Properties

Label 49.8.a.f.1.2
Level $49$
Weight $8$
Character 49.1
Self dual yes
Analytic conductor $15.307$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [49,8,Mod(1,49)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("49.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(49, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 49 = 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 49.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-6,28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.3068662487\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 102x^{2} + 240x + 900 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4}\cdot 7 \)
Twist minimal: no (minimal twist has level 7)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(5.14290\) of defining polynomial
Character \(\chi\) \(=\) 49.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-7.38077 q^{2} +74.2434 q^{3} -73.5243 q^{4} -290.819 q^{5} -547.974 q^{6} +1487.40 q^{8} +3325.09 q^{9} +2146.47 q^{10} +3192.88 q^{11} -5458.70 q^{12} +5186.70 q^{13} -21591.4 q^{15} -1567.07 q^{16} -2449.11 q^{17} -24541.7 q^{18} +32318.2 q^{19} +21382.2 q^{20} -23565.9 q^{22} +62941.4 q^{23} +110430. q^{24} +6450.60 q^{25} -38281.8 q^{26} +84495.7 q^{27} +141752. q^{29} +159361. q^{30} +282376. q^{31} -178821. q^{32} +237051. q^{33} +18076.3 q^{34} -244475. q^{36} -131368. q^{37} -238533. q^{38} +385078. q^{39} -432565. q^{40} -65254.0 q^{41} -257876. q^{43} -234755. q^{44} -966999. q^{45} -464556. q^{46} +127457. q^{47} -116345. q^{48} -47610.4 q^{50} -181830. q^{51} -381348. q^{52} +790646. q^{53} -623643. q^{54} -928551. q^{55} +2.39942e6 q^{57} -1.04624e6 q^{58} +1.21435e6 q^{59} +1.58749e6 q^{60} +762084. q^{61} -2.08415e6 q^{62} +1.52042e6 q^{64} -1.50839e6 q^{65} -1.74962e6 q^{66} -3.44286e6 q^{67} +180069. q^{68} +4.67299e6 q^{69} -3.99576e6 q^{71} +4.94575e6 q^{72} -769338. q^{73} +969594. q^{74} +478915. q^{75} -2.37617e6 q^{76} -2.84217e6 q^{78} -5.83380e6 q^{79} +455734. q^{80} -998721. q^{81} +481625. q^{82} +1.39747e6 q^{83} +712248. q^{85} +1.90332e6 q^{86} +1.05241e7 q^{87} +4.74911e6 q^{88} +1.61702e6 q^{89} +7.13719e6 q^{90} -4.62772e6 q^{92} +2.09645e7 q^{93} -940733. q^{94} -9.39875e6 q^{95} -1.32763e7 q^{96} -5.68544e6 q^{97} +1.06166e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{2} + 28 q^{3} + 348 q^{4} + 252 q^{5} + 1022 q^{6} - 984 q^{8} + 2008 q^{9} + 4774 q^{10} - 3972 q^{11} - 5404 q^{12} - 1176 q^{13} - 16556 q^{15} + 57264 q^{16} + 56364 q^{17} - 35908 q^{18}+ \cdots + 15213976 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −7.38077 −0.652374 −0.326187 0.945305i \(-0.605764\pi\)
−0.326187 + 0.945305i \(0.605764\pi\)
\(3\) 74.2434 1.58757 0.793787 0.608196i \(-0.208107\pi\)
0.793787 + 0.608196i \(0.208107\pi\)
\(4\) −73.5243 −0.574408
\(5\) −290.819 −1.04047 −0.520233 0.854025i \(-0.674155\pi\)
−0.520233 + 0.854025i \(0.674155\pi\)
\(6\) −547.974 −1.03569
\(7\) 0 0
\(8\) 1487.40 1.02710
\(9\) 3325.09 1.52039
\(10\) 2146.47 0.678772
\(11\) 3192.88 0.723284 0.361642 0.932317i \(-0.382216\pi\)
0.361642 + 0.932317i \(0.382216\pi\)
\(12\) −5458.70 −0.911915
\(13\) 5186.70 0.654771 0.327385 0.944891i \(-0.393832\pi\)
0.327385 + 0.944891i \(0.393832\pi\)
\(14\) 0 0
\(15\) −21591.4 −1.65181
\(16\) −1567.07 −0.0956464
\(17\) −2449.11 −0.120903 −0.0604515 0.998171i \(-0.519254\pi\)
−0.0604515 + 0.998171i \(0.519254\pi\)
\(18\) −24541.7 −0.991861
\(19\) 32318.2 1.08096 0.540480 0.841357i \(-0.318243\pi\)
0.540480 + 0.841357i \(0.318243\pi\)
\(20\) 21382.2 0.597652
\(21\) 0 0
\(22\) −23565.9 −0.471851
\(23\) 62941.4 1.07867 0.539335 0.842091i \(-0.318675\pi\)
0.539335 + 0.842091i \(0.318675\pi\)
\(24\) 110430. 1.63060
\(25\) 6450.60 0.0825677
\(26\) −38281.8 −0.427155
\(27\) 84495.7 0.826154
\(28\) 0 0
\(29\) 141752. 1.07928 0.539642 0.841895i \(-0.318560\pi\)
0.539642 + 0.841895i \(0.318560\pi\)
\(30\) 159361. 1.07760
\(31\) 282376. 1.70240 0.851200 0.524842i \(-0.175876\pi\)
0.851200 + 0.524842i \(0.175876\pi\)
\(32\) −178821. −0.964706
\(33\) 237051. 1.14827
\(34\) 18076.3 0.0788740
\(35\) 0 0
\(36\) −244475. −0.873324
\(37\) −131368. −0.426366 −0.213183 0.977012i \(-0.568383\pi\)
−0.213183 + 0.977012i \(0.568383\pi\)
\(38\) −238533. −0.705190
\(39\) 385078. 1.03950
\(40\) −432565. −1.06866
\(41\) −65254.0 −0.147864 −0.0739322 0.997263i \(-0.523555\pi\)
−0.0739322 + 0.997263i \(0.523555\pi\)
\(42\) 0 0
\(43\) −257876. −0.494620 −0.247310 0.968936i \(-0.579547\pi\)
−0.247310 + 0.968936i \(0.579547\pi\)
\(44\) −234755. −0.415460
\(45\) −966999. −1.58191
\(46\) −464556. −0.703697
\(47\) 127457. 0.179070 0.0895349 0.995984i \(-0.471462\pi\)
0.0895349 + 0.995984i \(0.471462\pi\)
\(48\) −116345. −0.151846
\(49\) 0 0
\(50\) −47610.4 −0.0538650
\(51\) −181830. −0.191942
\(52\) −381348. −0.376106
\(53\) 790646. 0.729485 0.364743 0.931108i \(-0.381157\pi\)
0.364743 + 0.931108i \(0.381157\pi\)
\(54\) −623643. −0.538961
\(55\) −928551. −0.752552
\(56\) 0 0
\(57\) 2.39942e6 1.71610
\(58\) −1.04624e6 −0.704096
\(59\) 1.21435e6 0.769769 0.384884 0.922965i \(-0.374241\pi\)
0.384884 + 0.922965i \(0.374241\pi\)
\(60\) 1.58749e6 0.948816
\(61\) 762084. 0.429881 0.214941 0.976627i \(-0.431044\pi\)
0.214941 + 0.976627i \(0.431044\pi\)
\(62\) −2.08415e6 −1.11060
\(63\) 0 0
\(64\) 1.52042e6 0.724995
\(65\) −1.50839e6 −0.681266
\(66\) −1.74962e6 −0.749099
\(67\) −3.44286e6 −1.39848 −0.699241 0.714886i \(-0.746479\pi\)
−0.699241 + 0.714886i \(0.746479\pi\)
\(68\) 180069. 0.0694477
\(69\) 4.67299e6 1.71247
\(70\) 0 0
\(71\) −3.99576e6 −1.32494 −0.662469 0.749089i \(-0.730491\pi\)
−0.662469 + 0.749089i \(0.730491\pi\)
\(72\) 4.94575e6 1.56159
\(73\) −769338. −0.231466 −0.115733 0.993280i \(-0.536922\pi\)
−0.115733 + 0.993280i \(0.536922\pi\)
\(74\) 969594. 0.278150
\(75\) 478915. 0.131082
\(76\) −2.37617e6 −0.620913
\(77\) 0 0
\(78\) −2.84217e6 −0.678140
\(79\) −5.83380e6 −1.33124 −0.665620 0.746291i \(-0.731833\pi\)
−0.665620 + 0.746291i \(0.731833\pi\)
\(80\) 455734. 0.0995168
\(81\) −998721. −0.208808
\(82\) 481625. 0.0964629
\(83\) 1.39747e6 0.268267 0.134134 0.990963i \(-0.457175\pi\)
0.134134 + 0.990963i \(0.457175\pi\)
\(84\) 0 0
\(85\) 712248. 0.125795
\(86\) 1.90332e6 0.322677
\(87\) 1.05241e7 1.71344
\(88\) 4.74911e6 0.742887
\(89\) 1.61702e6 0.243136 0.121568 0.992583i \(-0.461208\pi\)
0.121568 + 0.992583i \(0.461208\pi\)
\(90\) 7.13719e6 1.03200
\(91\) 0 0
\(92\) −4.62772e6 −0.619598
\(93\) 2.09645e7 2.70268
\(94\) −940733. −0.116820
\(95\) −9.39875e6 −1.12470
\(96\) −1.32763e7 −1.53154
\(97\) −5.68544e6 −0.632504 −0.316252 0.948675i \(-0.602424\pi\)
−0.316252 + 0.948675i \(0.602424\pi\)
\(98\) 0 0
\(99\) 1.06166e7 1.09967
\(100\) −474276. −0.0474276
\(101\) 1.00880e7 0.974277 0.487138 0.873325i \(-0.338041\pi\)
0.487138 + 0.873325i \(0.338041\pi\)
\(102\) 1.34205e6 0.125218
\(103\) 9.33755e6 0.841981 0.420991 0.907065i \(-0.361683\pi\)
0.420991 + 0.907065i \(0.361683\pi\)
\(104\) 7.71471e6 0.672517
\(105\) 0 0
\(106\) −5.83557e6 −0.475897
\(107\) −1.44049e7 −1.13676 −0.568379 0.822767i \(-0.692429\pi\)
−0.568379 + 0.822767i \(0.692429\pi\)
\(108\) −6.21248e6 −0.474550
\(109\) 8.55998e6 0.633111 0.316556 0.948574i \(-0.397474\pi\)
0.316556 + 0.948574i \(0.397474\pi\)
\(110\) 6.85342e6 0.490945
\(111\) −9.75319e6 −0.676887
\(112\) 0 0
\(113\) 1.15607e7 0.753722 0.376861 0.926270i \(-0.377003\pi\)
0.376861 + 0.926270i \(0.377003\pi\)
\(114\) −1.77095e7 −1.11954
\(115\) −1.83045e7 −1.12232
\(116\) −1.04222e7 −0.619950
\(117\) 1.72462e7 0.995506
\(118\) −8.96280e6 −0.502177
\(119\) 0 0
\(120\) −3.21151e7 −1.69658
\(121\) −9.29266e6 −0.476860
\(122\) −5.62477e6 −0.280443
\(123\) −4.84468e6 −0.234746
\(124\) −2.07615e7 −0.977873
\(125\) 2.08443e7 0.954556
\(126\) 0 0
\(127\) 2.65100e7 1.14841 0.574204 0.818712i \(-0.305312\pi\)
0.574204 + 0.818712i \(0.305312\pi\)
\(128\) 1.16673e7 0.491738
\(129\) −1.91456e7 −0.785245
\(130\) 1.11331e7 0.444440
\(131\) 4.54574e6 0.176667 0.0883333 0.996091i \(-0.471846\pi\)
0.0883333 + 0.996091i \(0.471846\pi\)
\(132\) −1.74290e7 −0.659574
\(133\) 0 0
\(134\) 2.54109e7 0.912334
\(135\) −2.45729e7 −0.859585
\(136\) −3.64282e6 −0.124180
\(137\) 4.93543e7 1.63984 0.819922 0.572475i \(-0.194017\pi\)
0.819922 + 0.572475i \(0.194017\pi\)
\(138\) −3.44902e7 −1.11717
\(139\) −4.41231e7 −1.39352 −0.696761 0.717303i \(-0.745376\pi\)
−0.696761 + 0.717303i \(0.745376\pi\)
\(140\) 0 0
\(141\) 9.46288e6 0.284287
\(142\) 2.94918e7 0.864355
\(143\) 1.65605e7 0.473585
\(144\) −5.21065e6 −0.145420
\(145\) −4.12241e7 −1.12296
\(146\) 5.67830e6 0.151002
\(147\) 0 0
\(148\) 9.65872e6 0.244908
\(149\) 2.22735e7 0.551616 0.275808 0.961213i \(-0.411055\pi\)
0.275808 + 0.961213i \(0.411055\pi\)
\(150\) −3.53476e6 −0.0855146
\(151\) −6.95161e7 −1.64311 −0.821554 0.570130i \(-0.806893\pi\)
−0.821554 + 0.570130i \(0.806893\pi\)
\(152\) 4.80702e7 1.11026
\(153\) −8.14351e6 −0.183820
\(154\) 0 0
\(155\) −8.21202e7 −1.77129
\(156\) −2.83126e7 −0.597096
\(157\) −1.22922e7 −0.253501 −0.126751 0.991935i \(-0.540455\pi\)
−0.126751 + 0.991935i \(0.540455\pi\)
\(158\) 4.30579e7 0.868466
\(159\) 5.87003e7 1.15811
\(160\) 5.20047e7 1.00374
\(161\) 0 0
\(162\) 7.37133e6 0.136221
\(163\) −1.76180e7 −0.318640 −0.159320 0.987227i \(-0.550930\pi\)
−0.159320 + 0.987227i \(0.550930\pi\)
\(164\) 4.79776e6 0.0849346
\(165\) −6.89388e7 −1.19473
\(166\) −1.03144e7 −0.175011
\(167\) 1.13558e8 1.88673 0.943367 0.331751i \(-0.107639\pi\)
0.943367 + 0.331751i \(0.107639\pi\)
\(168\) 0 0
\(169\) −3.58467e7 −0.571275
\(170\) −5.25693e6 −0.0820656
\(171\) 1.07461e8 1.64348
\(172\) 1.89602e7 0.284114
\(173\) −2.16280e7 −0.317582 −0.158791 0.987312i \(-0.550760\pi\)
−0.158791 + 0.987312i \(0.550760\pi\)
\(174\) −7.76763e7 −1.11780
\(175\) 0 0
\(176\) −5.00348e6 −0.0691795
\(177\) 9.01572e7 1.22206
\(178\) −1.19348e7 −0.158616
\(179\) 1.08286e8 1.41120 0.705599 0.708611i \(-0.250678\pi\)
0.705599 + 0.708611i \(0.250678\pi\)
\(180\) 7.10979e7 0.908663
\(181\) 6.56731e7 0.823214 0.411607 0.911361i \(-0.364968\pi\)
0.411607 + 0.911361i \(0.364968\pi\)
\(182\) 0 0
\(183\) 5.65798e7 0.682468
\(184\) 9.36193e7 1.10791
\(185\) 3.82042e7 0.443619
\(186\) −1.54734e8 −1.76316
\(187\) −7.81973e6 −0.0874472
\(188\) −9.37121e6 −0.102859
\(189\) 0 0
\(190\) 6.93699e7 0.733726
\(191\) −1.44600e7 −0.150159 −0.0750795 0.997178i \(-0.523921\pi\)
−0.0750795 + 0.997178i \(0.523921\pi\)
\(192\) 1.12882e8 1.15098
\(193\) −6.23712e7 −0.624501 −0.312251 0.950000i \(-0.601083\pi\)
−0.312251 + 0.950000i \(0.601083\pi\)
\(194\) 4.19629e7 0.412629
\(195\) −1.11988e8 −1.08156
\(196\) 0 0
\(197\) −1.35525e7 −0.126296 −0.0631478 0.998004i \(-0.520114\pi\)
−0.0631478 + 0.998004i \(0.520114\pi\)
\(198\) −7.83588e7 −0.717397
\(199\) −2.97247e7 −0.267381 −0.133691 0.991023i \(-0.542683\pi\)
−0.133691 + 0.991023i \(0.542683\pi\)
\(200\) 9.59464e6 0.0848055
\(201\) −2.55610e8 −2.22019
\(202\) −7.44575e7 −0.635593
\(203\) 0 0
\(204\) 1.33690e7 0.110253
\(205\) 1.89771e7 0.153848
\(206\) −6.89182e7 −0.549287
\(207\) 2.09286e8 1.64000
\(208\) −8.12793e6 −0.0626265
\(209\) 1.03188e8 0.781841
\(210\) 0 0
\(211\) −1.45624e8 −1.06719 −0.533597 0.845739i \(-0.679160\pi\)
−0.533597 + 0.845739i \(0.679160\pi\)
\(212\) −5.81317e7 −0.419022
\(213\) −2.96659e8 −2.10344
\(214\) 1.06319e8 0.741591
\(215\) 7.49952e7 0.514635
\(216\) 1.25679e8 0.848545
\(217\) 0 0
\(218\) −6.31792e7 −0.413025
\(219\) −5.71183e7 −0.367469
\(220\) 6.82710e7 0.432272
\(221\) −1.27028e7 −0.0791638
\(222\) 7.19860e7 0.441583
\(223\) −2.01327e8 −1.21573 −0.607863 0.794042i \(-0.707973\pi\)
−0.607863 + 0.794042i \(0.707973\pi\)
\(224\) 0 0
\(225\) 2.14488e7 0.125535
\(226\) −8.53271e7 −0.491708
\(227\) −3.07709e8 −1.74602 −0.873010 0.487703i \(-0.837835\pi\)
−0.873010 + 0.487703i \(0.837835\pi\)
\(228\) −1.76415e8 −0.985744
\(229\) 1.85267e8 1.01947 0.509734 0.860332i \(-0.329744\pi\)
0.509734 + 0.860332i \(0.329744\pi\)
\(230\) 1.35102e8 0.732172
\(231\) 0 0
\(232\) 2.10842e8 1.10854
\(233\) −2.49102e8 −1.29012 −0.645062 0.764130i \(-0.723169\pi\)
−0.645062 + 0.764130i \(0.723169\pi\)
\(234\) −1.27290e8 −0.649442
\(235\) −3.70670e7 −0.186316
\(236\) −8.92839e7 −0.442162
\(237\) −4.33121e8 −2.11344
\(238\) 0 0
\(239\) 3.36485e6 0.0159431 0.00797156 0.999968i \(-0.497463\pi\)
0.00797156 + 0.999968i \(0.497463\pi\)
\(240\) 3.38352e7 0.157990
\(241\) 2.18549e8 1.00575 0.502873 0.864360i \(-0.332276\pi\)
0.502873 + 0.864360i \(0.332276\pi\)
\(242\) 6.85870e7 0.311091
\(243\) −2.58941e8 −1.15765
\(244\) −5.60317e7 −0.246928
\(245\) 0 0
\(246\) 3.57575e7 0.153142
\(247\) 1.67625e8 0.707781
\(248\) 4.20007e8 1.74854
\(249\) 1.03753e8 0.425894
\(250\) −1.53847e8 −0.622728
\(251\) 3.10664e8 1.24003 0.620017 0.784588i \(-0.287126\pi\)
0.620017 + 0.784588i \(0.287126\pi\)
\(252\) 0 0
\(253\) 2.00965e8 0.780185
\(254\) −1.95664e8 −0.749191
\(255\) 5.28797e7 0.199709
\(256\) −2.80728e8 −1.04579
\(257\) 2.96149e8 1.08829 0.544144 0.838992i \(-0.316854\pi\)
0.544144 + 0.838992i \(0.316854\pi\)
\(258\) 1.41309e8 0.512273
\(259\) 0 0
\(260\) 1.10903e8 0.391325
\(261\) 4.71337e8 1.64093
\(262\) −3.35510e7 −0.115253
\(263\) 2.59447e8 0.879433 0.439717 0.898137i \(-0.355079\pi\)
0.439717 + 0.898137i \(0.355079\pi\)
\(264\) 3.52590e8 1.17939
\(265\) −2.29935e8 −0.759004
\(266\) 0 0
\(267\) 1.20053e8 0.385997
\(268\) 2.53134e8 0.803300
\(269\) 1.46457e8 0.458751 0.229376 0.973338i \(-0.426332\pi\)
0.229376 + 0.973338i \(0.426332\pi\)
\(270\) 1.81367e8 0.560771
\(271\) −2.51571e8 −0.767836 −0.383918 0.923367i \(-0.625425\pi\)
−0.383918 + 0.923367i \(0.625425\pi\)
\(272\) 3.83793e6 0.0115639
\(273\) 0 0
\(274\) −3.64272e8 −1.06979
\(275\) 2.05960e7 0.0597198
\(276\) −3.43578e8 −0.983657
\(277\) −4.65305e8 −1.31540 −0.657701 0.753279i \(-0.728471\pi\)
−0.657701 + 0.753279i \(0.728471\pi\)
\(278\) 3.25662e8 0.909097
\(279\) 9.38924e8 2.58831
\(280\) 0 0
\(281\) −5.58490e8 −1.50156 −0.750781 0.660551i \(-0.770323\pi\)
−0.750781 + 0.660551i \(0.770323\pi\)
\(282\) −6.98433e7 −0.185461
\(283\) 7.52795e7 0.197435 0.0987176 0.995115i \(-0.468526\pi\)
0.0987176 + 0.995115i \(0.468526\pi\)
\(284\) 2.93786e8 0.761056
\(285\) −6.97795e8 −1.78555
\(286\) −1.22229e8 −0.308955
\(287\) 0 0
\(288\) −5.94597e8 −1.46673
\(289\) −4.04341e8 −0.985382
\(290\) 3.04265e8 0.732588
\(291\) −4.22107e8 −1.00415
\(292\) 5.65650e7 0.132956
\(293\) −5.90696e8 −1.37192 −0.685958 0.727641i \(-0.740617\pi\)
−0.685958 + 0.727641i \(0.740617\pi\)
\(294\) 0 0
\(295\) −3.53155e8 −0.800918
\(296\) −1.95397e8 −0.437922
\(297\) 2.69785e8 0.597544
\(298\) −1.64396e8 −0.359860
\(299\) 3.26458e8 0.706282
\(300\) −3.52119e7 −0.0752947
\(301\) 0 0
\(302\) 5.13082e8 1.07192
\(303\) 7.48971e8 1.54674
\(304\) −5.06449e7 −0.103390
\(305\) −2.21629e8 −0.447277
\(306\) 6.01054e7 0.119919
\(307\) 6.49771e8 1.28167 0.640835 0.767679i \(-0.278588\pi\)
0.640835 + 0.767679i \(0.278588\pi\)
\(308\) 0 0
\(309\) 6.93252e8 1.33671
\(310\) 6.06110e8 1.15554
\(311\) 4.48581e7 0.0845629 0.0422815 0.999106i \(-0.486537\pi\)
0.0422815 + 0.999106i \(0.486537\pi\)
\(312\) 5.72767e8 1.06767
\(313\) 5.72019e6 0.0105440 0.00527200 0.999986i \(-0.498322\pi\)
0.00527200 + 0.999986i \(0.498322\pi\)
\(314\) 9.07257e7 0.165378
\(315\) 0 0
\(316\) 4.28926e8 0.764676
\(317\) −2.79676e8 −0.493115 −0.246558 0.969128i \(-0.579299\pi\)
−0.246558 + 0.969128i \(0.579299\pi\)
\(318\) −4.33253e8 −0.755521
\(319\) 4.52597e8 0.780629
\(320\) −4.42168e8 −0.754332
\(321\) −1.06947e9 −1.80469
\(322\) 0 0
\(323\) −7.91509e7 −0.130691
\(324\) 7.34303e7 0.119941
\(325\) 3.34573e7 0.0540629
\(326\) 1.30034e8 0.207872
\(327\) 6.35523e8 1.00511
\(328\) −9.70591e7 −0.151872
\(329\) 0 0
\(330\) 5.08821e8 0.779411
\(331\) −8.77705e8 −1.33030 −0.665152 0.746708i \(-0.731633\pi\)
−0.665152 + 0.746708i \(0.731633\pi\)
\(332\) −1.02748e8 −0.154095
\(333\) −4.36809e8 −0.648242
\(334\) −8.38146e8 −1.23086
\(335\) 1.00125e9 1.45507
\(336\) 0 0
\(337\) 1.05320e8 0.149902 0.0749508 0.997187i \(-0.476120\pi\)
0.0749508 + 0.997187i \(0.476120\pi\)
\(338\) 2.64576e8 0.372685
\(339\) 8.58309e8 1.19659
\(340\) −5.23675e7 −0.0722580
\(341\) 9.01593e8 1.23132
\(342\) −7.93144e8 −1.07216
\(343\) 0 0
\(344\) −3.83566e8 −0.508025
\(345\) −1.35899e9 −1.78176
\(346\) 1.59631e8 0.207182
\(347\) 3.59025e8 0.461287 0.230644 0.973038i \(-0.425917\pi\)
0.230644 + 0.973038i \(0.425917\pi\)
\(348\) −7.73780e8 −0.984216
\(349\) −1.99439e8 −0.251142 −0.125571 0.992085i \(-0.540076\pi\)
−0.125571 + 0.992085i \(0.540076\pi\)
\(350\) 0 0
\(351\) 4.38254e8 0.540942
\(352\) −5.70956e8 −0.697756
\(353\) −1.64620e9 −1.99192 −0.995958 0.0898223i \(-0.971370\pi\)
−0.995958 + 0.0898223i \(0.971370\pi\)
\(354\) −6.65429e8 −0.797243
\(355\) 1.16204e9 1.37855
\(356\) −1.18890e8 −0.139660
\(357\) 0 0
\(358\) −7.99236e8 −0.920629
\(359\) 2.41422e7 0.0275388 0.0137694 0.999905i \(-0.495617\pi\)
0.0137694 + 0.999905i \(0.495617\pi\)
\(360\) −1.43832e9 −1.62479
\(361\) 1.50595e8 0.168475
\(362\) −4.84718e8 −0.537043
\(363\) −6.89919e8 −0.757051
\(364\) 0 0
\(365\) 2.23738e8 0.240832
\(366\) −4.17602e8 −0.445224
\(367\) −1.55386e9 −1.64089 −0.820447 0.571723i \(-0.806275\pi\)
−0.820447 + 0.571723i \(0.806275\pi\)
\(368\) −9.86336e7 −0.103171
\(369\) −2.16975e8 −0.224811
\(370\) −2.81976e8 −0.289405
\(371\) 0 0
\(372\) −1.54140e9 −1.55244
\(373\) 1.52310e9 1.51967 0.759833 0.650118i \(-0.225281\pi\)
0.759833 + 0.650118i \(0.225281\pi\)
\(374\) 5.77156e7 0.0570483
\(375\) 1.54755e9 1.51543
\(376\) 1.89581e8 0.183923
\(377\) 7.35224e8 0.706684
\(378\) 0 0
\(379\) 9.32142e8 0.879518 0.439759 0.898116i \(-0.355064\pi\)
0.439759 + 0.898116i \(0.355064\pi\)
\(380\) 6.91036e8 0.646038
\(381\) 1.96819e9 1.82318
\(382\) 1.06726e8 0.0979598
\(383\) −1.75474e9 −1.59594 −0.797970 0.602697i \(-0.794093\pi\)
−0.797970 + 0.602697i \(0.794093\pi\)
\(384\) 8.66217e8 0.780670
\(385\) 0 0
\(386\) 4.60347e8 0.407408
\(387\) −8.57461e8 −0.752014
\(388\) 4.18018e8 0.363316
\(389\) −9.20669e8 −0.793012 −0.396506 0.918032i \(-0.629777\pi\)
−0.396506 + 0.918032i \(0.629777\pi\)
\(390\) 8.26558e8 0.705581
\(391\) −1.54151e8 −0.130415
\(392\) 0 0
\(393\) 3.37491e8 0.280471
\(394\) 1.00028e8 0.0823919
\(395\) 1.69658e9 1.38511
\(396\) −7.80580e8 −0.631661
\(397\) −9.35556e8 −0.750418 −0.375209 0.926940i \(-0.622429\pi\)
−0.375209 + 0.926940i \(0.622429\pi\)
\(398\) 2.19391e8 0.174433
\(399\) 0 0
\(400\) −1.01085e7 −0.00789730
\(401\) 1.94892e9 1.50934 0.754671 0.656103i \(-0.227796\pi\)
0.754671 + 0.656103i \(0.227796\pi\)
\(402\) 1.88659e9 1.44840
\(403\) 1.46460e9 1.11468
\(404\) −7.41716e8 −0.559633
\(405\) 2.90447e8 0.217257
\(406\) 0 0
\(407\) −4.19442e8 −0.308384
\(408\) −2.70455e8 −0.197145
\(409\) −3.00520e8 −0.217191 −0.108596 0.994086i \(-0.534635\pi\)
−0.108596 + 0.994086i \(0.534635\pi\)
\(410\) −1.40066e8 −0.100366
\(411\) 3.66423e9 2.60337
\(412\) −6.86536e8 −0.483641
\(413\) 0 0
\(414\) −1.54469e9 −1.06989
\(415\) −4.06409e8 −0.279123
\(416\) −9.27493e8 −0.631661
\(417\) −3.27585e9 −2.21232
\(418\) −7.61609e8 −0.510053
\(419\) −7.41204e8 −0.492253 −0.246127 0.969238i \(-0.579158\pi\)
−0.246127 + 0.969238i \(0.579158\pi\)
\(420\) 0 0
\(421\) 2.25657e9 1.47388 0.736940 0.675958i \(-0.236270\pi\)
0.736940 + 0.675958i \(0.236270\pi\)
\(422\) 1.07481e9 0.696210
\(423\) 4.23807e8 0.272256
\(424\) 1.17601e9 0.749256
\(425\) −1.57982e7 −0.00998268
\(426\) 2.18957e9 1.37223
\(427\) 0 0
\(428\) 1.05911e9 0.652964
\(429\) 1.22951e9 0.751851
\(430\) −5.53522e8 −0.335734
\(431\) 2.19006e7 0.0131760 0.00658802 0.999978i \(-0.497903\pi\)
0.00658802 + 0.999978i \(0.497903\pi\)
\(432\) −1.32411e8 −0.0790187
\(433\) 1.42535e9 0.843749 0.421875 0.906654i \(-0.361372\pi\)
0.421875 + 0.906654i \(0.361372\pi\)
\(434\) 0 0
\(435\) −3.06062e9 −1.78278
\(436\) −6.29367e8 −0.363665
\(437\) 2.03415e9 1.16600
\(438\) 4.21577e8 0.239727
\(439\) 2.51236e9 1.41728 0.708640 0.705571i \(-0.249309\pi\)
0.708640 + 0.705571i \(0.249309\pi\)
\(440\) −1.38113e9 −0.772948
\(441\) 0 0
\(442\) 9.37564e7 0.0516444
\(443\) −1.47011e9 −0.803408 −0.401704 0.915770i \(-0.631582\pi\)
−0.401704 + 0.915770i \(0.631582\pi\)
\(444\) 7.17096e8 0.388810
\(445\) −4.70259e8 −0.252975
\(446\) 1.48595e9 0.793108
\(447\) 1.65366e9 0.875731
\(448\) 0 0
\(449\) −2.83997e9 −1.48064 −0.740322 0.672252i \(-0.765327\pi\)
−0.740322 + 0.672252i \(0.765327\pi\)
\(450\) −1.58309e8 −0.0818957
\(451\) −2.08349e8 −0.106948
\(452\) −8.49995e8 −0.432944
\(453\) −5.16112e9 −2.60855
\(454\) 2.27113e9 1.13906
\(455\) 0 0
\(456\) 3.56890e9 1.76261
\(457\) −4.12022e8 −0.201936 −0.100968 0.994890i \(-0.532194\pi\)
−0.100968 + 0.994890i \(0.532194\pi\)
\(458\) −1.36741e9 −0.665075
\(459\) −2.06939e8 −0.0998846
\(460\) 1.34583e9 0.644670
\(461\) −4.14604e9 −1.97097 −0.985484 0.169766i \(-0.945699\pi\)
−0.985484 + 0.169766i \(0.945699\pi\)
\(462\) 0 0
\(463\) −2.49603e9 −1.16873 −0.584367 0.811490i \(-0.698657\pi\)
−0.584367 + 0.811490i \(0.698657\pi\)
\(464\) −2.22135e8 −0.103230
\(465\) −6.09689e9 −2.81205
\(466\) 1.83856e9 0.841644
\(467\) −2.73423e9 −1.24230 −0.621148 0.783693i \(-0.713334\pi\)
−0.621148 + 0.783693i \(0.713334\pi\)
\(468\) −1.26802e9 −0.571827
\(469\) 0 0
\(470\) 2.73583e8 0.121548
\(471\) −9.12614e8 −0.402452
\(472\) 1.80622e9 0.790632
\(473\) −8.23369e8 −0.357751
\(474\) 3.19677e9 1.37875
\(475\) 2.08472e8 0.0892524
\(476\) 0 0
\(477\) 2.62897e9 1.10910
\(478\) −2.48352e7 −0.0104009
\(479\) 1.21613e9 0.505598 0.252799 0.967519i \(-0.418649\pi\)
0.252799 + 0.967519i \(0.418649\pi\)
\(480\) 3.86100e9 1.59351
\(481\) −6.81365e8 −0.279172
\(482\) −1.61306e9 −0.656122
\(483\) 0 0
\(484\) 6.83236e8 0.273913
\(485\) 1.65343e9 0.658098
\(486\) 1.91118e9 0.755222
\(487\) −2.38138e9 −0.934280 −0.467140 0.884183i \(-0.654716\pi\)
−0.467140 + 0.884183i \(0.654716\pi\)
\(488\) 1.13353e9 0.441532
\(489\) −1.30802e9 −0.505865
\(490\) 0 0
\(491\) 4.90402e9 1.86968 0.934839 0.355072i \(-0.115544\pi\)
0.934839 + 0.355072i \(0.115544\pi\)
\(492\) 3.56202e8 0.134840
\(493\) −3.47166e8 −0.130489
\(494\) −1.23720e9 −0.461738
\(495\) −3.08751e9 −1.14417
\(496\) −4.42503e8 −0.162828
\(497\) 0 0
\(498\) −7.65774e8 −0.277842
\(499\) −2.90707e9 −1.04738 −0.523690 0.851909i \(-0.675445\pi\)
−0.523690 + 0.851909i \(0.675445\pi\)
\(500\) −1.53256e9 −0.548305
\(501\) 8.43095e9 2.99533
\(502\) −2.29294e9 −0.808966
\(503\) −7.90853e7 −0.0277082 −0.0138541 0.999904i \(-0.504410\pi\)
−0.0138541 + 0.999904i \(0.504410\pi\)
\(504\) 0 0
\(505\) −2.93379e9 −1.01370
\(506\) −1.48327e9 −0.508972
\(507\) −2.66138e9 −0.906941
\(508\) −1.94913e9 −0.659655
\(509\) −3.39847e9 −1.14228 −0.571138 0.820854i \(-0.693498\pi\)
−0.571138 + 0.820854i \(0.693498\pi\)
\(510\) −3.90293e8 −0.130285
\(511\) 0 0
\(512\) 5.78577e8 0.190509
\(513\) 2.73075e9 0.893040
\(514\) −2.18581e9 −0.709971
\(515\) −2.71553e9 −0.876052
\(516\) 1.40767e9 0.451052
\(517\) 4.06957e8 0.129518
\(518\) 0 0
\(519\) −1.60574e9 −0.504184
\(520\) −2.24358e9 −0.699730
\(521\) −3.59315e9 −1.11312 −0.556561 0.830807i \(-0.687880\pi\)
−0.556561 + 0.830807i \(0.687880\pi\)
\(522\) −3.47883e9 −1.07050
\(523\) 2.19278e9 0.670253 0.335126 0.942173i \(-0.391221\pi\)
0.335126 + 0.942173i \(0.391221\pi\)
\(524\) −3.34222e8 −0.101479
\(525\) 0 0
\(526\) −1.91492e9 −0.573719
\(527\) −6.91570e8 −0.205825
\(528\) −3.71475e8 −0.109828
\(529\) 5.56794e8 0.163531
\(530\) 1.69709e9 0.495154
\(531\) 4.03781e9 1.17035
\(532\) 0 0
\(533\) −3.38453e8 −0.0968173
\(534\) −8.86083e8 −0.251814
\(535\) 4.18923e9 1.18276
\(536\) −5.12092e9 −1.43639
\(537\) 8.03955e9 2.24038
\(538\) −1.08097e9 −0.299277
\(539\) 0 0
\(540\) 1.80671e9 0.493753
\(541\) −4.78889e8 −0.130030 −0.0650152 0.997884i \(-0.520710\pi\)
−0.0650152 + 0.997884i \(0.520710\pi\)
\(542\) 1.85679e9 0.500916
\(543\) 4.87580e9 1.30691
\(544\) 4.37954e8 0.116636
\(545\) −2.48940e9 −0.658730
\(546\) 0 0
\(547\) −1.52985e9 −0.399664 −0.199832 0.979830i \(-0.564040\pi\)
−0.199832 + 0.979830i \(0.564040\pi\)
\(548\) −3.62874e9 −0.941941
\(549\) 2.53400e9 0.653587
\(550\) −1.52014e8 −0.0389597
\(551\) 4.58117e9 1.16666
\(552\) 6.95062e9 1.75888
\(553\) 0 0
\(554\) 3.43431e9 0.858134
\(555\) 2.83641e9 0.704277
\(556\) 3.24412e9 0.800451
\(557\) 4.91768e8 0.120578 0.0602889 0.998181i \(-0.480798\pi\)
0.0602889 + 0.998181i \(0.480798\pi\)
\(558\) −6.92998e9 −1.68854
\(559\) −1.33753e9 −0.323863
\(560\) 0 0
\(561\) −5.80564e8 −0.138829
\(562\) 4.12209e9 0.979580
\(563\) −1.12449e9 −0.265569 −0.132785 0.991145i \(-0.542392\pi\)
−0.132785 + 0.991145i \(0.542392\pi\)
\(564\) −6.95751e8 −0.163297
\(565\) −3.36208e9 −0.784221
\(566\) −5.55621e8 −0.128801
\(567\) 0 0
\(568\) −5.94331e9 −1.36085
\(569\) 3.07826e9 0.700506 0.350253 0.936655i \(-0.386096\pi\)
0.350253 + 0.936655i \(0.386096\pi\)
\(570\) 5.15026e9 1.16484
\(571\) 9.19642e8 0.206725 0.103362 0.994644i \(-0.467040\pi\)
0.103362 + 0.994644i \(0.467040\pi\)
\(572\) −1.21760e9 −0.272031
\(573\) −1.07356e9 −0.238388
\(574\) 0 0
\(575\) 4.06010e8 0.0890633
\(576\) 5.05555e9 1.10227
\(577\) 4.86320e9 1.05392 0.526959 0.849891i \(-0.323332\pi\)
0.526959 + 0.849891i \(0.323332\pi\)
\(578\) 2.98434e9 0.642838
\(579\) −4.63065e9 −0.991442
\(580\) 3.03097e9 0.645036
\(581\) 0 0
\(582\) 3.11547e9 0.655078
\(583\) 2.52444e9 0.527625
\(584\) −1.14432e9 −0.237739
\(585\) −5.01553e9 −1.03579
\(586\) 4.35979e9 0.895002
\(587\) 1.16578e9 0.237894 0.118947 0.992901i \(-0.462048\pi\)
0.118947 + 0.992901i \(0.462048\pi\)
\(588\) 0 0
\(589\) 9.12588e9 1.84023
\(590\) 2.60655e9 0.522498
\(591\) −1.00619e9 −0.200504
\(592\) 2.05862e8 0.0407804
\(593\) −3.35508e9 −0.660711 −0.330356 0.943857i \(-0.607169\pi\)
−0.330356 + 0.943857i \(0.607169\pi\)
\(594\) −1.99122e9 −0.389822
\(595\) 0 0
\(596\) −1.63765e9 −0.316853
\(597\) −2.20686e9 −0.424488
\(598\) −2.40951e9 −0.460760
\(599\) −2.32145e9 −0.441332 −0.220666 0.975349i \(-0.570823\pi\)
−0.220666 + 0.975349i \(0.570823\pi\)
\(600\) 7.12339e8 0.134635
\(601\) 4.38113e9 0.823238 0.411619 0.911356i \(-0.364964\pi\)
0.411619 + 0.911356i \(0.364964\pi\)
\(602\) 0 0
\(603\) −1.14478e10 −2.12624
\(604\) 5.11112e9 0.943815
\(605\) 2.70248e9 0.496157
\(606\) −5.52798e9 −1.00905
\(607\) 4.32861e9 0.785577 0.392788 0.919629i \(-0.371511\pi\)
0.392788 + 0.919629i \(0.371511\pi\)
\(608\) −5.77919e9 −1.04281
\(609\) 0 0
\(610\) 1.63579e9 0.291792
\(611\) 6.61083e8 0.117250
\(612\) 5.98746e8 0.105588
\(613\) 1.90325e9 0.333721 0.166860 0.985981i \(-0.446637\pi\)
0.166860 + 0.985981i \(0.446637\pi\)
\(614\) −4.79581e9 −0.836128
\(615\) 1.40893e9 0.244245
\(616\) 0 0
\(617\) −8.11496e9 −1.39088 −0.695438 0.718586i \(-0.744790\pi\)
−0.695438 + 0.718586i \(0.744790\pi\)
\(618\) −5.11673e9 −0.872033
\(619\) −4.60343e9 −0.780125 −0.390062 0.920788i \(-0.627547\pi\)
−0.390062 + 0.920788i \(0.627547\pi\)
\(620\) 6.03783e9 1.01744
\(621\) 5.31827e9 0.891149
\(622\) −3.31087e8 −0.0551666
\(623\) 0 0
\(624\) −6.03445e8 −0.0994241
\(625\) −6.56586e9 −1.07575
\(626\) −4.22194e7 −0.00687863
\(627\) 7.66106e9 1.24123
\(628\) 9.03774e8 0.145613
\(629\) 3.21734e8 0.0515490
\(630\) 0 0
\(631\) 3.73470e9 0.591770 0.295885 0.955224i \(-0.404385\pi\)
0.295885 + 0.955224i \(0.404385\pi\)
\(632\) −8.67721e9 −1.36732
\(633\) −1.08116e10 −1.69425
\(634\) 2.06423e9 0.321695
\(635\) −7.70960e9 −1.19488
\(636\) −4.31590e9 −0.665229
\(637\) 0 0
\(638\) −3.34051e9 −0.509262
\(639\) −1.32863e10 −2.01442
\(640\) −3.39306e9 −0.511636
\(641\) −7.28967e9 −1.09321 −0.546607 0.837390i \(-0.684081\pi\)
−0.546607 + 0.837390i \(0.684081\pi\)
\(642\) 7.89352e9 1.17733
\(643\) 4.01680e9 0.595856 0.297928 0.954588i \(-0.403704\pi\)
0.297928 + 0.954588i \(0.403704\pi\)
\(644\) 0 0
\(645\) 5.56791e9 0.817020
\(646\) 5.84194e8 0.0852597
\(647\) 3.54285e9 0.514267 0.257133 0.966376i \(-0.417222\pi\)
0.257133 + 0.966376i \(0.417222\pi\)
\(648\) −1.48550e9 −0.214467
\(649\) 3.87727e9 0.556761
\(650\) −2.46941e8 −0.0352692
\(651\) 0 0
\(652\) 1.29535e9 0.183030
\(653\) 1.11981e10 1.57379 0.786897 0.617084i \(-0.211686\pi\)
0.786897 + 0.617084i \(0.211686\pi\)
\(654\) −4.69064e9 −0.655708
\(655\) −1.32199e9 −0.183816
\(656\) 1.02258e8 0.0141427
\(657\) −2.55812e9 −0.351918
\(658\) 0 0
\(659\) 8.68249e9 1.18180 0.590902 0.806743i \(-0.298772\pi\)
0.590902 + 0.806743i \(0.298772\pi\)
\(660\) 5.06868e9 0.686263
\(661\) 1.03500e10 1.39391 0.696955 0.717115i \(-0.254538\pi\)
0.696955 + 0.717115i \(0.254538\pi\)
\(662\) 6.47814e9 0.867855
\(663\) −9.43100e8 −0.125678
\(664\) 2.07860e9 0.275538
\(665\) 0 0
\(666\) 3.22399e9 0.422896
\(667\) 8.92206e9 1.16419
\(668\) −8.34928e9 −1.08376
\(669\) −1.49472e10 −1.93005
\(670\) −7.38998e9 −0.949251
\(671\) 2.43325e9 0.310926
\(672\) 0 0
\(673\) 1.94227e9 0.245617 0.122808 0.992430i \(-0.460810\pi\)
0.122808 + 0.992430i \(0.460810\pi\)
\(674\) −7.77342e8 −0.0977918
\(675\) 5.45047e8 0.0682136
\(676\) 2.63560e9 0.328145
\(677\) 5.39351e9 0.668053 0.334027 0.942564i \(-0.391592\pi\)
0.334027 + 0.942564i \(0.391592\pi\)
\(678\) −6.33498e9 −0.780623
\(679\) 0 0
\(680\) 1.05940e9 0.129205
\(681\) −2.28453e10 −2.77193
\(682\) −6.65445e9 −0.803279
\(683\) 1.11516e10 1.33926 0.669628 0.742697i \(-0.266454\pi\)
0.669628 + 0.742697i \(0.266454\pi\)
\(684\) −7.90099e9 −0.944029
\(685\) −1.43531e10 −1.70620
\(686\) 0 0
\(687\) 1.37549e10 1.61848
\(688\) 4.04110e8 0.0473086
\(689\) 4.10084e9 0.477646
\(690\) 1.00304e10 1.16238
\(691\) −4.28327e9 −0.493858 −0.246929 0.969034i \(-0.579421\pi\)
−0.246929 + 0.969034i \(0.579421\pi\)
\(692\) 1.59019e9 0.182422
\(693\) 0 0
\(694\) −2.64988e9 −0.300932
\(695\) 1.28318e10 1.44991
\(696\) 1.56537e10 1.75988
\(697\) 1.59814e8 0.0178773
\(698\) 1.47201e9 0.163839
\(699\) −1.84942e10 −2.04817
\(700\) 0 0
\(701\) −9.26658e8 −0.101603 −0.0508015 0.998709i \(-0.516178\pi\)
−0.0508015 + 0.998709i \(0.516178\pi\)
\(702\) −3.23465e9 −0.352896
\(703\) −4.24557e9 −0.460885
\(704\) 4.85454e9 0.524377
\(705\) −2.75198e9 −0.295790
\(706\) 1.21502e10 1.29947
\(707\) 0 0
\(708\) −6.62874e9 −0.701964
\(709\) −5.58852e9 −0.588891 −0.294446 0.955668i \(-0.595135\pi\)
−0.294446 + 0.955668i \(0.595135\pi\)
\(710\) −8.57677e9 −0.899331
\(711\) −1.93979e10 −2.02400
\(712\) 2.40516e9 0.249726
\(713\) 1.77731e10 1.83633
\(714\) 0 0
\(715\) −4.81611e9 −0.492749
\(716\) −7.96168e9 −0.810604
\(717\) 2.49818e8 0.0253109
\(718\) −1.78188e8 −0.0179656
\(719\) 1.32009e10 1.32450 0.662252 0.749281i \(-0.269601\pi\)
0.662252 + 0.749281i \(0.269601\pi\)
\(720\) 1.51536e9 0.151304
\(721\) 0 0
\(722\) −1.11151e9 −0.109909
\(723\) 1.62258e10 1.59669
\(724\) −4.82857e9 −0.472861
\(725\) 9.14384e8 0.0891139
\(726\) 5.09213e9 0.493880
\(727\) −7.32749e9 −0.707269 −0.353635 0.935384i \(-0.615054\pi\)
−0.353635 + 0.935384i \(0.615054\pi\)
\(728\) 0 0
\(729\) −1.70404e10 −1.62905
\(730\) −1.65136e9 −0.157113
\(731\) 6.31567e8 0.0598011
\(732\) −4.15999e9 −0.392016
\(733\) −1.39234e10 −1.30581 −0.652907 0.757438i \(-0.726451\pi\)
−0.652907 + 0.757438i \(0.726451\pi\)
\(734\) 1.14687e10 1.07048
\(735\) 0 0
\(736\) −1.12553e10 −1.04060
\(737\) −1.09926e10 −1.01150
\(738\) 1.60145e9 0.146661
\(739\) 2.95420e9 0.269268 0.134634 0.990895i \(-0.457014\pi\)
0.134634 + 0.990895i \(0.457014\pi\)
\(740\) −2.80894e9 −0.254818
\(741\) 1.24450e10 1.12365
\(742\) 0 0
\(743\) −5.39743e9 −0.482754 −0.241377 0.970431i \(-0.577599\pi\)
−0.241377 + 0.970431i \(0.577599\pi\)
\(744\) 3.11827e10 2.77593
\(745\) −6.47756e9 −0.573937
\(746\) −1.12417e10 −0.991390
\(747\) 4.64670e9 0.407871
\(748\) 5.74940e8 0.0502304
\(749\) 0 0
\(750\) −1.14221e10 −0.988625
\(751\) 1.12321e9 0.0967661 0.0483830 0.998829i \(-0.484593\pi\)
0.0483830 + 0.998829i \(0.484593\pi\)
\(752\) −1.99735e8 −0.0171274
\(753\) 2.30648e10 1.96864
\(754\) −5.42652e9 −0.461022
\(755\) 2.02166e10 1.70960
\(756\) 0 0
\(757\) 9.72000e9 0.814387 0.407193 0.913342i \(-0.366507\pi\)
0.407193 + 0.913342i \(0.366507\pi\)
\(758\) −6.87992e9 −0.573775
\(759\) 1.49203e10 1.23860
\(760\) −1.39797e10 −1.15518
\(761\) 1.91127e10 1.57208 0.786041 0.618174i \(-0.212127\pi\)
0.786041 + 0.618174i \(0.212127\pi\)
\(762\) −1.45268e10 −1.18940
\(763\) 0 0
\(764\) 1.06316e9 0.0862526
\(765\) 2.36829e9 0.191258
\(766\) 1.29513e10 1.04115
\(767\) 6.29845e9 0.504022
\(768\) −2.08422e10 −1.66027
\(769\) −1.69816e10 −1.34660 −0.673298 0.739371i \(-0.735123\pi\)
−0.673298 + 0.739371i \(0.735123\pi\)
\(770\) 0 0
\(771\) 2.19871e10 1.72774
\(772\) 4.58580e9 0.358719
\(773\) 1.63789e10 1.27543 0.637713 0.770274i \(-0.279880\pi\)
0.637713 + 0.770274i \(0.279880\pi\)
\(774\) 6.32872e9 0.490594
\(775\) 1.82149e9 0.140563
\(776\) −8.45655e9 −0.649646
\(777\) 0 0
\(778\) 6.79524e9 0.517341
\(779\) −2.10889e9 −0.159836
\(780\) 8.23384e9 0.621257
\(781\) −1.27580e10 −0.958306
\(782\) 1.13775e9 0.0850791
\(783\) 1.19774e10 0.891655
\(784\) 0 0
\(785\) 3.57480e9 0.263759
\(786\) −2.49094e9 −0.182972
\(787\) −1.35516e10 −0.991016 −0.495508 0.868603i \(-0.665018\pi\)
−0.495508 + 0.868603i \(0.665018\pi\)
\(788\) 9.96439e8 0.0725453
\(789\) 1.92622e10 1.39616
\(790\) −1.25220e10 −0.903609
\(791\) 0 0
\(792\) 1.57912e10 1.12948
\(793\) 3.95270e9 0.281474
\(794\) 6.90512e9 0.489553
\(795\) −1.70711e10 −1.20497
\(796\) 2.18548e9 0.153586
\(797\) −5.21891e7 −0.00365153 −0.00182577 0.999998i \(-0.500581\pi\)
−0.00182577 + 0.999998i \(0.500581\pi\)
\(798\) 0 0
\(799\) −3.12157e8 −0.0216501
\(800\) −1.15351e9 −0.0796535
\(801\) 5.37673e9 0.369662
\(802\) −1.43845e10 −0.984655
\(803\) −2.45641e9 −0.167416
\(804\) 1.87935e10 1.27530
\(805\) 0 0
\(806\) −1.08099e10 −0.727189
\(807\) 1.08735e10 0.728301
\(808\) 1.50050e10 1.00068
\(809\) 1.36046e10 0.903369 0.451685 0.892178i \(-0.350823\pi\)
0.451685 + 0.892178i \(0.350823\pi\)
\(810\) −2.14372e9 −0.141733
\(811\) −3.10614e9 −0.204479 −0.102239 0.994760i \(-0.532601\pi\)
−0.102239 + 0.994760i \(0.532601\pi\)
\(812\) 0 0
\(813\) −1.86775e10 −1.21900
\(814\) 3.09580e9 0.201181
\(815\) 5.12365e9 0.331534
\(816\) 2.84941e8 0.0183586
\(817\) −8.33410e9 −0.534665
\(818\) 2.21807e9 0.141690
\(819\) 0 0
\(820\) −1.39528e9 −0.0883715
\(821\) 1.05773e10 0.667075 0.333537 0.942737i \(-0.391758\pi\)
0.333537 + 0.942737i \(0.391758\pi\)
\(822\) −2.70448e10 −1.69837
\(823\) 1.02811e10 0.642894 0.321447 0.946928i \(-0.395831\pi\)
0.321447 + 0.946928i \(0.395831\pi\)
\(824\) 1.38887e10 0.864801
\(825\) 1.52912e9 0.0948096
\(826\) 0 0
\(827\) 1.76194e9 0.108323 0.0541617 0.998532i \(-0.482751\pi\)
0.0541617 + 0.998532i \(0.482751\pi\)
\(828\) −1.53876e10 −0.942029
\(829\) −1.85017e10 −1.12790 −0.563951 0.825808i \(-0.690719\pi\)
−0.563951 + 0.825808i \(0.690719\pi\)
\(830\) 2.99961e9 0.182092
\(831\) −3.45458e10 −2.08830
\(832\) 7.88599e9 0.474706
\(833\) 0 0
\(834\) 2.41783e10 1.44326
\(835\) −3.30249e10 −1.96308
\(836\) −7.58685e9 −0.449096
\(837\) 2.38595e10 1.40644
\(838\) 5.47065e9 0.321133
\(839\) −1.91428e10 −1.11902 −0.559512 0.828822i \(-0.689012\pi\)
−0.559512 + 0.828822i \(0.689012\pi\)
\(840\) 0 0
\(841\) 2.84370e9 0.164854
\(842\) −1.66552e10 −0.961521
\(843\) −4.14642e10 −2.38384
\(844\) 1.07069e10 0.613005
\(845\) 1.04249e10 0.594392
\(846\) −3.12802e9 −0.177613
\(847\) 0 0
\(848\) −1.23900e9 −0.0697726
\(849\) 5.58901e9 0.313443
\(850\) 1.16603e8 0.00651244
\(851\) −8.26847e9 −0.459909
\(852\) 2.18117e10 1.20823
\(853\) 7.28376e9 0.401822 0.200911 0.979609i \(-0.435610\pi\)
0.200911 + 0.979609i \(0.435610\pi\)
\(854\) 0 0
\(855\) −3.12517e10 −1.70998
\(856\) −2.14260e10 −1.16757
\(857\) 2.77327e10 1.50508 0.752539 0.658547i \(-0.228829\pi\)
0.752539 + 0.658547i \(0.228829\pi\)
\(858\) −9.07473e9 −0.490488
\(859\) 1.98597e9 0.106905 0.0534524 0.998570i \(-0.482977\pi\)
0.0534524 + 0.998570i \(0.482977\pi\)
\(860\) −5.51397e9 −0.295611
\(861\) 0 0
\(862\) −1.61643e8 −0.00859570
\(863\) −9.69107e9 −0.513256 −0.256628 0.966510i \(-0.582612\pi\)
−0.256628 + 0.966510i \(0.582612\pi\)
\(864\) −1.51096e10 −0.796996
\(865\) 6.28984e9 0.330433
\(866\) −1.05202e10 −0.550440
\(867\) −3.00196e10 −1.56437
\(868\) 0 0
\(869\) −1.86266e10 −0.962865
\(870\) 2.25897e10 1.16304
\(871\) −1.78571e10 −0.915686
\(872\) 1.27322e10 0.650271
\(873\) −1.89046e10 −0.961651
\(874\) −1.50136e10 −0.760668
\(875\) 0 0
\(876\) 4.19958e9 0.211077
\(877\) 8.06479e9 0.403733 0.201867 0.979413i \(-0.435299\pi\)
0.201867 + 0.979413i \(0.435299\pi\)
\(878\) −1.85431e10 −0.924596
\(879\) −4.38553e10 −2.17802
\(880\) 1.45511e9 0.0719789
\(881\) 3.72296e10 1.83431 0.917156 0.398529i \(-0.130479\pi\)
0.917156 + 0.398529i \(0.130479\pi\)
\(882\) 0 0
\(883\) 1.71532e10 0.838458 0.419229 0.907880i \(-0.362300\pi\)
0.419229 + 0.907880i \(0.362300\pi\)
\(884\) 9.33965e8 0.0454724
\(885\) −2.62194e10 −1.27152
\(886\) 1.08505e10 0.524122
\(887\) −2.19309e10 −1.05517 −0.527586 0.849502i \(-0.676903\pi\)
−0.527586 + 0.849502i \(0.676903\pi\)
\(888\) −1.45069e10 −0.695233
\(889\) 0 0
\(890\) 3.47088e9 0.165034
\(891\) −3.18880e9 −0.151027
\(892\) 1.48024e10 0.698323
\(893\) 4.11920e9 0.193567
\(894\) −1.22053e10 −0.571304
\(895\) −3.14917e10 −1.46830
\(896\) 0 0
\(897\) 2.42374e10 1.12127
\(898\) 2.09611e10 0.965934
\(899\) 4.00273e10 1.83737
\(900\) −1.57701e9 −0.0721083
\(901\) −1.93638e9 −0.0881970
\(902\) 1.53777e9 0.0697700
\(903\) 0 0
\(904\) 1.71955e10 0.774150
\(905\) −1.90990e10 −0.856525
\(906\) 3.80930e10 1.70175
\(907\) −2.50595e9 −0.111519 −0.0557593 0.998444i \(-0.517758\pi\)
−0.0557593 + 0.998444i \(0.517758\pi\)
\(908\) 2.26241e10 1.00293
\(909\) 3.35437e10 1.48128
\(910\) 0 0
\(911\) −8.68527e9 −0.380600 −0.190300 0.981726i \(-0.560946\pi\)
−0.190300 + 0.981726i \(0.560946\pi\)
\(912\) −3.76005e9 −0.164139
\(913\) 4.46195e9 0.194033
\(914\) 3.04104e9 0.131738
\(915\) −1.64545e10 −0.710084
\(916\) −1.36216e10 −0.585591
\(917\) 0 0
\(918\) 1.52737e9 0.0651621
\(919\) 6.68328e9 0.284044 0.142022 0.989864i \(-0.454640\pi\)
0.142022 + 0.989864i \(0.454640\pi\)
\(920\) −2.72262e10 −1.15274
\(921\) 4.82413e10 2.03474
\(922\) 3.06009e10 1.28581
\(923\) −2.07248e10 −0.867531
\(924\) 0 0
\(925\) −8.47400e8 −0.0352040
\(926\) 1.84226e10 0.762451
\(927\) 3.10482e10 1.28014
\(928\) −2.53483e10 −1.04119
\(929\) −1.21779e10 −0.498330 −0.249165 0.968461i \(-0.580156\pi\)
−0.249165 + 0.968461i \(0.580156\pi\)
\(930\) 4.49997e10 1.83451
\(931\) 0 0
\(932\) 1.83151e10 0.741059
\(933\) 3.33042e9 0.134250
\(934\) 2.01807e10 0.810442
\(935\) 2.27412e9 0.0909858
\(936\) 2.56521e10 1.02249
\(937\) 4.28141e10 1.70019 0.850097 0.526626i \(-0.176543\pi\)
0.850097 + 0.526626i \(0.176543\pi\)
\(938\) 0 0
\(939\) 4.24687e8 0.0167394
\(940\) 2.72533e9 0.107021
\(941\) −3.94834e10 −1.54473 −0.772363 0.635181i \(-0.780925\pi\)
−0.772363 + 0.635181i \(0.780925\pi\)
\(942\) 6.73579e9 0.262549
\(943\) −4.10718e9 −0.159497
\(944\) −1.90297e9 −0.0736256
\(945\) 0 0
\(946\) 6.07709e9 0.233387
\(947\) 1.11103e10 0.425108 0.212554 0.977149i \(-0.431822\pi\)
0.212554 + 0.977149i \(0.431822\pi\)
\(948\) 3.18449e10 1.21398
\(949\) −3.99032e9 −0.151557
\(950\) −1.53868e9 −0.0582259
\(951\) −2.07641e10 −0.782856
\(952\) 0 0
\(953\) −3.33302e10 −1.24742 −0.623711 0.781655i \(-0.714376\pi\)
−0.623711 + 0.781655i \(0.714376\pi\)
\(954\) −1.94038e10 −0.723548
\(955\) 4.20524e9 0.156235
\(956\) −2.47398e8 −0.00915787
\(957\) 3.36024e10 1.23930
\(958\) −8.97597e9 −0.329839
\(959\) 0 0
\(960\) −3.28281e10 −1.19756
\(961\) 5.22234e10 1.89816
\(962\) 5.02899e9 0.182124
\(963\) −4.78977e10 −1.72831
\(964\) −1.60686e10 −0.577709
\(965\) 1.81387e10 0.649772
\(966\) 0 0
\(967\) −5.24781e10 −1.86632 −0.933158 0.359466i \(-0.882959\pi\)
−0.933158 + 0.359466i \(0.882959\pi\)
\(968\) −1.38219e10 −0.489785
\(969\) −5.87644e9 −0.207482
\(970\) −1.22036e10 −0.429326
\(971\) 3.48968e10 1.22326 0.611630 0.791144i \(-0.290514\pi\)
0.611630 + 0.791144i \(0.290514\pi\)
\(972\) 1.90384e10 0.664965
\(973\) 0 0
\(974\) 1.75764e10 0.609499
\(975\) 2.48399e9 0.0858288
\(976\) −1.19424e9 −0.0411166
\(977\) −5.64445e10 −1.93638 −0.968191 0.250214i \(-0.919499\pi\)
−0.968191 + 0.250214i \(0.919499\pi\)
\(978\) 9.65421e9 0.330013
\(979\) 5.16295e9 0.175857
\(980\) 0 0
\(981\) 2.84627e10 0.962575
\(982\) −3.61954e10 −1.21973
\(983\) −8.41243e7 −0.00282478 −0.00141239 0.999999i \(-0.500450\pi\)
−0.00141239 + 0.999999i \(0.500450\pi\)
\(984\) −7.20600e9 −0.241108
\(985\) 3.94133e9 0.131406
\(986\) 2.56235e9 0.0851274
\(987\) 0 0
\(988\) −1.23245e10 −0.406556
\(989\) −1.62311e10 −0.533532
\(990\) 2.27882e10 0.746427
\(991\) 1.29923e10 0.424062 0.212031 0.977263i \(-0.431992\pi\)
0.212031 + 0.977263i \(0.431992\pi\)
\(992\) −5.04948e10 −1.64231
\(993\) −6.51639e10 −2.11195
\(994\) 0 0
\(995\) 8.64449e9 0.278201
\(996\) −7.62834e9 −0.244637
\(997\) −2.22679e8 −0.00711617 −0.00355808 0.999994i \(-0.501133\pi\)
−0.00355808 + 0.999994i \(0.501133\pi\)
\(998\) 2.14564e10 0.683283
\(999\) −1.11000e10 −0.352244
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 49.8.a.f.1.2 4
3.2 odd 2 441.8.a.s.1.3 4
7.2 even 3 7.8.c.a.4.3 yes 8
7.3 odd 6 49.8.c.g.30.3 8
7.4 even 3 7.8.c.a.2.3 8
7.5 odd 6 49.8.c.g.18.3 8
7.6 odd 2 49.8.a.e.1.2 4
21.2 odd 6 63.8.e.b.46.2 8
21.11 odd 6 63.8.e.b.37.2 8
21.20 even 2 441.8.a.t.1.3 4
28.11 odd 6 112.8.i.c.65.4 8
28.23 odd 6 112.8.i.c.81.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7.8.c.a.2.3 8 7.4 even 3
7.8.c.a.4.3 yes 8 7.2 even 3
49.8.a.e.1.2 4 7.6 odd 2
49.8.a.f.1.2 4 1.1 even 1 trivial
49.8.c.g.18.3 8 7.5 odd 6
49.8.c.g.30.3 8 7.3 odd 6
63.8.e.b.37.2 8 21.11 odd 6
63.8.e.b.46.2 8 21.2 odd 6
112.8.i.c.65.4 8 28.11 odd 6
112.8.i.c.81.4 8 28.23 odd 6
441.8.a.s.1.3 4 3.2 odd 2
441.8.a.t.1.3 4 21.20 even 2