.790650\pi\)
0.925097 + 0.379732i \(0.123984\pi\)
\(200\) 4.79732e6 8.30920e6i 0.0424027 0.0734437i
\(201\) 0 0
\(202\) −7.44575e7 −0.635593
\(203\) −5.07936e7 + 1.18186e8i −0.426160 + 0.991585i
\(204\) 0 0
\(205\) −9.48855e6 1.64346e7i −0.0769239 0.133236i
\(206\) −3.44591e7 + 5.96850e7i −0.274643 + 0.475696i
\(207\) 0 0
\(208\) 4.06396e6 + 7.03899e6i 0.0313132 + 0.0542361i
\(209\) −1.03188e8 −0.781841
\(210\) 0 0
\(211\) −1.45624e8 −1.06719 −0.533597 0.845739i \(-0.679160\pi\)
−0.533597 + 0.845739i \(0.679160\pi\)
\(212\) −2.90658e7 5.03435e7i −0.209511 0.362884i
\(213\) 0 0
\(214\) −5.31597e7 + 9.20754e7i −0.370796 + 0.642237i
\(215\) 3.74976e7 + 6.49478e7i 0.257317 + 0.445687i
\(216\) 0 0
\(217\) 1.53298e8 + 2.05343e8i 1.01842 + 1.36418i
\(218\) 6.31792e7 0.413025
\(219\) 0 0
\(220\) −3.41355e7 + 5.91245e7i −0.216136 + 0.374359i
\(221\) −6.35140e6 + 1.10010e7i −0.0395819 + 0.0685579i
\(222\) 0 0
\(223\) −2.01327e8 −1.21573 −0.607863 0.794042i \(-0.707973\pi\)
−0.607863 + 0.794042i \(0.707973\pi\)
\(224\) 9.70800e7 + 1.30039e8i 0.577114 + 0.773043i
\(225\) 0 0
\(226\) 4.26636e7 + 7.38955e7i 0.245854 + 0.425832i
\(227\) −1.53854e8 + 2.66483e8i −0.873010 + 1.51210i −0.0141421 + 0.999900i \(0.504502\pi\)
−0.858868 + 0.512197i \(0.828832\pi\)
\(228\) 0 0
\(229\) −9.26335e7 1.60446e8i −0.509734 0.882886i −0.999936 0.0112769i \(-0.996410\pi\)
0.490202 0.871609i \(-0.336923\pi\)
\(230\) −1.35102e8 −0.732172
\(231\) 0 0
\(232\) 2.10842e8 1.10854
\(233\) −1.24551e8 2.15729e8i −0.645062 1.11728i −0.984287 0.176576i \(-0.943498\pi\)
0.339225 0.940705i \(-0.389835\pi\)
\(234\) 0 0
\(235\) 1.85335e7 3.21010e7i 0.0931580 0.161354i
\(236\) −4.46420e7 7.73221e7i −0.221081 0.382923i
\(237\) 0 0
\(238\) 6.47724e6 1.50712e7i 0.0311437 0.0724650i
\(239\) −3.36485e6 −0.0159431 −0.00797156 0.999968i \(-0.502537\pi\)
−0.00797156 + 0.999968i \(0.502537\pi\)
\(240\) 0 0
\(241\) −1.09274e8 + 1.89269e8i −0.502873 + 0.871001i 0.497122 + 0.867681i \(0.334390\pi\)
−0.999994 + 0.00332052i \(0.998943\pi\)
\(242\) 3.42935e7 5.93981e7i 0.155546 0.269413i
\(243\) 0 0
\(244\) −5.60317e7 −0.246928
\(245\) −6.80774e7 + 2.29623e8i −0.295748 + 0.997547i
\(246\) 0 0
\(247\) −8.38124e7 1.45167e8i −0.353891 0.612957i
\(248\) 2.10003e8 3.63736e8i 0.874270 1.51428i
\(249\) 0 0
\(250\) 7.69233e7 + 1.33235e8i 0.311364 + 0.539298i
\(251\) −3.10664e8 −1.24003 −0.620017 0.784588i \(-0.712874\pi\)
−0.620017 + 0.784588i \(0.712874\pi\)
\(252\) 0 0
\(253\) 2.00965e8 0.780185
\(254\) −9.78319e7 1.69450e8i −0.374596 0.648818i
\(255\) 0 0
\(256\) 1.40364e8 2.43117e8i 0.522896 0.905682i
\(257\) 1.48074e8 + 2.56472e8i 0.544144 + 0.942486i 0.998660 + 0.0517471i \(0.0164790\pi\)
−0.454516 + 0.890739i \(0.650188\pi\)
\(258\) 0 0
\(259\) 1.18391e8 1.39980e7i 0.423417 0.0500630i
\(260\) −1.10903e8 −0.391325
\(261\) 0 0
\(262\) 1.67755e7 2.90560e7i 0.0576263 0.0998118i
\(263\) 1.29723e8 2.24687e8i 0.439717 0.761612i −0.557951 0.829874i \(-0.688412\pi\)
0.997667 + 0.0682625i \(0.0217455\pi\)
\(264\) 0 0
\(265\) −2.29935e8 −0.759004
\(266\) 1.29497e8 + 1.73461e8i 0.421865 + 0.565087i
\(267\) 0 0
\(268\) −1.26567e8 2.19220e8i −0.401650 0.695679i
\(269\) 7.32285e7 1.26835e8i 0.229376 0.397290i −0.728248 0.685314i \(-0.759665\pi\)
0.957623 + 0.288024i \(0.0929983\pi\)
\(270\) 0 0
\(271\) 1.25786e8 + 2.17867e8i 0.383918 + 0.664965i 0.991618 0.129201i \(-0.0412413\pi\)
−0.607701 + 0.794166i \(0.707908\pi\)
\(272\) −3.83793e6 −0.0115639
\(273\) 0 0
\(274\) −3.64272e8 −1.06979
\(275\) 1.02980e7 + 1.78367e7i 0.0298599 + 0.0517189i
\(276\) 0 0
\(277\) 2.32652e8 4.02966e8i 0.657701 1.13917i −0.323508 0.946225i \(-0.604862\pi\)
0.981209 0.192946i \(-0.0618043\pi\)
\(278\) 1.62831e8 + 2.82032e8i 0.454549 + 0.787302i
\(279\) 0 0
\(280\) 3.89834e8 4.60924e7i 1.06127 0.125480i
\(281\) 5.58490e8 1.50156 0.750781 0.660551i \(-0.229677\pi\)
0.750781 + 0.660551i \(0.229677\pi\)
\(282\) 0 0
\(283\) −3.76398e7 + 6.51940e7i −0.0987176 + 0.170984i −0.911154 0.412066i \(-0.864807\pi\)
0.812437 + 0.583050i \(0.198141\pi\)
\(284\) 1.46893e8 2.54426e8i 0.380528 0.659094i
\(285\) 0 0
\(286\) −1.22229e8 −0.308955
\(287\) 2.33823e7 5.44058e7i 0.0583849 0.135850i
\(288\) 0 0
\(289\) 2.02170e8 + 3.50169e8i 0.492691 + 0.853366i
\(290\) 1.52133e8 2.63502e8i 0.366294 0.634440i
\(291\) 0 0
\(292\) −2.82825e7 4.89867e7i −0.0664780 0.115143i
\(293\) 5.90696e8 1.37192 0.685958 0.727641i \(-0.259383\pi\)
0.685958 + 0.727641i \(0.259383\pi\)
\(294\) 0 0
\(295\) −3.53155e8 −0.800918
\(296\) −9.76984e7 1.69219e8i −0.218961 0.379251i
\(297\) 0 0
\(298\) 8.21978e7 1.42371e8i 0.179930 0.311648i
\(299\) 1.63229e8 + 2.82721e8i 0.353141 + 0.611658i
\(300\) 0 0
\(301\) −9.24041e7 + 2.15005e8i −0.195303 + 0.454429i
\(302\) −5.13082e8 −1.07192
\(303\) 0 0
\(304\) 2.53225e7 4.38598e7i 0.0516950 0.0895384i
\(305\) −1.10814e8 + 1.91936e8i −0.223638 + 0.387353i
\(306\) 0 0
\(307\) 6.49771e8 1.28167 0.640835 0.767679i \(-0.278588\pi\)
0.640835 + 0.767679i \(0.278588\pi\)
\(308\) −2.11564e8 + 2.50145e7i −0.412586 + 0.0487825i
\(309\) 0 0
\(310\) −3.03055e8 5.24907e8i −0.577771 1.00073i
\(311\) 2.24291e7 3.88483e7i 0.0422815 0.0732336i −0.844110 0.536170i \(-0.819871\pi\)
0.886392 + 0.462936i \(0.153204\pi\)
\(312\) 0 0
\(313\) −2.86009e6 4.95383e6i −0.00527200 0.00913137i 0.863377 0.504559i \(-0.168345\pi\)
−0.868649 + 0.495427i \(0.835011\pi\)
\(314\) −9.07257e7 −0.165378
\(315\) 0 0
\(316\) 4.28926e8 0.764676
\(317\) −1.39838e8 2.42207e8i −0.246558 0.427050i 0.716011 0.698089i \(-0.245966\pi\)
−0.962568 + 0.271039i \(0.912633\pi\)
\(318\) 0 0
\(319\) −2.26299e8 + 3.91961e8i −0.390314 + 0.676044i
\(320\) −2.21084e8 3.82929e8i −0.377166 0.653271i
\(321\) 0 0
\(322\) −2.52202e8 3.37824e8i −0.420971 0.563890i
\(323\) 7.91509e7 0.130691
\(324\) 0 0
\(325\) −1.67287e7 + 2.89749e7i −0.0270314 + 0.0468198i
\(326\) 6.50172e7 1.12613e8i 0.103936 0.180023i
\(327\) 0 0
\(328\) −9.70591e7 −0.151872
\(329\) 1.14867e8 1.35813e7i 0.177831 0.0210260i
\(330\) 0 0
\(331\) 4.38853e8 + 7.60115e8i 0.665152 + 1.15208i 0.979244 + 0.202684i \(0.0649666\pi\)
−0.314092 + 0.949392i \(0.601700\pi\)
\(332\) −5.13738e7 + 8.89821e7i −0.0770475 + 0.133450i
\(333\) 0 0
\(334\) 4.19073e8 + 7.25856e8i 0.615428 + 1.06595i
\(335\) −1.00125e9 −1.45507
\(336\) 0 0
\(337\) 1.05320e8 0.149902 0.0749508 0.997187i \(-0.476120\pi\)
0.0749508 + 0.997187i \(0.476120\pi\)
\(338\) 1.32288e8 + 2.29129e8i 0.186342 + 0.322755i
\(339\) 0 0
\(340\) 2.61838e7 4.53516e7i 0.0361290 0.0625772i
\(341\) 4.50796e8 + 7.80802e8i 0.615659 + 1.06635i
\(342\) 0 0
\(343\) −7.01259e8 + 2.58421e8i −0.938316 + 0.345779i
\(344\) 3.83566e8 0.508025
\(345\) 0 0
\(346\) −7.98157e7 + 1.38245e8i −0.103591 + 0.179425i
\(347\) 1.79512e8 3.10925e8i 0.230644 0.399486i −0.727354 0.686262i \(-0.759250\pi\)
0.957998 + 0.286776i \(0.0925835\pi\)
\(348\) 0 0
\(349\) −1.99439e8 −0.251142 −0.125571 0.992085i \(-0.540076\pi\)
−0.125571 + 0.992085i \(0.540076\pi\)
\(350\) 1.70601e7 3.96953e7i 0.0212688 0.0494881i
\(351\) 0 0
\(352\) 2.85478e8 + 4.94463e8i 0.348878 + 0.604274i
\(353\) −8.23100e8 + 1.42565e9i −0.995958 + 1.72505i −0.420191 + 0.907436i \(0.638037\pi\)
−0.575767 + 0.817614i \(0.695297\pi\)
\(354\) 0 0
\(355\) −5.81022e8 1.00636e9i −0.689276 1.19386i
\(356\) 1.18890e8 0.139660
\(357\) 0 0
\(358\) −7.99236e8 −0.920629
\(359\) 1.20711e7 + 2.09077e7i 0.0137694 + 0.0238493i 0.872828 0.488028i \(-0.162284\pi\)
−0.859059 + 0.511877i \(0.828950\pi\)
\(360\) 0 0
\(361\) −7.52977e7 + 1.30419e8i −0.0842377 + 0.145904i
\(362\) −2.42359e8 4.19778e8i −0.268522 0.465093i
\(363\) 0 0
\(364\) −2.07029e8 2.77315e8i −0.224997 0.301383i
\(365\) −2.23738e8 −0.240832
\(366\) 0 0
\(367\) 7.76929e8 1.34568e9i 0.820447 1.42106i −0.0849034 0.996389i \(-0.527058\pi\)
0.905350 0.424666i \(-0.139609\pi\)
\(368\) −4.93168e7 + 8.54192e7i −0.0515855 + 0.0893487i
\(369\) 0 0
\(370\) −2.81976e8 −0.289405
\(371\) −4.29232e8 5.74955e8i −0.436399 0.584555i
\(372\) 0 0
\(373\) −7.61551e8 1.31905e9i −0.759833 1.31607i −0.942935 0.332976i \(-0.891947\pi\)
0.183102 0.983094i \(-0.441386\pi\)
\(374\) 2.88578e7 4.99832e7i 0.0285241 0.0494053i
\(375\) 0 0
\(376\) −9.47903e7 1.64182e8i −0.0919616 0.159282i
\(377\) −7.35224e8 −0.706684
\(378\) 0 0
\(379\) 9.32142e8 0.879518 0.439759 0.898116i \(-0.355064\pi\)
0.439759 + 0.898116i \(0.355064\pi\)
\(380\) 3.45518e8 + 5.98455e8i 0.323019 + 0.559485i
\(381\) 0 0
\(382\) −5.33629e7 + 9.24273e7i −0.0489799 + 0.0848357i
\(383\) −8.77369e8 1.51965e9i −0.797970 1.38213i −0.920936 0.389714i \(-0.872574\pi\)
0.122965 0.992411i \(-0.460760\pi\)
\(384\) 0 0
\(385\) −3.32725e8 + 7.74182e8i −0.297148 + 0.691402i
\(386\) −4.60347e8 −0.407408
\(387\) 0 0
\(388\) −2.09009e8 + 3.62014e8i −0.181658 + 0.314640i
\(389\) −4.60335e8 + 7.97323e8i −0.396506 + 0.686769i −0.993292 0.115632i \(-0.963111\pi\)
0.596786 + 0.802400i \(0.296444\pi\)
\(390\) 0 0
\(391\) −1.54151e8 −0.130415
\(392\) 8.42980e8 + 8.88744e8i 0.706832 + 0.745204i
\(393\) 0 0
\(394\) −5.00140e7 8.66268e7i −0.0411960 0.0713535i
\(395\) 8.48289e8 1.46928e9i 0.692555 1.19954i
\(396\) 0 0
\(397\) 4.67778e8 + 8.10215e8i 0.375209 + 0.649881i 0.990358 0.138530i \(-0.0442377\pi\)
−0.615149 + 0.788410i \(0.710904\pi\)
\(398\) −2.19391e8 −0.174433
\(399\) 0 0
\(400\) −1.01085e7 −0.00789730
\(401\) 9.74458e8 + 1.68781e9i 0.754671 + 1.30713i 0.945538 + 0.325513i \(0.105537\pi\)
−0.190867 + 0.981616i \(0.561130\pi\)
\(402\) 0 0
\(403\) −7.32299e8 + 1.26838e9i −0.557341 + 0.965342i
\(404\) −3.70858e8 6.42345e8i −0.279816 0.484656i
\(405\) 0 0
\(406\) 9.42885e8 1.11483e8i 0.699226 0.0826736i
\(407\) 4.19442e8 0.308384
\(408\) 0 0
\(409\) 1.50260e8 2.60258e8i 0.108596 0.188093i −0.806606 0.591089i \(-0.798698\pi\)
0.915202 + 0.402997i \(0.132031\pi\)
\(410\) −7.00328e7 + 1.21300e8i −0.0501831 + 0.0869197i
\(411\) 0 0
\(412\) −6.86536e8 −0.483641
\(413\) −6.59253e8 8.83069e8i −0.460497 0.616836i
\(414\) 0 0
\(415\) 2.03205e8 + 3.51961e8i 0.139561 + 0.241727i
\(416\) −4.63747e8 + 8.03233e8i −0.315831 + 0.547034i
\(417\) 0 0
\(418\) 3.80804e8 + 6.59573e8i 0.255026 + 0.441719i
\(419\) 7.41204e8 0.492253 0.246127 0.969238i \(-0.420842\pi\)
0.246127 + 0.969238i \(0.420842\pi\)
\(420\) 0 0
\(421\) 2.25657e9 1.47388 0.736940 0.675958i \(-0.236270\pi\)
0.736940 + 0.675958i \(0.236270\pi\)
\(422\) 5.37407e8 + 9.30817e8i 0.348105 + 0.602935i
\(423\) 0 0
\(424\) −5.88005e8 + 1.01845e9i −0.374628 + 0.648875i
\(425\) −7.89912e6 1.36817e7i −0.00499134 0.00864526i
\(426\) 0 0
\(427\) −6.86802e8 + 8.12046e7i −0.426908 + 0.0504758i
\(428\) −1.05911e9 −0.652964
\(429\) 0 0
\(430\) 2.76761e8 4.79364e8i 0.167867 0.290754i
\(431\) 1.09503e7 1.89664e7i 0.00658802 0.0114108i −0.862713 0.505695i \(-0.831236\pi\)
0.869301 + 0.494284i \(0.164570\pi\)
\(432\) 0 0
\(433\) 1.42535e9 0.843749 0.421875 0.906654i \(-0.361372\pi\)
0.421875 + 0.906654i \(0.361372\pi\)
\(434\) 7.46808e8 1.73767e9i 0.438525 1.02036i
\(435\) 0 0
\(436\) 3.14683e8 + 5.45047e8i 0.181832 + 0.314943i
\(437\) 1.01708e9 1.76163e9i 0.583000 1.00979i
\(438\) 0 0
\(439\) −1.25618e9 2.17576e9i −0.708640 1.22740i −0.965362 0.260915i \(-0.915976\pi\)
0.256722 0.966485i \(-0.417357\pi\)
\(440\) 1.38113e9 0.772948
\(441\) 0 0
\(442\) 9.37564e7 0.0516444
\(443\) −7.35054e8 1.27315e9i −0.401704 0.695772i 0.592228 0.805771i \(-0.298249\pi\)
−0.993932 + 0.109999i \(0.964915\pi\)
\(444\) 0 0
\(445\) 2.35130e8 4.07257e8i 0.126487 0.219083i
\(446\) 7.42975e8 + 1.28687e9i 0.396554 + 0.686852i
\(447\) 0 0
\(448\) 5.44810e8 1.26766e9i 0.286267 0.666085i
\(449\) 2.83997e9 1.48064 0.740322 0.672252i \(-0.234673\pi\)
0.740322 + 0.672252i \(0.234673\pi\)
\(450\) 0 0
\(451\) 1.04174e8 1.80435e8i 0.0534740 0.0926197i
\(452\) −4.24998e8 + 7.36117e8i −0.216472 + 0.374941i
\(453\) 0 0
\(454\) 2.27113e9 1.13906
\(455\) −1.35938e9 + 1.60728e8i −0.676554 + 0.0799929i
\(456\) 0 0
\(457\) 2.06011e8 + 3.56821e8i 0.100968 + 0.174882i 0.912084 0.410004i \(-0.134473\pi\)
−0.811116 + 0.584886i \(0.801139\pi\)
\(458\) −6.83706e8 + 1.18421e9i −0.332537 + 0.575971i
\(459\) 0 0
\(460\) −6.72914e8 1.16552e9i −0.322335 0.558300i
\(461\) 4.14604e9 1.97097 0.985484 0.169766i \(-0.0543011\pi\)
0.985484 + 0.169766i \(0.0543011\pi\)
\(462\) 0 0
\(463\) −2.49603e9 −1.16873 −0.584367 0.811490i \(-0.698657\pi\)
−0.584367 + 0.811490i \(0.698657\pi\)
\(464\) −1.11068e8 1.92375e8i −0.0516148 0.0893995i
\(465\) 0 0
\(466\) −9.19282e8 + 1.59224e9i −0.420822 + 0.728885i
\(467\) −1.36711e9 2.36791e9i −0.621148 1.07586i −0.989272 0.146084i \(-0.953333\pi\)
0.368124 0.929777i \(-0.380000\pi\)
\(468\) 0 0
\(469\) −1.86908e9 2.50364e9i −0.836612 1.12064i
\(470\) −2.73583e8 −0.121548
\(471\) 0 0
\(472\) −9.03111e8 + 1.56423e9i −0.395316 + 0.684707i
\(473\) −4.11684e8 + 7.13058e8i −0.178875 + 0.309821i
\(474\) 0 0
\(475\) 2.08472e8 0.0892524
\(476\) 1.62281e8 1.91874e7i 0.0689673 0.00815441i
\(477\) 0 0
\(478\) 1.24176e7 + 2.15079e7i 0.00520044 + 0.00900742i
\(479\) 6.08065e8 1.05320e9i 0.252799 0.437861i −0.711496 0.702690i \(-0.751982\pi\)
0.964295 + 0.264829i \(0.0853155\pi\)
\(480\) 0 0
\(481\) 3.40682e8 + 5.90079e8i 0.139586 + 0.241770i
\(482\) 1.61306e9 0.656122
\(483\) 0 0
\(484\) 6.83236e8 0.273913
\(485\) 8.26717e8 + 1.43192e9i 0.329049 + 0.569930i
\(486\) 0 0
\(487\) 1.19069e9 2.06233e9i 0.467140 0.809110i −0.532155 0.846647i \(-0.678618\pi\)
0.999295 + 0.0375368i \(0.0119511\pi\)
\(488\) 5.66764e8 + 9.81663e8i 0.220766 + 0.382378i
\(489\) 0 0
\(490\) 1.71896e9 4.12250e8i 0.660056 0.158297i
\(491\) −4.90402e9 −1.86968 −0.934839 0.355072i \(-0.884456\pi\)
−0.934839 + 0.355072i \(0.884456\pi\)
\(492\) 0 0
\(493\) 1.73583e8 3.00655e8i 0.0652444 0.113007i
\(494\) −6.18600e8 + 1.07145e9i −0.230869 + 0.399877i
\(495\) 0 0
\(496\) −4.42503e8 −0.162828
\(497\) 1.43179e9 3.33148e9i 0.523158 1.21728i
\(498\) 0 0
\(499\) 1.45354e9 + 2.51760e9i 0.523690 + 0.907057i 0.999620 + 0.0275740i \(0.00877819\pi\)
−0.475930 + 0.879483i \(0.657888\pi\)
\(500\) −7.66280e8 + 1.32724e9i −0.274153 + 0.474846i
\(501\) 0 0
\(502\) 1.14647e9 + 1.98575e9i 0.404483 + 0.700585i
\(503\) 7.90853e7 0.0277082 0.0138541 0.999904i \(-0.495590\pi\)
0.0138541 + 0.999904i \(0.495590\pi\)
\(504\) 0 0
\(505\) −2.93379e9 −1.01370
\(506\) −7.41636e8 1.28455e9i −0.254486 0.440783i
\(507\) 0 0
\(508\) 9.74563e8 1.68799e9i 0.329828 0.571278i
\(509\) −1.69924e9 2.94316e9i −0.571138 0.989241i −0.996449 0.0841935i \(-0.973169\pi\)
0.425311 0.905047i \(-0.360165\pi\)
\(510\) 0 0
\(511\) −4.17664e8 5.59460e8i −0.138469 0.185480i
\(512\) −5.78577e8 −0.190509
\(513\) 0 0
\(514\) 1.09290e9 1.89296e9i 0.354986 0.614853i
\(515\) −1.35777e9 + 2.35172e9i −0.438026 + 0.758684i
\(516\) 0 0
\(517\) 4.06957e8 0.129518
\(518\) −5.26381e8 7.05086e8i −0.166397 0.222889i
\(519\) 0 0
\(520\) 1.12179e9 + 1.94300e9i 0.349865 + 0.605984i
\(521\) −1.79657e9 + 3.11176e9i −0.556561 + 0.963992i 0.441219 + 0.897399i \(0.354546\pi\)
−0.997780 + 0.0665929i \(0.978787\pi\)
\(522\) 0 0
\(523\) −1.09639e9 1.89900e9i −0.335126 0.580456i 0.648383 0.761315i \(-0.275446\pi\)
−0.983509 + 0.180859i \(0.942112\pi\)
\(524\) 3.34222e8 0.101479
\(525\) 0 0
\(526\) −1.91492e9 −0.573719
\(527\) −3.45785e8 5.98917e8i −0.102913 0.178250i
\(528\) 0 0
\(529\) −2.78397e8 + 4.82198e8i −0.0817655 + 0.141622i
\(530\) 8.48547e8 + 1.46973e9i 0.247577 + 0.428816i
\(531\) 0 0
\(532\) −8.51448e8 + 1.98114e9i −0.245170 + 0.570460i
\(533\) 3.38453e8 0.0968173
\(534\) 0 0
\(535\) −2.09461e9 + 3.62798e9i −0.591379 + 1.02430i
\(536\) −2.56046e9 + 4.43485e9i −0.718193 + 1.24395i
\(537\) 0 0
\(538\) −1.08097e9 −0.299277
\(539\) −2.55697e9 + 6.13224e8i −0.703340 + 0.168678i
\(540\) 0 0
\(541\) 2.39445e8 + 4.14730e8i 0.0650152 + 0.112610i 0.896701 0.442637i \(-0.145957\pi\)
−0.831686 + 0.555247i \(0.812624\pi\)
\(542\) 9.28394e8 1.60803e9i 0.250458 0.433806i
\(543\) 0 0
\(544\) −2.18977e8 3.79279e8i −0.0583179 0.101010i
\(545\) 2.48940e9 0.658730
\(546\) 0 0
\(547\) −1.52985e9 −0.399664 −0.199832 0.979830i \(-0.564040\pi\)
−0.199832 + 0.979830i \(0.564040\pi\)
\(548\) −1.81437e9 3.14258e9i −0.470970 0.815744i
\(549\) 0 0
\(550\) 7.60072e7 1.31648e8i 0.0194798 0.0337401i
\(551\) 2.29058e9 + 3.96741e9i 0.583332 + 1.01036i
\(552\) 0 0
\(553\) 5.25751e9 6.21626e8i 1.32203 0.156312i
\(554\) −3.43431e9 −0.858134
\(555\) 0 0
\(556\) −1.62206e9 + 2.80949e9i −0.400226 + 0.693211i
\(557\) 2.45884e8 4.25884e8i 0.0602889 0.104423i −0.834306 0.551302i \(-0.814131\pi\)
0.894595 + 0.446879i \(0.147464\pi\)
\(558\) 0 0
\(559\) −1.33753e9 −0.323863
\(560\) −2.47412e8 3.31408e8i −0.0595337 0.0797453i
\(561\) 0 0
\(562\) −2.06104e9 3.56983e9i −0.489790 0.848341i
\(563\) −5.62247e8 + 9.73840e8i −0.132785 + 0.229990i −0.924749 0.380578i \(-0.875725\pi\)
0.791964 + 0.610567i \(0.209058\pi\)
\(564\) 0 0
\(565\) 1.68104e9 + 2.91165e9i 0.392111 + 0.679156i
\(566\) 5.55621e8 0.128801
\(567\) 0 0
\(568\) −5.94331e9 −1.36085
\(569\) 1.53913e9 + 2.66585e9i 0.350253 + 0.606656i 0.986294 0.164999i \(-0.0527622\pi\)
−0.636041 + 0.771656i \(0.719429\pi\)
\(570\) 0 0
\(571\) −4.59821e8 + 7.96433e8i −0.103362 + 0.179029i −0.913068 0.407807i \(-0.866293\pi\)
0.809706 + 0.586836i \(0.199627\pi\)
\(572\) −6.08801e8 1.05447e9i −0.136016 0.235586i
\(573\) 0 0
\(574\) −4.34047e8 + 5.13200e7i −0.0957956 + 0.0113265i
\(575\) −4.06010e8 −0.0890633
\(576\) 0 0
\(577\) −2.43160e9 + 4.21166e9i −0.526959 + 0.912720i 0.472547 + 0.881305i \(0.343335\pi\)
−0.999506 + 0.0314146i \(0.989999\pi\)
\(578\) 1.49217e9 2.58452e9i 0.321419 0.556714i
\(579\) 0 0
\(580\) 3.03097e9 0.645036
\(581\) −5.00750e8 + 1.16514e9i −0.105927 + 0.246469i
\(582\) 0 0
\(583\) −1.26222e9 2.18623e9i −0.263812 0.456936i
\(584\) −5.72158e8 + 9.91007e8i −0.118870 + 0.205888i
\(585\) 0 0
\(586\) −2.17990e9 3.77569e9i −0.447501 0.775095i
\(587\) −1.16578e9 −0.237894 −0.118947 0.992901i \(-0.537952\pi\)
−0.118947 + 0.992901i \(0.537952\pi\)
\(588\) 0 0
\(589\) 9.12588e9 1.84023
\(590\) 1.30328e9 + 2.25734e9i 0.261249 + 0.452496i
\(591\) 0 0
\(592\) −1.02931e8 + 1.78282e8i −0.0203902 + 0.0353168i
\(593\) −1.67754e9 2.90559e9i −0.330356 0.572193i 0.652226 0.758025i \(-0.273835\pi\)
−0.982582 + 0.185832i \(0.940502\pi\)
\(594\) 0 0
\(595\) 2.55218e8 5.93839e8i 0.0496709 0.115574i
\(596\) 1.63765e9 0.316853
\(597\) 0 0
\(598\) 1.20476e9 2.08670e9i 0.230380 0.399030i
\(599\) −1.16072e9 + 2.01043e9i −0.220666 + 0.382205i −0.955010 0.296572i \(-0.904156\pi\)
0.734344 + 0.678777i \(0.237490\pi\)
\(600\) 0 0
\(601\) 4.38113e9 0.823238 0.411619 0.911356i \(-0.364964\pi\)
0.411619 + 0.911356i \(0.364964\pi\)
\(602\) 1.71530e9 2.02810e8i 0.320445 0.0378881i
\(603\) 0 0
\(604\) −2.55556e9 4.42636e9i −0.471908 0.817368i
\(605\) 1.35124e9 2.34042e9i 0.248078 0.429684i
\(606\) 0 0
\(607\) −2.16431e9 3.74869e9i −0.392788 0.680329i 0.600028 0.799979i \(-0.295156\pi\)
−0.992816 + 0.119650i \(0.961823\pi\)
\(608\) 5.77919e9 1.04281
\(609\) 0 0
\(610\) 1.63579e9 0.291792
\(611\) 3.30542e8 + 5.72515e8i 0.0586249 + 0.101541i
\(612\) 0 0
\(613\) −9.51623e8 + 1.64826e9i −0.166860 + 0.289011i −0.937314 0.348485i \(-0.886696\pi\)
0.770454 + 0.637496i \(0.220030\pi\)
\(614\) −2.39791e9 4.15329e9i −0.418064 0.724108i
\(615\) 0 0
\(616\) 2.57823e9 + 3.45354e9i 0.444416 + 0.595294i
\(617\) 8.11496e9 1.39088 0.695438 0.718586i \(-0.255210\pi\)
0.695438 + 0.718586i \(0.255210\pi\)
\(618\) 0 0
\(619\) 2.30171e9 3.98668e9i 0.390062 0.675608i −0.602395 0.798198i \(-0.705787\pi\)
0.992457 + 0.122590i \(0.0391201\pi\)
\(620\) 3.01891e9 5.22891e9i 0.508721 0.881131i
\(621\) 0 0
\(622\) −3.31087e8 −0.0551666
\(623\) 1.45728e9 1.72303e8i 0.241455 0.0285486i
\(624\) 0 0
\(625\) 3.28293e9 + 5.68620e9i 0.537875 + 0.931627i
\(626\) −2.11097e7 + 3.65631e7i −0.00343931 + 0.00595706i
\(627\) 0 0
\(628\) −4.51887e8 7.82691e8i −0.0728066 0.126105i
\(629\) −3.21734e8 −0.0515490
\(630\) 0 0
\(631\) 3.73470e9 0.591770 0.295885 0.955224i \(-0.404385\pi\)
0.295885 + 0.955224i \(0.404385\pi\)
\(632\) −4.33861e9 7.51469e9i −0.683660 1.18413i
\(633\) 0 0
\(634\) −1.03211e9 + 1.78767e9i −0.160848 + 0.278596i
\(635\) −3.85480e9 6.67671e9i −0.597439 1.03479i
\(636\) 0 0
\(637\) −2.93954e9 3.09912e9i −0.450600 0.475062i
\(638\) 3.34051e9 0.509262
\(639\) 0 0
\(640\) 1.69653e9 2.93847e9i 0.255818 0.443090i
\(641\) −3.64484e9 + 6.31304e9i −0.546607 + 0.946750i 0.451897 + 0.892070i \(0.350747\pi\)
−0.998504 + 0.0546804i \(0.982586\pi\)
\(642\) 0 0
\(643\) 4.01680e9 0.595856 0.297928 0.954588i \(-0.403704\pi\)
0.297928 + 0.954588i \(0.403704\pi\)
\(644\) 1.65824e9 3.85838e9i 0.244651 0.569252i
\(645\) 0 0
\(646\) −2.92097e8 5.05927e8i −0.0426298 0.0738370i
\(647\) 1.77143e9 3.06820e9i 0.257133 0.445368i −0.708339 0.705872i \(-0.750555\pi\)
0.965473 + 0.260504i \(0.0838887\pi\)
\(648\) 0 0
\(649\) −1.93863e9 3.35781e9i −0.278381 0.482169i
\(650\) 2.46941e8 0.0352692
\(651\) 0 0
\(652\) 1.29535e9 0.183030
\(653\) 5.59905e9 + 9.69783e9i 0.786897 + 1.36295i 0.927859 + 0.372931i \(0.121647\pi\)
−0.140962 + 0.990015i \(0.545020\pi\)
\(654\) 0 0
\(655\) 6.60993e8 1.14487e9i 0.0919078 0.159189i
\(656\) 5.11288e7 + 8.85577e7i 0.00707135 + 0.0122479i
\(657\) 0 0
\(658\) −5.10713e8 6.84099e8i −0.0698853 0.0936113i
\(659\) −8.68249e9 −1.18180 −0.590902 0.806743i \(-0.701228\pi\)
−0.590902 + 0.806743i \(0.701228\pi\)
\(660\) 0 0
\(661\) −5.17499e9 + 8.96335e9i −0.696955 + 1.20716i 0.272562 + 0.962138i \(0.412129\pi\)
−0.969517 + 0.245023i \(0.921204\pi\)
\(662\) 3.23907e9 5.61023e9i 0.433928 0.751585i
\(663\) 0 0
\(664\) 2.07860e9 0.275538
\(665\) 5.10246e9 + 6.83474e9i 0.672828 + 0.901252i
\(666\) 0 0
\(667\) −4.46103e9 7.72673e9i −0.582096 1.00822i
\(668\) −4.17464e9 + 7.23069e9i −0.541878 + 0.938560i
\(669\) 0 0
\(670\) 3.69499e9 + 6.39991e9i 0.474626 + 0.822076i
\(671\) −2.43325e9 −0.310926
\(672\) 0 0
\(673\) 1.94227e9 0.245617 0.122808 0.992430i \(-0.460810\pi\)
0.122808 + 0.992430i \(0.460810\pi\)
\(674\) −3.88671e8 6.73198e8i −0.0488959 0.0846902i
\(675\) 0 0
\(676\) −1.31780e9 + 2.28250e9i −0.164073 + 0.284182i
\(677\) 2.69675e9 + 4.67091e9i 0.334027 + 0.578551i 0.983297 0.182006i \(-0.0582592\pi\)
−0.649271 + 0.760557i \(0.724926\pi\)
\(678\) 0 0
\(679\) −2.03725e9 + 4.74026e9i −0.249747 + 0.581109i
\(680\) −1.05940e9 −0.129205
\(681\) 0 0
\(682\) 3.32722e9 5.76292e9i 0.401640 0.695660i
\(683\) 5.57579e9 9.65754e9i 0.669628 1.15983i −0.308380 0.951263i \(-0.599787\pi\)
0.978008 0.208567i \(-0.0668798\pi\)
\(684\) 0 0
\(685\) −1.43531e10 −1.70620
\(686\) 4.23972e9 + 3.52873e9i 0.501422 + 0.417334i
\(687\) 0 0
\(688\) −2.02055e8 3.49970e8i −0.0236543 0.0409705i
\(689\) 2.05042e9 3.55143e9i 0.238823 0.413653i
\(690\) 0 0
\(691\) 2.14163e9 + 3.70942e9i 0.246929 + 0.427693i 0.962672 0.270670i \(-0.0872453\pi\)
−0.715743 + 0.698363i \(0.753912\pi\)
\(692\) −1.59019e9 −0.182422
\(693\) 0 0
\(694\) −2.64988e9 −0.300932
\(695\) 6.41591e9 + 1.11127e10i 0.724956 + 1.25566i
\(696\) 0 0
\(697\) −7.99072e7 + 1.38403e8i −0.00893863 + 0.0154822i
\(698\) 7.36005e8 + 1.27480e9i 0.0819194 + 0.141888i
\(699\) 0 0
\(700\) 4.27424e8 5.05369e7i 0.0470995 0.00556885i
\(701\) 9.26658e8 0.101603 0.0508015 0.998709i \(-0.483822\pi\)
0.0508015 + 0.998709i \(0.483822\pi\)
\(702\) 0 0
\(703\) 2.12278e9 3.67677e9i 0.230442 0.399138i
\(704\) 2.42727e9 4.20416e9i 0.262189 0.454124i
\(705\) 0 0
\(706\) 1.21502e10 1.29947
\(707\) −5.47668e9 7.33600e9i −0.582840 0.780713i
\(708\) 0 0
\(709\) 2.79426e9 + 4.83980e9i 0.294446 + 0.509995i 0.974856 0.222837i \(-0.0715317\pi\)
−0.680410 + 0.732831i \(0.738198\pi\)
\(710\) −4.28839e9 + 7.42770e9i −0.449666 + 0.778843i
\(711\) 0 0
\(712\) −1.20258e9 2.08293e9i −0.124863 0.216269i
\(713\) −1.77731e10 −1.83633
\(714\) 0 0
\(715\) −4.81611e9 −0.492749
\(716\) −3.98084e9 6.89501e9i −0.405302 0.702004i
\(717\) 0 0
\(718\) 8.90938e7 1.54315e8i 0.00898281 0.0155587i
\(719\) 6.60046e9 + 1.14323e10i 0.662252 + 1.14705i 0.980023 + 0.198886i \(0.0637324\pi\)
−0.317771 + 0.948168i \(0.602934\pi\)
\(720\) 0 0
\(721\) −8.41514e9 + 9.94971e8i −0.836157 + 0.0988637i
\(722\) 1.11151e9 0.109909
\(723\) 0 0
\(724\) 2.41428e9 4.18166e9i 0.236431 0.409510i
\(725\) 4.57192e8 7.91880e8i 0.0445570 0.0771749i
\(726\) 0 0
\(727\) −7.32749e9 −0.707269 −0.353635 0.935384i \(-0.615054\pi\)
−0.353635 + 0.935384i \(0.615054\pi\)
\(728\) −2.76439e9 + 6.43217e9i −0.265546 + 0.617871i
\(729\) 0 0
\(730\) 8.25679e8 + 1.43012e9i 0.0785563 + 0.136064i
\(731\) 3.15784e8 5.46953e8i 0.0299005 0.0517892i
\(732\) 0 0
\(733\) 6.96170e9 + 1.20580e10i 0.652907 + 1.13087i 0.982414 + 0.186715i \(0.0597841\pi\)
−0.329507 + 0.944153i \(0.606883\pi\)
\(734\) −1.14687e10 −1.07048
\(735\) 0 0
\(736\) −1.12553e10 −1.04060
\(737\) −5.49632e9 9.51991e9i −0.505750 0.875985i
\(738\) 0 0
\(739\) −1.47710e9 + 2.55841e9i −0.134634 + 0.233193i −0.925458 0.378851i \(-0.876319\pi\)
0.790824 + 0.612044i \(0.209653\pi\)
\(740\) −1.40447e9 2.43261e9i −0.127409 0.220679i
\(741\) 0 0
\(742\) −2.09105e9 + 4.86543e9i −0.187910 + 0.437227i
\(743\) 5.39743e9 0.482754 0.241377 0.970431i \(-0.422401\pi\)
0.241377 + 0.970431i \(0.422401\pi\)
\(744\) 0 0
\(745\) 3.23878e9 5.60973e9i 0.286969 0.497044i
\(746\) −5.62083e9 + 9.73557e9i −0.495695 + 0.858569i
\(747\) 0 0
\(748\) 5.74940e8 0.0502304
\(749\) −1.29819e10 + 1.53493e9i −1.12889 + 0.133476i
\(750\) 0 0
\(751\) −5.61607e8 9.72733e8i −0.0483830 0.0838019i 0.840820 0.541315i \(-0.182073\pi\)
−0.889203 + 0.457513i \(0.848740\pi\)
\(752\) −9.98674e7 + 1.72975e8i −0.00856370 + 0.0148328i
\(753\) 0 0
\(754\) 2.71326e9 + 4.69950e9i 0.230511 + 0.399257i
\(755\) −2.02166e10 −1.70960
\(756\) 0 0
\(757\) 9.72000e9 0.814387 0.407193 0.913342i \(-0.366507\pi\)
0.407193 + 0.913342i \(0.366507\pi\)
\(758\) −3.43996e9 5.95819e9i −0.286887 0.496904i
\(759\) 0 0
\(760\) 6.98986e9 1.21068e10i 0.577592 1.00042i
\(761\) 9.55634e9 + 1.65521e10i 0.786041 + 1.36146i 0.928375 + 0.371644i \(0.121206\pi\)
−0.142334 + 0.989819i \(0.545461\pi\)
\(762\) 0 0
\(763\) 4.64711e9 + 6.22480e9i 0.378745 + 0.507328i
\(764\) −1.06316e9 −0.0862526
\(765\) 0 0
\(766\) −6.47566e9 + 1.12162e10i −0.520575 + 0.901662i
\(767\) 3.14922e9 5.45461e9i 0.252011 0.436496i
\(768\) 0 0
\(769\) −1.69816e10 −1.34660 −0.673298 0.739371i \(-0.735123\pi\)
−0.673298 + 0.739371i \(0.735123\pi\)
\(770\) 6.17640e9 7.30272e8i 0.487549 0.0576458i
\(771\) 0 0
\(772\) −2.29290e9 3.97142e9i −0.179359 0.310660i
\(773\) 8.18943e9 1.41845e10i 0.637713 1.10455i −0.348220 0.937413i \(-0.613214\pi\)
0.985933 0.167139i \(-0.0534529\pi\)
\(774\) 0 0
\(775\) −9.10746e8 1.57746e9i −0.0702816 0.121731i
\(776\) 8.45655e9 0.649646
\(777\) 0 0
\(778\) 6.79524e9 0.517341
\(779\) −1.05445e9 1.82636e9i −0.0799178 0.138422i
\(780\) 0 0
\(781\) 6.37901e9 1.10488e10i 0.479153 0.829918i
\(782\) 5.68874e8 + 9.85319e8i 0.0425395 + 0.0736806i
\(783\) 0 0
\(784\) 3.66834e8 1.23732e9i 0.0271871 0.0917011i
\(785\) −3.57480e9 −0.263759
\(786\) 0 0
\(787\) 6.77582e9 1.17361e10i 0.495508 0.858245i −0.504479 0.863424i \(-0.668315\pi\)
0.999987 + 0.00517934i \(0.00164864\pi\)
\(788\) 4.98220e8 8.62942e8i 0.0362726 0.0628260i
\(789\) 0 0
\(790\) −1.25220e10 −0.903609
\(791\) −4.14253e9 + 9.63880e9i −0.297610 + 0.692477i
\(792\) 0 0
\(793\) −1.97635e9 3.42314e9i −0.140737 0.243763i
\(794\) 3.45256e9 5.98001e9i 0.244776 0.423965i
\(795\) 0 0
\(796\) −1.09274e9 1.89269e9i −0.0767931 0.133010i
\(797\) 5.21891e7 0.00365153 0.00182577 0.999998i \(-0.499419\pi\)
0.00182577 + 0.999998i \(0.499419\pi\)
\(798\) 0 0
\(799\) −3.12157e8 −0.0216501
\(800\) −5.76753e8 9.98965e8i −0.0398267 0.0689819i
\(801\) 0 0
\(802\) 7.19225e9 1.24573e10i 0.492328 0.852736i
\(803\) −1.22820e9 2.12731e9i −0.0837078 0.144986i
\(804\) 0 0
\(805\) −9.93731e9 1.33110e10i −0.671403 0.899344i
\(806\) 1.08099e10 0.727189
\(807\) 0 0
\(808\) −7.50250e9 + 1.29947e10i −0.500341 + 0.866616i
\(809\) 6.80229e9 1.17819e10i 0.451685 0.782341i −0.546806 0.837259i \(-0.684157\pi\)
0.998491 + 0.0549185i \(0.0174899\pi\)
\(810\) 0 0
\(811\) −3.10614e9 −0.204479 −0.102239 0.994760i \(-0.532601\pi\)
−0.102239 + 0.994760i \(0.532601\pi\)
\(812\) 5.65809e9 + 7.57900e9i 0.370871 + 0.496782i
\(813\) 0 0
\(814\) −1.54790e9 2.68104e9i −0.100591 0.174228i
\(815\) 2.56183e9 4.43721e9i 0.165767 0.287117i
\(816\) 0 0
\(817\) 4.16705e9 + 7.21754e9i 0.267332 + 0.463033i
\(818\) −2.21807e9 −0.141690
\(819\) 0 0
\(820\) −1.39528e9 −0.0883715
\(821\) 5.28866e9 + 9.16022e9i 0.333537 + 0.577704i 0.983203 0.182517i \(-0.0584243\pi\)
−0.649665 + 0.760220i \(0.725091\pi\)
\(822\) 0 0
\(823\) −5.14054e9 + 8.90368e9i −0.321447 + 0.556762i −0.980787 0.195083i \(-0.937503\pi\)
0.659340 + 0.751845i \(0.270836\pi\)
\(824\) 6.94435e9 + 1.20280e10i 0.432401 + 0.748940i
\(825\) 0 0
\(826\) −3.21162e9 + 7.47277e9i −0.198287 + 0.461372i
\(827\) −1.76194e9 −0.108323 −0.0541617 0.998532i \(-0.517249\pi\)
−0.0541617 + 0.998532i \(0.517249\pi\)
\(828\) 0 0
\(829\) 9.25086e9 1.60230e10i 0.563951 0.976792i −0.433196 0.901300i \(-0.642614\pi\)
0.997146 0.0754917i \(-0.0240526\pi\)
\(830\) 1.49981e9 2.59774e9i 0.0910462 0.157697i
\(831\) 0 0
\(832\) 7.88599e9 0.474706
\(833\) 1.96133e9 4.70376e8i 0.117569 0.0281960i
\(834\) 0 0
\(835\) 1.65124e10 + 2.86004e10i 0.981541 + 1.70008i
\(836\) −3.79342e9 + 6.57040e9i −0.224548 + 0.388929i
\(837\) 0 0
\(838\) −2.73533e9 4.73772e9i −0.160567 0.278109i
\(839\) 1.91428e10 1.11902 0.559512 0.828822i \(-0.310988\pi\)
0.559512 + 0.828822i \(0.310988\pi\)
\(840\) 0 0
\(841\) 2.84370e9 0.164854
\(842\) −8.32762e9 1.44239e10i −0.480760 0.832701i
\(843\) 0 0
\(844\) −5.35344e9 + 9.27243e9i −0.306503 + 0.530878i
\(845\) 5.21244e9 + 9.02822e9i 0.297196 + 0.514759i
\(846\) 0 0
\(847\) 8.37469e9 9.90188e8i 0.473562 0.0559920i
\(848\) 1.23900e9 0.0697726
\(849\) 0 0
\(850\) −5.83015e7 + 1.00981e8i −0.00325622 + 0.00563994i
\(851\) −4.13423e9 + 7.16070e9i −0.229954 + 0.398292i
\(852\) 0 0
\(853\) 7.28376e9 0.401822 0.200911 0.979609i \(-0.435610\pi\)
0.200911 + 0.979609i \(0.435610\pi\)
\(854\) 3.05362e9 + 4.09032e9i 0.167769 + 0.224726i
\(855\) 0 0
\(856\) 1.07130e10 + 1.85554e10i 0.583784 + 1.01114i
\(857\) 1.38663e10 2.40172e10i 0.752539 1.30344i −0.194049 0.980992i \(-0.562162\pi\)
0.946588 0.322444i \(-0.104504\pi\)
\(858\) 0 0
\(859\) −9.92987e8 1.71990e9i −0.0534524 0.0925823i 0.838061 0.545576i \(-0.183689\pi\)
−0.891514 + 0.452994i \(0.850356\pi\)
\(860\) 5.51397e9 0.295611
\(861\) 0 0
\(862\) −1.61643e8 −0.00859570
\(863\) −4.84554e9 8.39271e9i −0.256628 0.444493i 0.708708 0.705501i \(-0.249278\pi\)
−0.965336 + 0.261009i \(0.915945\pi\)
\(864\) 0 0
\(865\) −3.14492e9 + 5.44716e9i −0.165216 + 0.286163i
\(866\) −5.26008e9 9.11073e9i −0.275220 0.476695i
\(867\) 0 0
\(868\) 1.87106e10 2.21226e9i 0.971108 0.114820i
\(869\) 1.86266e10 0.962865
\(870\) 0 0
\(871\) 8.92853e9 1.54647e10i 0.457843 0.793007i
\(872\) 6.36608e9 1.10264e10i 0.325135 0.563151i
\(873\) 0 0
\(874\) −1.50136e10 −0.760668
\(875\) −7.46907e9 + 1.73790e10i −0.376911 + 0.876993i
\(876\) 0 0
\(877\) −4.03240e9 6.98431e9i −0.201867 0.349643i 0.747263 0.664528i \(-0.231367\pi\)
−0.949130 + 0.314885i \(0.898034\pi\)
\(878\) −9.27156e9 + 1.60588e10i −0.462298 + 0.800723i
\(879\) 0 0
\(880\) −7.27553e8 1.26016e9i −0.0359894 0.0623355i
\(881\) −3.72296e10 −1.83431 −0.917156 0.398529i \(-0.869521\pi\)
−0.917156 + 0.398529i \(0.869521\pi\)
\(882\) 0 0
\(883\) 1.71532e10 0.838458 0.419229 0.907880i \(-0.362300\pi\)
0.419229 + 0.907880i \(0.362300\pi\)
\(884\) 4.66982e8 + 8.08837e8i 0.0227362 + 0.0393802i
\(885\) 0 0
\(886\) −5.42526e9 + 9.39683e9i −0.262061 + 0.453903i
\(887\) −1.09654e10 1.89927e10i −0.527586 0.913806i −0.999483 0.0321523i \(-0.989764\pi\)
0.471897 0.881654i \(-0.343569\pi\)
\(888\) 0 0
\(889\) 9.49925e9 2.21028e10i 0.453454 1.05509i
\(890\) −3.47088e9 −0.165034
\(891\) 0 0
\(892\) −7.40122e9 + 1.28193e10i −0.349162 + 0.604766i
\(893\) 2.05960e9 3.56733e9i 0.0967837 0.167634i
\(894\) 0 0
\(895\) −3.14917e10 −1.46830
\(896\) 1.05147e10 1.24321e9i 0.488336 0.0577389i
\(897\) 0 0
\(898\) −1.04806e10 1.81529e10i −0.482967 0.836523i
\(899\) 2.00136e10 3.46646e10i 0.918686 1.59121i
\(900\) 0 0
\(901\) 9.68190e8 + 1.67695e9i 0.0440985 + 0.0763808i
\(902\) −1.53777e9 −0.0697700
\(903\) 0 0
\(904\) 1.71955e10 0.774150
\(905\) −9.54949e9 1.65402e10i −0.428263 0.741773i
\(906\) 0 0
\(907\) 1.25298e9 2.17022e9i 0.0557593 0.0965779i −0.836798 0.547511i \(-0.815575\pi\)
0.892558 + 0.450933i \(0.148909\pi\)
\(908\) 1.13120e10 + 1.95930e10i 0.501464 + 0.868562i
\(909\) 0 0
\(910\) 6.04401e9 + 8.09594e9i 0.265877 + 0.356141i
\(911\) 8.68527e9 0.380600 0.190300 0.981726i \(-0.439054\pi\)
0.190300 + 0.981726i \(0.439054\pi\)
\(912\) 0 0
\(913\) −2.23097e9 + 3.86416e9i −0.0970167 + 0.168038i
\(914\) 1.52052e9 2.63361e9i 0.0658688 0.114088i
\(915\) 0 0
\(916\) −1.36216e10 −0.585591
\(917\) 4.09669e9 4.84375e8i 0.175445 0.0207438i
\(918\) 0 0
\(919\) −3.34164e9 5.78789e9i −0.142022 0.245989i 0.786236 0.617926i \(-0.212027\pi\)
−0.928258 + 0.371937i \(0.878694\pi\)
\(920\) −1.36131e10 + 2.35786e10i −0.576369 + 0.998300i
\(921\) 0 0
\(922\) −1.53005e10 2.65012e10i −0.642904 1.11354i
\(923\) 2.07248e10 0.867531
\(924\) 0 0
\(925\) −8.47400e8 −0.0352040
\(926\) 9.21129e9 + 1.59544e10i 0.381226 + 0.660302i
\(927\) 0 0
\(928\) 1.26741e10 2.19522e10i 0.520596 0.901698i
\(929\) −6.08895e9 1.05464e10i −0.249165 0.431567i 0.714129 0.700014i \(-0.246823\pi\)
−0.963294 + 0.268447i \(0.913490\pi\)
\(930\) 0 0
\(931\) −7.56533e9 + 2.55176e10i −0.307259 + 1.03637i
\(932\) −1.83151e10 −0.741059
\(933\) 0 0
\(934\) −1.00903e10 + 1.74770e10i −0.405221 + 0.701863i
\(935\) 1.13706e9 1.96945e9i 0.0454929 0.0787960i
\(936\) 0 0
\(937\) 4.28141e10 1.70019 0.850097 0.526626i \(-0.176543\pi\)
0.850097 + 0.526626i \(0.176543\pi\)
\(938\) −9.10543e9 + 2.11864e10i −0.360239 + 0.838201i
\(939\) 0 0
\(940\) −1.36266e9 2.36020e9i −0.0535107 0.0926833i
\(941\) −1.97417e10 + 3.41937e10i −0.772363 + 1.33777i 0.163902 + 0.986477i \(0.447592\pi\)
−0.936265 + 0.351295i \(0.885741\pi\)
\(942\) 0 0
\(943\) 2.05359e9 + 3.55692e9i 0.0797485 + 0.138129i
\(944\) 1.90297e9 0.0736256
\(945\) 0 0
\(946\) 6.07709e9 0.233387
\(947\) 5.55513e9 + 9.62176e9i 0.212554 + 0.368154i 0.952513 0.304498i \(-0.0984885\pi\)
−0.739959 + 0.672652i \(0.765155\pi\)
\(948\) 0 0
\(949\) 1.99516e9 3.45572e9i 0.0757786 0.131252i
\(950\) −7.69341e8 1.33254e9i −0.0291129 0.0504251i
\(951\) 0 0
\(952\) −1.97764e9 2.64905e9i −0.0742879 0.0995085i
\(953\) 3.33302e10 1.24742 0.623711 0.781655i \(-0.285624\pi\)
0.623711 + 0.781655i \(0.285624\pi\)
\(954\) 0 0
\(955\) −2.10262e9 + 3.64184e9i −0.0781176 + 0.135304i
\(956\) −1.23699e8 + 2.14253e8i −0.00457893 + 0.00793095i
\(957\) 0 0
\(958\) −8.97597e9 −0.329839
\(959\) −2.67938e10 3.58903e10i −0.981001 1.31405i
\(960\) 0 0
\(961\) −2.61117e10 4.52268e10i −0.949082 1.64386i
\(962\) 2.51450e9 4.35524e9i 0.0910622 0.157724i
\(963\) 0 0
\(964\) 8.03431e9 + 1.39158e10i 0.288854 + 0.500311i
\(965\) −1.81387e10 −0.649772
\(966\) 0 0
\(967\) −5.24781e10 −1.86632 −0.933158 0.359466i \(-0.882959\pi\)
−0.933158 + 0.359466i \(0.882959\pi\)
\(968\) −6.91097e9 1.19702e10i −0.244892 0.424166i
\(969\) 0 0
\(970\) 6.10180e9 1.05686e10i 0.214663 0.371807i
\(971\) 1.74484e10 + 3.02216e10i 0.611630 + 1.05937i 0.990966 + 0.134115i \(0.0428192\pi\)
−0.379336 + 0.925259i \(0.623847\pi\)
\(972\) 0 0
\(973\) −1.58105e10 + 3.67878e10i −0.550238 + 1.28029i
\(974\) −1.75764e10 −0.609499
\(975\) 0 0
\(976\) 5.97120e8 1.03424e9i 0.0205583 0.0356080i
\(977\) −2.82223e10 + 4.88824e10i −0.968191 + 1.67696i −0.267404 + 0.963585i \(0.586166\pi\)
−0.700787 + 0.713371i \(0.747168\pi\)
\(978\) 0 0
\(979\) 5.16295e9 0.175857
\(980\) 1.21183e10 + 1.27762e10i 0.411292 + 0.433620i
\(981\) 0 0
\(982\) 1.80977e10 + 3.13461e10i 0.609864 + 1.05632i
\(983\) −4.20622e7 + 7.28538e7i −0.00141239 + 0.00244633i −0.866731 0.498776i \(-0.833783\pi\)
0.865318 + 0.501223i \(0.167116\pi\)
\(984\) 0 0
\(985\) −1.97066e9 3.41329e9i −0.0657031 0.113801i
\(986\) −2.56235e9 −0.0851274
\(987\) 0 0
\(988\) −1.23245e10 −0.406556
\(989\) −8.11554e9 1.40565e10i −0.266766 0.462052i
\(990\) 0 0
\(991\) −6.49617e9 + 1.12517e10i −0.212031 + 0.367249i −0.952350 0.305007i \(-0.901341\pi\)
0.740319 + 0.672256i \(0.234674\pi\)
\(992\) −2.52474e10 4.37298e10i −0.821157 1.42229i
\(993\) 0 0
\(994\) −2.65785e10 + 3.14253e9i −0.858376 + 0.101491i
\(995\) −8.64449e9 −0.278201
\(996\) 0 0
\(997\) 1.11340e8 1.92846e8i 0.00355808 0.00616278i −0.864241 0.503078i \(-0.832201\pi\)
0.867799 + 0.496915i \(0.165534\pi\)
\(998\) 1.07282e10 1.85818e10i 0.341641 0.591740i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 63.8.e.b.46.2 8
3.2 odd 2 7.8.c.a.4.3 yes 8
7.2 even 3 inner 63.8.e.b.37.2 8
7.3 odd 6 441.8.a.t.1.3 4
7.4 even 3 441.8.a.s.1.3 4
12.11 even 2 112.8.i.c.81.4 8
21.2 odd 6 7.8.c.a.2.3 8
21.5 even 6 49.8.c.g.30.3 8
21.11 odd 6 49.8.a.f.1.2 4
21.17 even 6 49.8.a.e.1.2 4
21.20 even 2 49.8.c.g.18.3 8
84.23 even 6 112.8.i.c.65.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7.8.c.a.2.3 8 21.2 odd 6
7.8.c.a.4.3 yes 8 3.2 odd 2
49.8.a.e.1.2 4 21.17 even 6
49.8.a.f.1.2 4 21.11 odd 6
49.8.c.g.18.3 8 21.20 even 2
49.8.c.g.30.3 8 21.5 even 6
63.8.e.b.37.2 8 7.2 even 3 inner
63.8.e.b.46.2 8 1.1 even 1 trivial
112.8.i.c.65.4 8 84.23 even 6
112.8.i.c.81.4 8 12.11 even 2
441.8.a.s.1.3 4 7.4 even 3
441.8.a.t.1.3 4 7.3 odd 6