Properties

Label 625.2.d.p.126.4
Level $625$
Weight $2$
Character 625.126
Analytic conductor $4.991$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [625,2,Mod(126,625)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("625.126"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(625, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 625 = 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 625.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,5,-8,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.99065012633\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 25x^{14} + 239x^{12} + 1165x^{10} + 3166x^{8} + 4820x^{6} + 3809x^{4} + 1205x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 126.4
Root \(0.991969i\) of defining polynomial
Character \(\chi\) \(=\) 625.126
Dual form 625.2.d.p.501.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.520202 + 1.60102i) q^{2} +(0.574677 - 0.417528i) q^{3} +(-0.674615 + 0.490137i) q^{4} +(0.967418 + 0.702870i) q^{6} -4.59110 q^{7} +(1.58816 + 1.15387i) q^{8} +(-0.771126 + 2.37328i) q^{9} +(1.20974 + 3.72319i) q^{11} +(-0.183041 + 0.563341i) q^{12} +(-0.177048 + 0.544898i) q^{13} +(-2.38830 - 7.35044i) q^{14} +(-1.53656 + 4.72903i) q^{16} +(0.188186 + 0.136725i) q^{17} -4.20081 q^{18} +(4.49012 + 3.26227i) q^{19} +(-2.63840 + 1.91691i) q^{21} +(-5.33158 + 3.87362i) q^{22} +(-1.52428 - 4.69124i) q^{23} +1.39445 q^{24} -0.964492 q^{26} +(1.20628 + 3.71256i) q^{27} +(3.09723 - 2.25027i) q^{28} +(-3.34174 + 2.42792i) q^{29} +(2.82777 + 2.05449i) q^{31} -4.44444 q^{32} +(2.24974 + 1.63453i) q^{33} +(-0.121005 + 0.372415i) q^{34} +(-0.643019 - 1.97901i) q^{36} +(-1.67378 + 5.15138i) q^{37} +(-2.88717 + 8.88581i) q^{38} +(0.125764 + 0.387063i) q^{39} +(3.22079 - 9.91257i) q^{41} +(-4.44152 - 3.22695i) q^{42} +1.38833 q^{43} +(-2.64098 - 1.91878i) q^{44} +(6.71783 - 4.88079i) q^{46} +(-0.744634 + 0.541008i) q^{47} +(1.09148 + 3.35922i) q^{48} +14.0782 q^{49} +0.165233 q^{51} +(-0.147635 - 0.454374i) q^{52} +(-0.996044 + 0.723668i) q^{53} +(-5.31636 + 3.86256i) q^{54} +(-7.29141 - 5.29752i) q^{56} +3.94246 q^{57} +(-5.62552 - 4.08718i) q^{58} +(1.39299 - 4.28718i) q^{59} +(-3.60276 - 11.0881i) q^{61} +(-1.81827 + 5.59606i) q^{62} +(3.54032 - 10.8960i) q^{63} +(0.761103 + 2.34244i) q^{64} +(-1.44660 + 4.45216i) q^{66} +(2.39022 + 1.73660i) q^{67} -0.193968 q^{68} +(-2.83469 - 2.05952i) q^{69} +(-2.59331 + 1.88415i) q^{71} +(-3.96312 + 2.87938i) q^{72} +(-3.18047 - 9.78847i) q^{73} -9.11816 q^{74} -4.62806 q^{76} +(-5.55402 - 17.0935i) q^{77} +(-0.554272 + 0.402702i) q^{78} +(7.77877 - 5.65161i) q^{79} +(-3.81318 - 2.77044i) q^{81} +17.5457 q^{82} +(8.48125 + 6.16199i) q^{83} +(0.840358 - 2.58636i) q^{84} +(0.722211 + 2.22274i) q^{86} +(-0.906701 + 2.79054i) q^{87} +(-2.37480 + 7.30889i) q^{88} +(2.24293 + 6.90303i) q^{89} +(0.812846 - 2.50168i) q^{91} +(3.32765 + 2.41768i) q^{92} +2.48286 q^{93} +(-1.25352 - 0.910739i) q^{94} +(-2.55412 + 1.85568i) q^{96} +(6.73079 - 4.89020i) q^{97} +(7.32353 + 22.5395i) q^{98} -9.76903 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 5 q^{3} - 8 q^{4} - 3 q^{6} - 20 q^{7} + 10 q^{8} + 3 q^{9} + 2 q^{11} + 25 q^{12} + 5 q^{13} + 9 q^{14} - 14 q^{16} - 10 q^{17} + 10 q^{18} + 7 q^{21} - 40 q^{22} + 15 q^{23} + 10 q^{24} + 22 q^{26}+ \cdots - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/625\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.520202 + 1.60102i 0.367839 + 1.13209i 0.948184 + 0.317721i \(0.102917\pi\)
−0.580346 + 0.814370i \(0.697083\pi\)
\(3\) 0.574677 0.417528i 0.331790 0.241060i −0.409400 0.912355i \(-0.634262\pi\)
0.741190 + 0.671295i \(0.234262\pi\)
\(4\) −0.674615 + 0.490137i −0.337308 + 0.245068i
\(5\) 0 0
\(6\) 0.967418 + 0.702870i 0.394947 + 0.286946i
\(7\) −4.59110 −1.73527 −0.867637 0.497198i \(-0.834362\pi\)
−0.867637 + 0.497198i \(0.834362\pi\)
\(8\) 1.58816 + 1.15387i 0.561500 + 0.407953i
\(9\) −0.771126 + 2.37328i −0.257042 + 0.791094i
\(10\) 0 0
\(11\) 1.20974 + 3.72319i 0.364749 + 1.12258i 0.950138 + 0.311830i \(0.100942\pi\)
−0.585389 + 0.810753i \(0.699058\pi\)
\(12\) −0.183041 + 0.563341i −0.0528393 + 0.162623i
\(13\) −0.177048 + 0.544898i −0.0491043 + 0.151127i −0.972602 0.232476i \(-0.925317\pi\)
0.923498 + 0.383604i \(0.125317\pi\)
\(14\) −2.38830 7.35044i −0.638301 1.96449i
\(15\) 0 0
\(16\) −1.53656 + 4.72903i −0.384139 + 1.18226i
\(17\) 0.188186 + 0.136725i 0.0456419 + 0.0331608i 0.610372 0.792115i \(-0.291020\pi\)
−0.564730 + 0.825275i \(0.691020\pi\)
\(18\) −4.20081 −0.990140
\(19\) 4.49012 + 3.26227i 1.03010 + 0.748415i 0.968330 0.249675i \(-0.0803238\pi\)
0.0617752 + 0.998090i \(0.480324\pi\)
\(20\) 0 0
\(21\) −2.63840 + 1.91691i −0.575747 + 0.418305i
\(22\) −5.33158 + 3.87362i −1.13670 + 0.825858i
\(23\) −1.52428 4.69124i −0.317834 0.978192i −0.974572 0.224073i \(-0.928064\pi\)
0.656738 0.754118i \(-0.271936\pi\)
\(24\) 1.39445 0.284641
\(25\) 0 0
\(26\) −0.964492 −0.189152
\(27\) 1.20628 + 3.71256i 0.232149 + 0.714482i
\(28\) 3.09723 2.25027i 0.585321 0.425261i
\(29\) −3.34174 + 2.42792i −0.620546 + 0.450853i −0.853112 0.521727i \(-0.825288\pi\)
0.232566 + 0.972581i \(0.425288\pi\)
\(30\) 0 0
\(31\) 2.82777 + 2.05449i 0.507882 + 0.368998i 0.812020 0.583630i \(-0.198368\pi\)
−0.304138 + 0.952628i \(0.598368\pi\)
\(32\) −4.44444 −0.785674
\(33\) 2.24974 + 1.63453i 0.391630 + 0.284536i
\(34\) −0.121005 + 0.372415i −0.0207522 + 0.0638686i
\(35\) 0 0
\(36\) −0.643019 1.97901i −0.107170 0.329835i
\(37\) −1.67378 + 5.15138i −0.275169 + 0.846882i 0.714006 + 0.700139i \(0.246879\pi\)
−0.989175 + 0.146742i \(0.953121\pi\)
\(38\) −2.88717 + 8.88581i −0.468361 + 1.44147i
\(39\) 0.125764 + 0.387063i 0.0201384 + 0.0619797i
\(40\) 0 0
\(41\) 3.22079 9.91257i 0.503003 1.54808i −0.301100 0.953593i \(-0.597354\pi\)
0.804103 0.594491i \(-0.202646\pi\)
\(42\) −4.44152 3.22695i −0.685341 0.497929i
\(43\) 1.38833 0.211718 0.105859 0.994381i \(-0.466241\pi\)
0.105859 + 0.994381i \(0.466241\pi\)
\(44\) −2.64098 1.91878i −0.398142 0.289267i
\(45\) 0 0
\(46\) 6.71783 4.88079i 0.990491 0.719634i
\(47\) −0.744634 + 0.541008i −0.108616 + 0.0789142i −0.640767 0.767735i \(-0.721384\pi\)
0.532151 + 0.846649i \(0.321384\pi\)
\(48\) 1.09148 + 3.35922i 0.157541 + 0.484862i
\(49\) 14.0782 2.01118
\(50\) 0 0
\(51\) 0.165233 0.0231373
\(52\) −0.147635 0.454374i −0.0204733 0.0630103i
\(53\) −0.996044 + 0.723668i −0.136817 + 0.0994034i −0.654089 0.756418i \(-0.726948\pi\)
0.517272 + 0.855821i \(0.326948\pi\)
\(54\) −5.31636 + 3.86256i −0.723466 + 0.525628i
\(55\) 0 0
\(56\) −7.29141 5.29752i −0.974356 0.707911i
\(57\) 3.94246 0.522191
\(58\) −5.62552 4.08718i −0.738668 0.536673i
\(59\) 1.39299 4.28718i 0.181352 0.558143i −0.818515 0.574485i \(-0.805202\pi\)
0.999866 + 0.0163426i \(0.00520224\pi\)
\(60\) 0 0
\(61\) −3.60276 11.0881i −0.461286 1.41969i −0.863594 0.504187i \(-0.831792\pi\)
0.402309 0.915504i \(-0.368208\pi\)
\(62\) −1.81827 + 5.59606i −0.230921 + 0.710700i
\(63\) 3.54032 10.8960i 0.446038 1.37277i
\(64\) 0.761103 + 2.34244i 0.0951379 + 0.292804i
\(65\) 0 0
\(66\) −1.44660 + 4.45216i −0.178064 + 0.548023i
\(67\) 2.39022 + 1.73660i 0.292012 + 0.212159i 0.724140 0.689653i \(-0.242237\pi\)
−0.432128 + 0.901812i \(0.642237\pi\)
\(68\) −0.193968 −0.0235220
\(69\) −2.83469 2.05952i −0.341257 0.247938i
\(70\) 0 0
\(71\) −2.59331 + 1.88415i −0.307770 + 0.223608i −0.730939 0.682443i \(-0.760918\pi\)
0.423169 + 0.906051i \(0.360918\pi\)
\(72\) −3.96312 + 2.87938i −0.467058 + 0.339338i
\(73\) −3.18047 9.78847i −0.372245 1.14565i −0.945318 0.326149i \(-0.894249\pi\)
0.573073 0.819504i \(-0.305751\pi\)
\(74\) −9.11816 −1.05996
\(75\) 0 0
\(76\) −4.62806 −0.530875
\(77\) −5.55402 17.0935i −0.632940 1.94799i
\(78\) −0.554272 + 0.402702i −0.0627589 + 0.0455970i
\(79\) 7.77877 5.65161i 0.875180 0.635856i −0.0567919 0.998386i \(-0.518087\pi\)
0.931972 + 0.362531i \(0.118087\pi\)
\(80\) 0 0
\(81\) −3.81318 2.77044i −0.423687 0.307827i
\(82\) 17.5457 1.93759
\(83\) 8.48125 + 6.16199i 0.930938 + 0.676366i 0.946222 0.323517i \(-0.104865\pi\)
−0.0152844 + 0.999883i \(0.504865\pi\)
\(84\) 0.840358 2.58636i 0.0916906 0.282195i
\(85\) 0 0
\(86\) 0.722211 + 2.22274i 0.0778780 + 0.239684i
\(87\) −0.906701 + 2.79054i −0.0972086 + 0.299177i
\(88\) −2.37480 + 7.30889i −0.253155 + 0.779130i
\(89\) 2.24293 + 6.90303i 0.237750 + 0.731720i 0.996745 + 0.0806230i \(0.0256910\pi\)
−0.758994 + 0.651097i \(0.774309\pi\)
\(90\) 0 0
\(91\) 0.812846 2.50168i 0.0852094 0.262248i
\(92\) 3.32765 + 2.41768i 0.346932 + 0.252061i
\(93\) 2.48286 0.257461
\(94\) −1.25352 0.910739i −0.129291 0.0939356i
\(95\) 0 0
\(96\) −2.55412 + 1.85568i −0.260679 + 0.189394i
\(97\) 6.73079 4.89020i 0.683408 0.496525i −0.191079 0.981575i \(-0.561199\pi\)
0.874487 + 0.485050i \(0.161199\pi\)
\(98\) 7.32353 + 22.5395i 0.739788 + 2.27683i
\(99\) −9.76903 −0.981824
\(100\) 0 0
\(101\) −3.56513 −0.354744 −0.177372 0.984144i \(-0.556760\pi\)
−0.177372 + 0.984144i \(0.556760\pi\)
\(102\) 0.0859547 + 0.264541i 0.00851078 + 0.0261935i
\(103\) 0.323059 0.234716i 0.0318320 0.0231273i −0.571756 0.820424i \(-0.693737\pi\)
0.603587 + 0.797297i \(0.293737\pi\)
\(104\) −0.909920 + 0.661095i −0.0892250 + 0.0648257i
\(105\) 0 0
\(106\) −1.67675 1.21823i −0.162860 0.118325i
\(107\) −1.64372 −0.158904 −0.0794522 0.996839i \(-0.525317\pi\)
−0.0794522 + 0.996839i \(0.525317\pi\)
\(108\) −2.63344 1.91331i −0.253403 0.184108i
\(109\) 0.0231501 0.0712488i 0.00221738 0.00682440i −0.949942 0.312427i \(-0.898858\pi\)
0.952159 + 0.305603i \(0.0988580\pi\)
\(110\) 0 0
\(111\) 1.18896 + 3.65923i 0.112851 + 0.347319i
\(112\) 7.05449 21.7115i 0.666587 2.05154i
\(113\) 4.36729 13.4411i 0.410840 1.26444i −0.505079 0.863073i \(-0.668537\pi\)
0.915919 0.401363i \(-0.131463\pi\)
\(114\) 2.05088 + 6.31195i 0.192082 + 0.591168i
\(115\) 0 0
\(116\) 1.06438 3.27582i 0.0988251 0.304152i
\(117\) −1.15667 0.840370i −0.106934 0.0776922i
\(118\) 7.58848 0.698576
\(119\) −0.863983 0.627721i −0.0792012 0.0575431i
\(120\) 0 0
\(121\) −3.49946 + 2.54251i −0.318133 + 0.231137i
\(122\) 15.8782 11.5362i 1.43754 1.04443i
\(123\) −2.28786 7.04130i −0.206289 0.634892i
\(124\) −2.91464 −0.261742
\(125\) 0 0
\(126\) 19.2864 1.71817
\(127\) 3.65025 + 11.2343i 0.323907 + 0.996883i 0.971932 + 0.235264i \(0.0755954\pi\)
−0.648025 + 0.761619i \(0.724405\pi\)
\(128\) −10.5456 + 7.66184i −0.932109 + 0.677217i
\(129\) 0.797840 0.579665i 0.0702459 0.0510366i
\(130\) 0 0
\(131\) 13.5407 + 9.83791i 1.18306 + 0.859542i 0.992513 0.122136i \(-0.0389744\pi\)
0.190545 + 0.981678i \(0.438974\pi\)
\(132\) −2.31885 −0.201830
\(133\) −20.6146 14.9774i −1.78751 1.29871i
\(134\) −1.53692 + 4.73017i −0.132770 + 0.408624i
\(135\) 0 0
\(136\) 0.141107 + 0.434284i 0.0120999 + 0.0372395i
\(137\) 3.22062 9.91204i 0.275156 0.846843i −0.714022 0.700123i \(-0.753128\pi\)
0.989178 0.146720i \(-0.0468715\pi\)
\(138\) 1.82272 5.60976i 0.155160 0.477535i
\(139\) 2.05803 + 6.33397i 0.174560 + 0.537241i 0.999613 0.0278147i \(-0.00885484\pi\)
−0.825053 + 0.565055i \(0.808855\pi\)
\(140\) 0 0
\(141\) −0.202038 + 0.621811i −0.0170147 + 0.0523659i
\(142\) −4.36561 3.17180i −0.366354 0.266172i
\(143\) −2.24294 −0.187564
\(144\) −10.0385 7.29336i −0.836538 0.607780i
\(145\) 0 0
\(146\) 14.0170 10.1840i 1.16006 0.842831i
\(147\) 8.09044 5.87805i 0.667289 0.484814i
\(148\) −1.39572 4.29558i −0.114727 0.353095i
\(149\) −12.0316 −0.985667 −0.492834 0.870124i \(-0.664039\pi\)
−0.492834 + 0.870124i \(0.664039\pi\)
\(150\) 0 0
\(151\) −1.54218 −0.125501 −0.0627505 0.998029i \(-0.519987\pi\)
−0.0627505 + 0.998029i \(0.519987\pi\)
\(152\) 3.36682 + 10.3620i 0.273085 + 0.840469i
\(153\) −0.469603 + 0.341187i −0.0379652 + 0.0275833i
\(154\) 24.4778 17.7842i 1.97248 1.43309i
\(155\) 0 0
\(156\) −0.274556 0.199477i −0.0219821 0.0159709i
\(157\) −9.82482 −0.784106 −0.392053 0.919943i \(-0.628235\pi\)
−0.392053 + 0.919943i \(0.628235\pi\)
\(158\) 13.0949 + 9.51397i 1.04177 + 0.756891i
\(159\) −0.270252 + 0.831751i −0.0214324 + 0.0659622i
\(160\) 0 0
\(161\) 6.99812 + 21.5380i 0.551529 + 1.69743i
\(162\) 2.45190 7.54617i 0.192639 0.592883i
\(163\) −1.72465 + 5.30792i −0.135085 + 0.415748i −0.995603 0.0936712i \(-0.970140\pi\)
0.860518 + 0.509419i \(0.170140\pi\)
\(164\) 2.68572 + 8.26580i 0.209720 + 0.645450i
\(165\) 0 0
\(166\) −5.45349 + 16.7841i −0.423273 + 1.30270i
\(167\) 17.6857 + 12.8494i 1.36856 + 0.994318i 0.997848 + 0.0655703i \(0.0208867\pi\)
0.370713 + 0.928747i \(0.379113\pi\)
\(168\) −6.40207 −0.493930
\(169\) 10.2517 + 7.44826i 0.788589 + 0.572943i
\(170\) 0 0
\(171\) −11.2047 + 8.14071i −0.856847 + 0.622536i
\(172\) −0.936586 + 0.680470i −0.0714140 + 0.0518853i
\(173\) 7.24291 + 22.2914i 0.550668 + 1.69478i 0.707117 + 0.707096i \(0.249995\pi\)
−0.156449 + 0.987686i \(0.550005\pi\)
\(174\) −4.93937 −0.374453
\(175\) 0 0
\(176\) −19.4659 −1.46730
\(177\) −0.989495 3.04535i −0.0743750 0.228903i
\(178\) −9.88511 + 7.18195i −0.740920 + 0.538310i
\(179\) 5.11196 3.71406i 0.382086 0.277602i −0.380119 0.924938i \(-0.624117\pi\)
0.762205 + 0.647336i \(0.224117\pi\)
\(180\) 0 0
\(181\) 10.7904 + 7.83972i 0.802047 + 0.582722i 0.911514 0.411269i \(-0.134914\pi\)
−0.109467 + 0.993990i \(0.534914\pi\)
\(182\) 4.42808 0.328231
\(183\) −6.70003 4.86786i −0.495280 0.359842i
\(184\) 2.99227 9.20926i 0.220593 0.678916i
\(185\) 0 0
\(186\) 1.29159 + 3.97511i 0.0947040 + 0.291469i
\(187\) −0.281398 + 0.866054i −0.0205779 + 0.0633322i
\(188\) 0.237174 0.729945i 0.0172977 0.0532367i
\(189\) −5.53817 17.0447i −0.402843 1.23982i
\(190\) 0 0
\(191\) −0.859323 + 2.64472i −0.0621784 + 0.191365i −0.977320 0.211766i \(-0.932078\pi\)
0.915142 + 0.403132i \(0.132078\pi\)
\(192\) 1.41542 + 1.02836i 0.102149 + 0.0742157i
\(193\) 22.5667 1.62438 0.812192 0.583391i \(-0.198274\pi\)
0.812192 + 0.583391i \(0.198274\pi\)
\(194\) 11.3307 + 8.23222i 0.813495 + 0.591039i
\(195\) 0 0
\(196\) −9.49739 + 6.90026i −0.678385 + 0.492876i
\(197\) −1.02892 + 0.747558i −0.0733079 + 0.0532613i −0.623836 0.781556i \(-0.714427\pi\)
0.550528 + 0.834817i \(0.314427\pi\)
\(198\) −5.08187 15.6404i −0.361153 1.11151i
\(199\) −8.62648 −0.611515 −0.305757 0.952109i \(-0.598910\pi\)
−0.305757 + 0.952109i \(0.598910\pi\)
\(200\) 0 0
\(201\) 2.09868 0.148030
\(202\) −1.85459 5.70784i −0.130488 0.401602i
\(203\) 15.3423 11.1468i 1.07682 0.782354i
\(204\) −0.111469 + 0.0809868i −0.00780438 + 0.00567021i
\(205\) 0 0
\(206\) 0.543841 + 0.395124i 0.0378912 + 0.0275296i
\(207\) 12.3091 0.855538
\(208\) −2.30480 1.67453i −0.159809 0.116108i
\(209\) −6.71415 + 20.6640i −0.464428 + 1.42936i
\(210\) 0 0
\(211\) −6.49912 20.0022i −0.447418 1.37701i −0.879810 0.475325i \(-0.842330\pi\)
0.432392 0.901686i \(-0.357670\pi\)
\(212\) 0.317250 0.976395i 0.0217888 0.0670591i
\(213\) −0.703633 + 2.16556i −0.0482121 + 0.148382i
\(214\) −0.855067 2.63162i −0.0584511 0.179894i
\(215\) 0 0
\(216\) −2.36803 + 7.28803i −0.161124 + 0.495888i
\(217\) −12.9826 9.43239i −0.881315 0.640313i
\(218\) 0.126113 0.00854148
\(219\) −5.91470 4.29728i −0.399678 0.290383i
\(220\) 0 0
\(221\) −0.107819 + 0.0783354i −0.00725272 + 0.00526941i
\(222\) −5.24000 + 3.80708i −0.351686 + 0.255515i
\(223\) −1.95774 6.02530i −0.131100 0.403484i 0.863863 0.503726i \(-0.168038\pi\)
−0.994963 + 0.100243i \(0.968038\pi\)
\(224\) 20.4049 1.36336
\(225\) 0 0
\(226\) 23.7914 1.58258
\(227\) −3.48028 10.7112i −0.230994 0.710926i −0.997628 0.0688416i \(-0.978070\pi\)
0.766634 0.642085i \(-0.221930\pi\)
\(228\) −2.65964 + 1.93234i −0.176139 + 0.127973i
\(229\) −12.1683 + 8.84079i −0.804104 + 0.584216i −0.912115 0.409934i \(-0.865552\pi\)
0.108011 + 0.994150i \(0.465552\pi\)
\(230\) 0 0
\(231\) −10.3288 7.50431i −0.679585 0.493747i
\(232\) −8.10872 −0.532363
\(233\) 6.33257 + 4.60088i 0.414861 + 0.301414i 0.775567 0.631266i \(-0.217464\pi\)
−0.360706 + 0.932680i \(0.617464\pi\)
\(234\) 0.743745 2.28901i 0.0486201 0.149637i
\(235\) 0 0
\(236\) 1.16157 + 3.57495i 0.0756119 + 0.232709i
\(237\) 2.11058 6.49570i 0.137097 0.421941i
\(238\) 0.555546 1.70979i 0.0360107 0.110830i
\(239\) 2.70046 + 8.31115i 0.174678 + 0.537603i 0.999619 0.0276159i \(-0.00879153\pi\)
−0.824941 + 0.565219i \(0.808792\pi\)
\(240\) 0 0
\(241\) −0.185686 + 0.571482i −0.0119611 + 0.0368124i −0.956859 0.290553i \(-0.906161\pi\)
0.944898 + 0.327365i \(0.106161\pi\)
\(242\) −5.89102 4.28008i −0.378689 0.275134i
\(243\) −15.0589 −0.966031
\(244\) 7.86518 + 5.71439i 0.503517 + 0.365826i
\(245\) 0 0
\(246\) 10.0831 7.32580i 0.642875 0.467076i
\(247\) −2.57257 + 1.86908i −0.163689 + 0.118927i
\(248\) 2.12034 + 6.52573i 0.134642 + 0.414384i
\(249\) 7.44678 0.471921
\(250\) 0 0
\(251\) −14.1908 −0.895712 −0.447856 0.894106i \(-0.647812\pi\)
−0.447856 + 0.894106i \(0.647812\pi\)
\(252\) 2.95217 + 9.08584i 0.185969 + 0.572354i
\(253\) 15.6224 11.3503i 0.982171 0.713589i
\(254\) −16.0875 + 11.6882i −1.00942 + 0.733384i
\(255\) 0 0
\(256\) −13.7674 10.0026i −0.860463 0.625163i
\(257\) −17.6859 −1.10322 −0.551609 0.834103i \(-0.685986\pi\)
−0.551609 + 0.834103i \(0.685986\pi\)
\(258\) 1.34309 + 0.975813i 0.0836173 + 0.0607515i
\(259\) 7.68452 23.6505i 0.477493 1.46957i
\(260\) 0 0
\(261\) −3.18523 9.80313i −0.197161 0.606799i
\(262\) −8.70676 + 26.7967i −0.537906 + 1.65550i
\(263\) −7.51987 + 23.1438i −0.463695 + 1.42711i 0.396922 + 0.917852i \(0.370078\pi\)
−0.860617 + 0.509254i \(0.829922\pi\)
\(264\) 1.68692 + 5.19180i 0.103823 + 0.319533i
\(265\) 0 0
\(266\) 13.2553 40.7957i 0.812736 2.50134i
\(267\) 4.17117 + 3.03053i 0.255271 + 0.185466i
\(268\) −2.46365 −0.150491
\(269\) −24.2558 17.6229i −1.47890 1.07449i −0.977908 0.209037i \(-0.932967\pi\)
−0.500996 0.865449i \(-0.667033\pi\)
\(270\) 0 0
\(271\) 22.4083 16.2806i 1.36121 0.988974i 0.362838 0.931852i \(-0.381808\pi\)
0.998367 0.0571213i \(-0.0181922\pi\)
\(272\) −0.935738 + 0.679854i −0.0567375 + 0.0412222i
\(273\) −0.577397 1.77705i −0.0349457 0.107552i
\(274\) 17.5447 1.05992
\(275\) 0 0
\(276\) 2.92177 0.175870
\(277\) 0.708908 + 2.18179i 0.0425941 + 0.131091i 0.970092 0.242737i \(-0.0780451\pi\)
−0.927498 + 0.373828i \(0.878045\pi\)
\(278\) −9.07021 + 6.58990i −0.543995 + 0.395236i
\(279\) −7.05646 + 5.12682i −0.422459 + 0.306934i
\(280\) 0 0
\(281\) 1.30922 + 0.951204i 0.0781015 + 0.0567441i 0.626151 0.779702i \(-0.284629\pi\)
−0.548049 + 0.836446i \(0.684629\pi\)
\(282\) −1.10063 −0.0655416
\(283\) 10.5109 + 7.63662i 0.624808 + 0.453950i 0.854598 0.519291i \(-0.173804\pi\)
−0.229789 + 0.973240i \(0.573804\pi\)
\(284\) 0.825997 2.54216i 0.0490139 0.150849i
\(285\) 0 0
\(286\) −1.16678 3.59098i −0.0689932 0.212339i
\(287\) −14.7870 + 45.5096i −0.872848 + 2.68635i
\(288\) 3.42723 10.5479i 0.201951 0.621542i
\(289\) −5.23657 16.1165i −0.308033 0.948029i
\(290\) 0 0
\(291\) 1.82624 5.62058i 0.107056 0.329484i
\(292\) 6.94328 + 5.04459i 0.406325 + 0.295212i
\(293\) −11.7009 −0.683572 −0.341786 0.939778i \(-0.611032\pi\)
−0.341786 + 0.939778i \(0.611032\pi\)
\(294\) 13.6195 + 9.89517i 0.794308 + 0.577098i
\(295\) 0 0
\(296\) −8.60224 + 6.24990i −0.499995 + 0.363268i
\(297\) −12.3633 + 8.98244i −0.717389 + 0.521214i
\(298\) −6.25887 19.2628i −0.362566 1.11586i
\(299\) 2.82612 0.163439
\(300\) 0 0
\(301\) −6.37395 −0.367388
\(302\) −0.802247 2.46906i −0.0461641 0.142079i
\(303\) −2.04880 + 1.48854i −0.117701 + 0.0855144i
\(304\) −22.3267 + 16.2213i −1.28052 + 0.930355i
\(305\) 0 0
\(306\) −0.790535 0.574358i −0.0451919 0.0328338i
\(307\) 26.5673 1.51628 0.758138 0.652094i \(-0.226109\pi\)
0.758138 + 0.652094i \(0.226109\pi\)
\(308\) 12.1250 + 8.80933i 0.690886 + 0.501958i
\(309\) 0.0876543 0.269772i 0.00498648 0.0153468i
\(310\) 0 0
\(311\) −4.16895 12.8307i −0.236399 0.727563i −0.996933 0.0782636i \(-0.975062\pi\)
0.760533 0.649299i \(-0.224938\pi\)
\(312\) −0.246885 + 0.759833i −0.0139771 + 0.0430171i
\(313\) 5.25155 16.1626i 0.296835 0.913564i −0.685764 0.727824i \(-0.740532\pi\)
0.982599 0.185740i \(-0.0594683\pi\)
\(314\) −5.11089 15.7297i −0.288424 0.887679i
\(315\) 0 0
\(316\) −2.47762 + 7.62532i −0.139377 + 0.428958i
\(317\) −13.5882 9.87237i −0.763187 0.554488i 0.136699 0.990613i \(-0.456351\pi\)
−0.899886 + 0.436125i \(0.856351\pi\)
\(318\) −1.47224 −0.0825588
\(319\) −13.0822 9.50479i −0.732464 0.532166i
\(320\) 0 0
\(321\) −0.944608 + 0.686298i −0.0527229 + 0.0383054i
\(322\) −30.8423 + 22.4082i −1.71877 + 1.24876i
\(323\) 0.398945 + 1.22783i 0.0221979 + 0.0683182i
\(324\) 3.93033 0.218351
\(325\) 0 0
\(326\) −9.39524 −0.520354
\(327\) −0.0164445 0.0506109i −0.000909382 0.00279879i
\(328\) 16.5529 12.0264i 0.913982 0.664047i
\(329\) 3.41869 2.48383i 0.188479 0.136938i
\(330\) 0 0
\(331\) −10.3832 7.54386i −0.570714 0.414648i 0.264650 0.964344i \(-0.414743\pi\)
−0.835365 + 0.549696i \(0.814743\pi\)
\(332\) −8.74180 −0.479768
\(333\) −10.9350 7.94473i −0.599233 0.435368i
\(334\) −11.3720 + 34.9994i −0.622249 + 1.91508i
\(335\) 0 0
\(336\) −5.01109 15.4225i −0.273377 0.841369i
\(337\) 6.56274 20.1980i 0.357495 1.10026i −0.597053 0.802202i \(-0.703662\pi\)
0.954548 0.298056i \(-0.0963382\pi\)
\(338\) −6.59187 + 20.2877i −0.358550 + 1.10350i
\(339\) −3.10226 9.54778i −0.168492 0.518564i
\(340\) 0 0
\(341\) −4.22841 + 13.0137i −0.228981 + 0.704731i
\(342\) −18.8622 13.7042i −1.01995 0.741036i
\(343\) −32.4969 −1.75467
\(344\) 2.20489 + 1.60194i 0.118879 + 0.0863710i
\(345\) 0 0
\(346\) −31.9211 + 23.1921i −1.71609 + 1.24681i
\(347\) −23.1606 + 16.8272i −1.24333 + 0.903331i −0.997815 0.0660623i \(-0.978956\pi\)
−0.245513 + 0.969393i \(0.578956\pi\)
\(348\) −0.756071 2.32695i −0.0405297 0.124738i
\(349\) 19.9124 1.06588 0.532942 0.846152i \(-0.321086\pi\)
0.532942 + 0.846152i \(0.321086\pi\)
\(350\) 0 0
\(351\) −2.23654 −0.119377
\(352\) −5.37660 16.5475i −0.286574 0.881984i
\(353\) −19.9759 + 14.5133i −1.06321 + 0.772467i −0.974679 0.223607i \(-0.928217\pi\)
−0.0885298 + 0.996074i \(0.528217\pi\)
\(354\) 4.36093 3.16840i 0.231781 0.168399i
\(355\) 0 0
\(356\) −4.89655 3.55755i −0.259516 0.188550i
\(357\) −0.758602 −0.0401495
\(358\) 8.60552 + 6.25228i 0.454816 + 0.330443i
\(359\) 6.64419 20.4487i 0.350667 1.07924i −0.607812 0.794081i \(-0.707953\pi\)
0.958479 0.285162i \(-0.0920473\pi\)
\(360\) 0 0
\(361\) 3.64751 + 11.2259i 0.191974 + 0.590835i
\(362\) −6.93832 + 21.3539i −0.364670 + 1.12234i
\(363\) −0.949494 + 2.92224i −0.0498355 + 0.153378i
\(364\) 0.677808 + 2.08608i 0.0355268 + 0.109340i
\(365\) 0 0
\(366\) 4.30816 13.2591i 0.225191 0.693066i
\(367\) 0.925379 + 0.672327i 0.0483044 + 0.0350952i 0.611675 0.791109i \(-0.290496\pi\)
−0.563371 + 0.826204i \(0.690496\pi\)
\(368\) 24.5272 1.27857
\(369\) 21.0417 + 15.2877i 1.09539 + 0.795845i
\(370\) 0 0
\(371\) 4.57294 3.32244i 0.237415 0.172492i
\(372\) −1.67498 + 1.21694i −0.0868435 + 0.0630955i
\(373\) 3.56590 + 10.9747i 0.184636 + 0.568250i 0.999942 0.0107800i \(-0.00343146\pi\)
−0.815306 + 0.579030i \(0.803431\pi\)
\(374\) −1.53295 −0.0792671
\(375\) 0 0
\(376\) −1.80685 −0.0931812
\(377\) −0.731318 2.25077i −0.0376648 0.115920i
\(378\) 24.4080 17.7334i 1.25541 0.912110i
\(379\) −17.0745 + 12.4054i −0.877059 + 0.637221i −0.932472 0.361243i \(-0.882352\pi\)
0.0554129 + 0.998464i \(0.482352\pi\)
\(380\) 0 0
\(381\) 6.78835 + 4.93202i 0.347778 + 0.252675i
\(382\) −4.68127 −0.239515
\(383\) 0.694241 + 0.504395i 0.0354740 + 0.0257734i 0.605381 0.795936i \(-0.293021\pi\)
−0.569907 + 0.821709i \(0.693021\pi\)
\(384\) −2.86130 + 8.80617i −0.146015 + 0.449388i
\(385\) 0 0
\(386\) 11.7392 + 36.1296i 0.597511 + 1.83895i
\(387\) −1.07057 + 3.29489i −0.0544204 + 0.167489i
\(388\) −2.14382 + 6.59801i −0.108836 + 0.334963i
\(389\) −10.4864 32.2738i −0.531681 1.63634i −0.750714 0.660627i \(-0.770290\pi\)
0.219034 0.975717i \(-0.429710\pi\)
\(390\) 0 0
\(391\) 0.354564 1.09124i 0.0179311 0.0551862i
\(392\) 22.3585 + 16.2444i 1.12927 + 0.820466i
\(393\) 11.8891 0.599728
\(394\) −1.73210 1.25845i −0.0872621 0.0633996i
\(395\) 0 0
\(396\) 6.59034 4.78816i 0.331177 0.240614i
\(397\) 21.7048 15.7695i 1.08933 0.791446i 0.110046 0.993926i \(-0.464900\pi\)
0.979286 + 0.202480i \(0.0649001\pi\)
\(398\) −4.48751 13.8112i −0.224939 0.692290i
\(399\) −18.1002 −0.906145
\(400\) 0 0
\(401\) 3.79757 0.189642 0.0948208 0.995494i \(-0.469772\pi\)
0.0948208 + 0.995494i \(0.469772\pi\)
\(402\) 1.09174 + 3.36003i 0.0544510 + 0.167583i
\(403\) −1.62014 + 1.17710i −0.0807049 + 0.0586355i
\(404\) 2.40509 1.74740i 0.119658 0.0869365i
\(405\) 0 0
\(406\) 25.8274 + 18.7647i 1.28179 + 0.931276i
\(407\) −21.2044 −1.05106
\(408\) 0.262417 + 0.190657i 0.0129916 + 0.00943892i
\(409\) −4.38043 + 13.4816i −0.216598 + 0.666621i 0.782438 + 0.622728i \(0.213976\pi\)
−0.999036 + 0.0438924i \(0.986024\pi\)
\(410\) 0 0
\(411\) −2.28773 7.04092i −0.112846 0.347303i
\(412\) −0.102898 + 0.316686i −0.00506940 + 0.0156020i
\(413\) −6.39535 + 19.6829i −0.314695 + 0.968531i
\(414\) 6.40320 + 19.7070i 0.314700 + 0.968547i
\(415\) 0 0
\(416\) 0.786879 2.42177i 0.0385799 0.118737i
\(417\) 3.82731 + 2.78071i 0.187424 + 0.136172i
\(418\) −36.5762 −1.78900
\(419\) 15.8542 + 11.5187i 0.774528 + 0.562727i 0.903332 0.428943i \(-0.141114\pi\)
−0.128804 + 0.991670i \(0.541114\pi\)
\(420\) 0 0
\(421\) 20.8597 15.1555i 1.01664 0.738632i 0.0510485 0.998696i \(-0.483744\pi\)
0.965591 + 0.260064i \(0.0837437\pi\)
\(422\) 28.6431 20.8104i 1.39432 1.01304i
\(423\) −0.709759 2.18441i −0.0345096 0.106210i
\(424\) −2.41689 −0.117375
\(425\) 0 0
\(426\) −3.83313 −0.185716
\(427\) 16.5406 + 50.9068i 0.800457 + 2.46355i
\(428\) 1.10888 0.805647i 0.0535996 0.0389424i
\(429\) −1.28896 + 0.936488i −0.0622318 + 0.0452141i
\(430\) 0 0
\(431\) −7.62525 5.54007i −0.367296 0.266856i 0.388793 0.921325i \(-0.372892\pi\)
−0.756089 + 0.654469i \(0.772892\pi\)
\(432\) −19.4103 −0.933881
\(433\) 1.41708 + 1.02957i 0.0681006 + 0.0494780i 0.621315 0.783561i \(-0.286599\pi\)
−0.553214 + 0.833039i \(0.686599\pi\)
\(434\) 8.34787 25.6921i 0.400710 1.23326i
\(435\) 0 0
\(436\) 0.0193042 + 0.0594123i 0.000924504 + 0.00284533i
\(437\) 8.45989 26.0369i 0.404691 1.24551i
\(438\) 3.80318 11.7050i 0.181723 0.559286i
\(439\) 8.67814 + 26.7086i 0.414185 + 1.27473i 0.912978 + 0.408009i \(0.133777\pi\)
−0.498793 + 0.866721i \(0.666223\pi\)
\(440\) 0 0
\(441\) −10.8561 + 33.4116i −0.516957 + 1.59103i
\(442\) −0.181504 0.131871i −0.00863328 0.00627244i
\(443\) 29.9110 1.42111 0.710557 0.703640i \(-0.248443\pi\)
0.710557 + 0.703640i \(0.248443\pi\)
\(444\) −2.59561 1.88582i −0.123182 0.0894972i
\(445\) 0 0
\(446\) 8.62819 6.26875i 0.408557 0.296834i
\(447\) −6.91429 + 5.02352i −0.327035 + 0.237605i
\(448\) −3.49431 10.7544i −0.165090 0.508096i
\(449\) 6.29974 0.297303 0.148652 0.988890i \(-0.452507\pi\)
0.148652 + 0.988890i \(0.452507\pi\)
\(450\) 0 0
\(451\) 40.8026 1.92132
\(452\) 3.64175 + 11.2082i 0.171294 + 0.527188i
\(453\) −0.886258 + 0.643904i −0.0416400 + 0.0302532i
\(454\) 15.3384 11.1440i 0.719865 0.523012i
\(455\) 0 0
\(456\) 6.26126 + 4.54907i 0.293210 + 0.213030i
\(457\) −19.1809 −0.897243 −0.448622 0.893722i \(-0.648085\pi\)
−0.448622 + 0.893722i \(0.648085\pi\)
\(458\) −20.4842 14.8827i −0.957166 0.695422i
\(459\) −0.280595 + 0.863583i −0.0130971 + 0.0403086i
\(460\) 0 0
\(461\) 2.18509 + 6.72502i 0.101770 + 0.313215i 0.988959 0.148191i \(-0.0473450\pi\)
−0.887189 + 0.461406i \(0.847345\pi\)
\(462\) 6.64147 20.4403i 0.308989 0.950971i
\(463\) 2.97225 9.14766i 0.138132 0.425128i −0.857932 0.513764i \(-0.828251\pi\)
0.996064 + 0.0886360i \(0.0282508\pi\)
\(464\) −6.34693 19.5339i −0.294649 0.906836i
\(465\) 0 0
\(466\) −4.07188 + 12.5320i −0.188626 + 0.580531i
\(467\) −15.5509 11.2984i −0.719611 0.522828i 0.166649 0.986016i \(-0.446705\pi\)
−0.886260 + 0.463188i \(0.846705\pi\)
\(468\) 1.19220 0.0551096
\(469\) −10.9737 7.97289i −0.506720 0.368154i
\(470\) 0 0
\(471\) −5.64610 + 4.10213i −0.260159 + 0.189016i
\(472\) 7.15912 5.20140i 0.329525 0.239414i
\(473\) 1.67951 + 5.16900i 0.0772239 + 0.237671i
\(474\) 11.4977 0.528105
\(475\) 0 0
\(476\) 0.890525 0.0408172
\(477\) −0.949393 2.92193i −0.0434697 0.133786i
\(478\) −11.9015 + 8.64696i −0.544363 + 0.395503i
\(479\) 30.7423 22.3356i 1.40465 1.02054i 0.410579 0.911825i \(-0.365327\pi\)
0.994073 0.108714i \(-0.0346734\pi\)
\(480\) 0 0
\(481\) −2.51063 1.82408i −0.114475 0.0831710i
\(482\) −1.01155 −0.0460747
\(483\) 13.0144 + 9.45549i 0.592174 + 0.430240i
\(484\) 1.11461 3.43043i 0.0506642 0.155928i
\(485\) 0 0
\(486\) −7.83369 24.1096i −0.355344 1.09364i
\(487\) 5.17572 15.9292i 0.234534 0.721823i −0.762648 0.646813i \(-0.776101\pi\)
0.997183 0.0750094i \(-0.0238987\pi\)
\(488\) 7.07248 21.7669i 0.320156 0.985339i
\(489\) 1.22509 + 3.77043i 0.0554003 + 0.170505i
\(490\) 0 0
\(491\) −2.76587 + 8.51248i −0.124822 + 0.384163i −0.993869 0.110567i \(-0.964733\pi\)
0.869047 + 0.494730i \(0.164733\pi\)
\(492\) 4.99462 + 3.62880i 0.225175 + 0.163599i
\(493\) −0.960829 −0.0432736
\(494\) −4.33069 3.14643i −0.194847 0.141565i
\(495\) 0 0
\(496\) −14.0608 + 10.2158i −0.631348 + 0.458701i
\(497\) 11.9062 8.65034i 0.534065 0.388021i
\(498\) 3.87383 + 11.9224i 0.173591 + 0.534257i
\(499\) −36.3310 −1.62640 −0.813200 0.581985i \(-0.802276\pi\)
−0.813200 + 0.581985i \(0.802276\pi\)
\(500\) 0 0
\(501\) 15.5286 0.693765
\(502\) −7.38206 22.7197i −0.329478 1.01403i
\(503\) 9.94645 7.22652i 0.443490 0.322215i −0.343530 0.939142i \(-0.611623\pi\)
0.787020 + 0.616927i \(0.211623\pi\)
\(504\) 18.1951 13.2195i 0.810475 0.588844i
\(505\) 0 0
\(506\) 26.2989 + 19.1073i 1.16913 + 0.849422i
\(507\) 9.00125 0.399759
\(508\) −7.96886 5.78971i −0.353561 0.256877i
\(509\) −9.61945 + 29.6056i −0.426375 + 1.31225i 0.475297 + 0.879825i \(0.342341\pi\)
−0.901672 + 0.432421i \(0.857659\pi\)
\(510\) 0 0
\(511\) 14.6018 + 44.9399i 0.645948 + 1.98802i
\(512\) 0.796386 2.45102i 0.0351956 0.108321i
\(513\) −6.69499 + 20.6051i −0.295591 + 0.909736i
\(514\) −9.20026 28.3155i −0.405806 1.24894i
\(515\) 0 0
\(516\) −0.254120 + 0.782101i −0.0111870 + 0.0344301i
\(517\) −2.91508 2.11793i −0.128205 0.0931466i
\(518\) 41.8624 1.83933
\(519\) 13.4696 + 9.78624i 0.591250 + 0.429568i
\(520\) 0 0
\(521\) −13.1198 + 9.53206i −0.574787 + 0.417607i −0.836841 0.547446i \(-0.815600\pi\)
0.262054 + 0.965053i \(0.415600\pi\)
\(522\) 14.0380 10.1992i 0.614428 0.446408i
\(523\) 9.45381 + 29.0958i 0.413386 + 1.27227i 0.913686 + 0.406420i \(0.133223\pi\)
−0.500300 + 0.865852i \(0.666777\pi\)
\(524\) −13.9567 −0.609701
\(525\) 0 0
\(526\) −40.9655 −1.78618
\(527\) 0.251246 + 0.773255i 0.0109444 + 0.0336835i
\(528\) −11.1866 + 8.12755i −0.486835 + 0.353706i
\(529\) −1.07695 + 0.782451i −0.0468240 + 0.0340196i
\(530\) 0 0
\(531\) 9.10051 + 6.61191i 0.394928 + 0.286932i
\(532\) 21.2479 0.921214
\(533\) 4.83110 + 3.51000i 0.209258 + 0.152035i
\(534\) −2.68208 + 8.25461i −0.116065 + 0.357212i
\(535\) 0 0
\(536\) 1.79225 + 5.51599i 0.0774135 + 0.238254i
\(537\) 1.38701 4.26877i 0.0598538 0.184211i
\(538\) 15.5966 48.0015i 0.672419 2.06949i
\(539\) 17.0310 + 52.4159i 0.733575 + 2.25771i
\(540\) 0 0
\(541\) 5.65545 17.4057i 0.243147 0.748329i −0.752789 0.658262i \(-0.771292\pi\)
0.995936 0.0900672i \(-0.0287082\pi\)
\(542\) 37.7223 + 27.4069i 1.62031 + 1.17723i
\(543\) 9.47432 0.406582
\(544\) −0.836383 0.607668i −0.0358596 0.0260536i
\(545\) 0 0
\(546\) 2.54472 1.84885i 0.108904 0.0791233i
\(547\) −5.30394 + 3.85354i −0.226780 + 0.164765i −0.695373 0.718649i \(-0.744761\pi\)
0.468593 + 0.883414i \(0.344761\pi\)
\(548\) 2.68558 + 8.26536i 0.114722 + 0.353078i
\(549\) 29.0935 1.24168
\(550\) 0 0
\(551\) −22.9254 −0.976653
\(552\) −2.12553 6.54171i −0.0904686 0.278434i
\(553\) −35.7131 + 25.9471i −1.51868 + 1.10338i
\(554\) −3.12432 + 2.26995i −0.132739 + 0.0964409i
\(555\) 0 0
\(556\) −4.49289 3.26428i −0.190541 0.138436i
\(557\) 35.5383 1.50581 0.752904 0.658131i \(-0.228653\pi\)
0.752904 + 0.658131i \(0.228653\pi\)
\(558\) −11.8789 8.63054i −0.502875 0.365360i
\(559\) −0.245800 + 0.756496i −0.0103963 + 0.0319964i
\(560\) 0 0
\(561\) 0.199888 + 0.615193i 0.00843930 + 0.0259735i
\(562\) −0.841836 + 2.59090i −0.0355107 + 0.109291i
\(563\) −11.8193 + 36.3760i −0.498123 + 1.53306i 0.313911 + 0.949453i \(0.398361\pi\)
−0.812033 + 0.583611i \(0.801639\pi\)
\(564\) −0.168474 0.518509i −0.00709403 0.0218332i
\(565\) 0 0
\(566\) −6.75857 + 20.8007i −0.284084 + 0.874320i
\(567\) 17.5067 + 12.7194i 0.735213 + 0.534164i
\(568\) −6.29266 −0.264034
\(569\) −6.11534 4.44305i −0.256368 0.186262i 0.452176 0.891929i \(-0.350648\pi\)
−0.708544 + 0.705666i \(0.750648\pi\)
\(570\) 0 0
\(571\) −18.6286 + 13.5345i −0.779583 + 0.566400i −0.904854 0.425723i \(-0.860020\pi\)
0.125271 + 0.992123i \(0.460020\pi\)
\(572\) 1.51312 1.09935i 0.0632667 0.0459659i
\(573\) 0.610412 + 1.87865i 0.0255003 + 0.0784819i
\(574\) −80.5540 −3.36226
\(575\) 0 0
\(576\) −6.14617 −0.256090
\(577\) −6.89626 21.2245i −0.287095 0.883587i −0.985763 0.168141i \(-0.946223\pi\)
0.698668 0.715446i \(-0.253777\pi\)
\(578\) 23.0787 16.7677i 0.959949 0.697444i
\(579\) 12.9685 9.42220i 0.538954 0.391573i
\(580\) 0 0
\(581\) −38.9383 28.2903i −1.61543 1.17368i
\(582\) 9.94866 0.412385
\(583\) −3.89930 2.83301i −0.161493 0.117331i
\(584\) 6.24349 19.2155i 0.258358 0.795143i
\(585\) 0 0
\(586\) −6.08682 18.7333i −0.251444 0.773866i
\(587\) 6.51365 20.0470i 0.268847 0.827426i −0.721935 0.691961i \(-0.756747\pi\)
0.990782 0.135465i \(-0.0432529\pi\)
\(588\) −2.57689 + 7.93085i −0.106269 + 0.327063i
\(589\) 5.99472 + 18.4499i 0.247008 + 0.760213i
\(590\) 0 0
\(591\) −0.279174 + 0.859209i −0.0114837 + 0.0353431i
\(592\) −21.7892 15.8308i −0.895530 0.650641i
\(593\) −34.3547 −1.41078 −0.705390 0.708819i \(-0.749228\pi\)
−0.705390 + 0.708819i \(0.749228\pi\)
\(594\) −20.8124 15.1211i −0.853945 0.620427i
\(595\) 0 0
\(596\) 8.11670 5.89713i 0.332473 0.241556i
\(597\) −4.95744 + 3.60179i −0.202895 + 0.147412i
\(598\) 1.47015 + 4.52467i 0.0601190 + 0.185027i
\(599\) 0.498231 0.0203572 0.0101786 0.999948i \(-0.496760\pi\)
0.0101786 + 0.999948i \(0.496760\pi\)
\(600\) 0 0
\(601\) 27.8635 1.13657 0.568287 0.822830i \(-0.307606\pi\)
0.568287 + 0.822830i \(0.307606\pi\)
\(602\) −3.31574 10.2048i −0.135140 0.415917i
\(603\) −5.96459 + 4.33353i −0.242897 + 0.176475i
\(604\) 1.04038 0.755880i 0.0423325 0.0307563i
\(605\) 0 0
\(606\) −3.44897 2.50582i −0.140105 0.101792i
\(607\) 14.1000 0.572303 0.286152 0.958184i \(-0.407624\pi\)
0.286152 + 0.958184i \(0.407624\pi\)
\(608\) −19.9561 14.4989i −0.809326 0.588010i
\(609\) 4.16276 12.8117i 0.168684 0.519155i
\(610\) 0 0
\(611\) −0.162958 0.501534i −0.00659258 0.0202899i
\(612\) 0.149573 0.460340i 0.00604615 0.0186081i
\(613\) 9.83468 30.2680i 0.397219 1.22251i −0.530001 0.847997i \(-0.677808\pi\)
0.927220 0.374518i \(-0.122192\pi\)
\(614\) 13.8204 + 42.5348i 0.557745 + 1.71656i
\(615\) 0 0
\(616\) 10.9030 33.5559i 0.439293 1.35200i
\(617\) −27.4793 19.9649i −1.10627 0.803755i −0.124201 0.992257i \(-0.539637\pi\)
−0.982073 + 0.188502i \(0.939637\pi\)
\(618\) 0.477508 0.0192082
\(619\) −0.912910 0.663268i −0.0366929 0.0266590i 0.569288 0.822138i \(-0.307219\pi\)
−0.605981 + 0.795479i \(0.707219\pi\)
\(620\) 0 0
\(621\) 15.5778 11.3179i 0.625116 0.454173i
\(622\) 18.3735 13.3491i 0.736710 0.535251i
\(623\) −10.2975 31.6925i −0.412562 1.26974i
\(624\) −2.02368 −0.0810119
\(625\) 0 0
\(626\) 28.6085 1.14343
\(627\) 4.76933 + 14.6785i 0.190469 + 0.586203i
\(628\) 6.62797 4.81550i 0.264485 0.192159i
\(629\) −1.01931 + 0.740571i −0.0406425 + 0.0295285i
\(630\) 0 0
\(631\) −26.5197 19.2677i −1.05573 0.767034i −0.0824380 0.996596i \(-0.526271\pi\)
−0.973294 + 0.229562i \(0.926271\pi\)
\(632\) 18.8751 0.750813
\(633\) −12.0864 8.78127i −0.480391 0.349024i
\(634\) 8.73726 26.8905i 0.347001 1.06796i
\(635\) 0 0
\(636\) −0.225355 0.693573i −0.00893593 0.0275020i
\(637\) −2.49252 + 7.67120i −0.0987574 + 0.303944i
\(638\) 8.41194 25.8893i 0.333032 1.02497i
\(639\) −2.47185 7.60758i −0.0977850 0.300951i
\(640\) 0 0
\(641\) 9.39802 28.9241i 0.371199 1.14243i −0.574808 0.818288i \(-0.694923\pi\)
0.946007 0.324146i \(-0.105077\pi\)
\(642\) −1.59016 1.15532i −0.0627587 0.0455969i
\(643\) −1.06932 −0.0421700 −0.0210850 0.999778i \(-0.506712\pi\)
−0.0210850 + 0.999778i \(0.506712\pi\)
\(644\) −15.2776 11.0998i −0.602022 0.437394i
\(645\) 0 0
\(646\) −1.75824 + 1.27744i −0.0691771 + 0.0502601i
\(647\) 24.7300 17.9674i 0.972237 0.706372i 0.0162768 0.999868i \(-0.494819\pi\)
0.955960 + 0.293496i \(0.0948187\pi\)
\(648\) −2.85923 8.79981i −0.112321 0.345689i
\(649\) 17.6471 0.692709
\(650\) 0 0
\(651\) −11.3991 −0.446765
\(652\) −1.43813 4.42611i −0.0563216 0.173340i
\(653\) −26.9808 + 19.6027i −1.05584 + 0.767114i −0.973315 0.229475i \(-0.926299\pi\)
−0.0825273 + 0.996589i \(0.526299\pi\)
\(654\) 0.0724745 0.0526558i 0.00283398 0.00205901i
\(655\) 0 0
\(656\) 41.9280 + 30.4624i 1.63701 + 1.18936i
\(657\) 25.6833 1.00200
\(658\) 5.75506 + 4.18130i 0.224356 + 0.163004i
\(659\) −3.12572 + 9.61998i −0.121761 + 0.374741i −0.993297 0.115590i \(-0.963124\pi\)
0.871536 + 0.490331i \(0.163124\pi\)
\(660\) 0 0
\(661\) −9.52955 29.3290i −0.370657 1.14076i −0.946362 0.323107i \(-0.895273\pi\)
0.575706 0.817657i \(-0.304727\pi\)
\(662\) 6.67648 20.5481i 0.259489 0.798624i
\(663\) −0.0292542 + 0.0900351i −0.00113614 + 0.00349667i
\(664\) 6.35948 + 19.5725i 0.246796 + 0.759558i
\(665\) 0 0
\(666\) 7.03125 21.6400i 0.272455 0.838532i
\(667\) 16.4837 + 11.9761i 0.638251 + 0.463717i
\(668\) −18.2290 −0.705302
\(669\) −3.64079 2.64519i −0.140761 0.102269i
\(670\) 0 0
\(671\) 36.9248 26.8275i 1.42547 1.03566i
\(672\) 11.7262 8.51961i 0.452349 0.328651i
\(673\) 9.52544 + 29.3163i 0.367179 + 1.13006i 0.948606 + 0.316461i \(0.102495\pi\)
−0.581427 + 0.813599i \(0.697505\pi\)
\(674\) 35.7514 1.37709
\(675\) 0 0
\(676\) −10.5666 −0.406407
\(677\) −12.7476 39.2331i −0.489930 1.50785i −0.824712 0.565553i \(-0.808663\pi\)
0.334782 0.942296i \(-0.391337\pi\)
\(678\) 13.6724 9.93356i 0.525084 0.381496i
\(679\) −30.9017 + 22.4514i −1.18590 + 0.861607i
\(680\) 0 0
\(681\) −6.47225 4.70237i −0.248017 0.180195i
\(682\) −23.0348 −0.882048
\(683\) 18.0827 + 13.1379i 0.691915 + 0.502706i 0.877289 0.479962i \(-0.159350\pi\)
−0.185374 + 0.982668i \(0.559350\pi\)
\(684\) 3.56882 10.9837i 0.136457 0.419972i
\(685\) 0 0
\(686\) −16.9050 52.0282i −0.645435 1.98644i
\(687\) −3.30157 + 10.1612i −0.125963 + 0.387674i
\(688\) −2.13324 + 6.56544i −0.0813291 + 0.250305i
\(689\) −0.217978 0.670866i −0.00830428 0.0255580i
\(690\) 0 0
\(691\) 2.83956 8.73927i 0.108022 0.332457i −0.882406 0.470489i \(-0.844078\pi\)
0.990428 + 0.138032i \(0.0440776\pi\)
\(692\) −15.8120 11.4881i −0.601082 0.436712i
\(693\) 44.8506 1.70373
\(694\) −38.9889 28.3271i −1.48000 1.07528i
\(695\) 0 0
\(696\) −4.65990 + 3.38561i −0.176633 + 0.128331i
\(697\) 1.96141 1.42505i 0.0742937 0.0539775i
\(698\) 10.3585 + 31.8801i 0.392073 + 1.20668i
\(699\) 5.56018 0.210305
\(700\) 0 0
\(701\) −35.9929 −1.35943 −0.679717 0.733475i \(-0.737897\pi\)
−0.679717 + 0.733475i \(0.737897\pi\)
\(702\) −1.16345 3.58073i −0.0439116 0.135146i
\(703\) −24.3207 + 17.6700i −0.917271 + 0.666437i
\(704\) −7.80059 + 5.66746i −0.293996 + 0.213600i
\(705\) 0 0
\(706\) −33.6276 24.4319i −1.26559 0.919506i
\(707\) 16.3679 0.615578
\(708\) 2.16017 + 1.56945i 0.0811841 + 0.0589837i
\(709\) 6.25640 19.2552i 0.234964 0.723145i −0.762162 0.647386i \(-0.775862\pi\)
0.997126 0.0757586i \(-0.0241378\pi\)
\(710\) 0 0
\(711\) 7.41445 + 22.8193i 0.278063 + 0.855791i
\(712\) −4.40304 + 13.5512i −0.165011 + 0.507852i
\(713\) 5.32783 16.3974i 0.199529 0.614086i
\(714\) −0.394627 1.21454i −0.0147685 0.0454529i
\(715\) 0 0
\(716\) −1.62821 + 5.01112i −0.0608491 + 0.187274i
\(717\) 5.02202 + 3.64871i 0.187551 + 0.136264i
\(718\) 36.1951 1.35079
\(719\) 29.9551 + 21.7637i 1.11714 + 0.811647i 0.983773 0.179420i \(-0.0574220\pi\)
0.133364 + 0.991067i \(0.457422\pi\)
\(720\) 0 0
\(721\) −1.48320 + 1.07761i −0.0552372 + 0.0401322i
\(722\) −16.0754 + 11.6794i −0.598264 + 0.434664i
\(723\) 0.131900 + 0.405947i 0.00490542 + 0.0150973i
\(724\) −11.1219 −0.413343
\(725\) 0 0
\(726\) −5.17249 −0.191969
\(727\) 3.73261 + 11.4878i 0.138435 + 0.426059i 0.996108 0.0881356i \(-0.0280909\pi\)
−0.857673 + 0.514195i \(0.828091\pi\)
\(728\) 4.17754 3.03516i 0.154830 0.112490i
\(729\) 2.78552 2.02380i 0.103167 0.0749555i
\(730\) 0 0
\(731\) 0.261264 + 0.189820i 0.00966320 + 0.00702073i
\(732\) 6.90586 0.255248
\(733\) 36.0916 + 26.2221i 1.33307 + 0.968534i 0.999668 + 0.0257496i \(0.00819725\pi\)
0.333404 + 0.942784i \(0.391803\pi\)
\(734\) −0.595024 + 1.83130i −0.0219627 + 0.0675943i
\(735\) 0 0
\(736\) 6.77456 + 20.8500i 0.249714 + 0.768540i
\(737\) −3.57413 + 11.0001i −0.131655 + 0.405192i
\(738\) −13.5299 + 41.6408i −0.498043 + 1.53282i
\(739\) −4.52596 13.9295i −0.166490 0.512404i 0.832653 0.553795i \(-0.186821\pi\)
−0.999143 + 0.0413910i \(0.986821\pi\)
\(740\) 0 0
\(741\) −0.698004 + 2.14824i −0.0256418 + 0.0789174i
\(742\) 7.69813 + 5.59302i 0.282607 + 0.205326i
\(743\) −24.4397 −0.896604 −0.448302 0.893882i \(-0.647971\pi\)
−0.448302 + 0.893882i \(0.647971\pi\)
\(744\) 3.94318 + 2.86489i 0.144564 + 0.105032i
\(745\) 0 0
\(746\) −15.7157 + 11.4182i −0.575394 + 0.418048i
\(747\) −21.1642 + 15.3767i −0.774359 + 0.562605i
\(748\) −0.234650 0.722177i −0.00857964 0.0264054i
\(749\) 7.54648 0.275743
\(750\) 0 0
\(751\) 31.2863 1.14165 0.570826 0.821071i \(-0.306623\pi\)
0.570826 + 0.821071i \(0.306623\pi\)
\(752\) −1.41427 4.35269i −0.0515733 0.158726i
\(753\) −8.15510 + 5.92503i −0.297189 + 0.215920i
\(754\) 3.22308 2.34171i 0.117378 0.0852800i
\(755\) 0 0
\(756\) 12.0904 + 8.78418i 0.439723 + 0.319478i
\(757\) 11.3251 0.411617 0.205808 0.978592i \(-0.434018\pi\)
0.205808 + 0.978592i \(0.434018\pi\)
\(758\) −28.7434 20.8833i −1.04401 0.758516i
\(759\) 4.23876 13.0456i 0.153857 0.473524i
\(760\) 0 0
\(761\) −12.7728 39.3108i −0.463015 1.42501i −0.861462 0.507822i \(-0.830451\pi\)
0.398447 0.917191i \(-0.369549\pi\)
\(762\) −4.36494 + 13.4339i −0.158125 + 0.486659i
\(763\) −0.106285 + 0.327111i −0.00384776 + 0.0118422i
\(764\) −0.716564 2.20536i −0.0259244 0.0797870i
\(765\) 0 0
\(766\) −0.446401 + 1.37388i −0.0161291 + 0.0496403i
\(767\) 2.08945 + 1.51807i 0.0754455 + 0.0548144i
\(768\) −12.0882 −0.436195
\(769\) −18.3235 13.3128i −0.660762 0.480072i 0.206158 0.978519i \(-0.433904\pi\)
−0.866920 + 0.498447i \(0.833904\pi\)
\(770\) 0 0
\(771\) −10.1637 + 7.38436i −0.366037 + 0.265941i
\(772\) −15.2238 + 11.0607i −0.547917 + 0.398085i
\(773\) −5.20820 16.0292i −0.187326 0.576530i 0.812655 0.582746i \(-0.198022\pi\)
−0.999981 + 0.00621531i \(0.998022\pi\)
\(774\) −5.83210 −0.209630
\(775\) 0 0
\(776\) 16.3322 0.586292
\(777\) −5.45862 16.7999i −0.195827 0.602694i
\(778\) 46.2158 33.5778i 1.65692 1.20382i
\(779\) 46.7992 34.0016i 1.67675 1.21823i
\(780\) 0 0
\(781\) −10.1523 7.37606i −0.363277 0.263936i
\(782\) 1.93153 0.0690715
\(783\) −13.0449 9.47766i −0.466186 0.338704i
\(784\) −21.6320 + 66.5765i −0.772572 + 2.37773i
\(785\) 0 0
\(786\) 6.18476 + 19.0347i 0.220603 + 0.678947i
\(787\) −6.21393 + 19.1245i −0.221503 + 0.681716i 0.777125 + 0.629346i \(0.216677\pi\)
−0.998628 + 0.0523693i \(0.983323\pi\)
\(788\) 0.327723 1.00863i 0.0116746 0.0359309i
\(789\) 5.34166 + 16.4400i 0.190168 + 0.585278i
\(790\) 0 0
\(791\) −20.0507 + 61.7097i −0.712920 + 2.19414i
\(792\) −15.5148 11.2722i −0.551294 0.400539i
\(793\) 6.67976 0.237205
\(794\) 36.5381 + 26.5465i 1.29669 + 0.942099i
\(795\) 0 0
\(796\) 5.81955 4.22815i 0.206269 0.149863i
\(797\) −43.8266 + 31.8419i −1.55242 + 1.12790i −0.610521 + 0.792000i \(0.709040\pi\)
−0.941898 + 0.335898i \(0.890960\pi\)
\(798\) −9.41579 28.9788i −0.333315 1.02584i
\(799\) −0.214100 −0.00757430
\(800\) 0 0
\(801\) −18.1124 −0.639971
\(802\) 1.97550 + 6.07998i 0.0697575 + 0.214691i
\(803\) 32.5967 23.6829i 1.15031 0.835752i
\(804\) −1.41580 + 1.02864i −0.0499315 + 0.0362774i
\(805\) 0 0
\(806\) −2.72736 1.98154i −0.0960671 0.0697969i
\(807\) −21.2973 −0.749701
\(808\) −5.66200 4.11368i −0.199189 0.144719i
\(809\) 4.73927 14.5860i 0.166624 0.512815i −0.832528 0.553982i \(-0.813108\pi\)
0.999152 + 0.0411669i \(0.0131075\pi\)
\(810\) 0 0
\(811\) 3.57428 + 11.0005i 0.125510 + 0.386279i 0.993994 0.109438i \(-0.0349051\pi\)
−0.868484 + 0.495717i \(0.834905\pi\)
\(812\) −4.88667 + 15.0396i −0.171489 + 0.527788i
\(813\) 6.07994 18.7121i 0.213233 0.656263i
\(814\) −11.0306 33.9486i −0.386621 1.18990i
\(815\) 0 0
\(816\) −0.253890 + 0.781393i −0.00888793 + 0.0273542i
\(817\) 6.23376 + 4.52909i 0.218092 + 0.158453i
\(818\) −23.8630 −0.834349
\(819\) 5.31039 + 3.85822i 0.185560 + 0.134817i
\(820\) 0 0
\(821\) −26.9949 + 19.6129i −0.942128 + 0.684496i −0.948932 0.315480i \(-0.897834\pi\)
0.00680360 + 0.999977i \(0.497834\pi\)
\(822\) 10.0826 7.32541i 0.351670 0.255503i
\(823\) −9.26497 28.5146i −0.322956 0.993958i −0.972355 0.233509i \(-0.924979\pi\)
0.649398 0.760449i \(-0.275021\pi\)
\(824\) 0.783901 0.0273085
\(825\) 0 0
\(826\) −34.8395 −1.21222
\(827\) 7.63982 + 23.5130i 0.265663 + 0.817626i 0.991540 + 0.129801i \(0.0414340\pi\)
−0.725877 + 0.687824i \(0.758566\pi\)
\(828\) −8.30388 + 6.03312i −0.288580 + 0.209665i
\(829\) 0.171031 0.124261i 0.00594015 0.00431577i −0.584811 0.811169i \(-0.698831\pi\)
0.590751 + 0.806854i \(0.298831\pi\)
\(830\) 0 0
\(831\) 1.31835 + 0.957839i 0.0457331 + 0.0332271i
\(832\) −1.41114 −0.0489225
\(833\) 2.64933 + 1.92485i 0.0917939 + 0.0666922i
\(834\) −2.46098 + 7.57413i −0.0852169 + 0.262271i
\(835\) 0 0
\(836\) −5.59873 17.2311i −0.193636 0.595951i
\(837\) −4.21634 + 12.9766i −0.145738 + 0.448535i
\(838\) −10.1943 + 31.3749i −0.352157 + 1.08383i
\(839\) −1.70489 5.24712i −0.0588594 0.181151i 0.917304 0.398188i \(-0.130361\pi\)
−0.976163 + 0.217037i \(0.930361\pi\)
\(840\) 0 0
\(841\) −3.68903 + 11.3537i −0.127208 + 0.391506i
\(842\) 35.1154 + 25.5129i 1.21016 + 0.879231i
\(843\) 1.14953 0.0395920
\(844\) 14.1882 + 10.3084i 0.488379 + 0.354828i
\(845\) 0 0
\(846\) 3.12807 2.27267i 0.107545 0.0781361i
\(847\) 16.0664 11.6729i 0.552047 0.401086i
\(848\) −1.89177 5.82228i −0.0649638 0.199938i
\(849\) 9.22888 0.316734
\(850\) 0 0
\(851\) 26.7177 0.915871
\(852\) −0.586739 1.80580i −0.0201013 0.0618656i
\(853\) 1.24545 0.904870i 0.0426433 0.0309822i −0.566259 0.824227i \(-0.691610\pi\)
0.608903 + 0.793245i \(0.291610\pi\)
\(854\) −72.8983 + 52.9637i −2.49453 + 1.81238i
\(855\) 0 0
\(856\) −2.61049 1.89663i −0.0892247 0.0648255i
\(857\) −45.3407 −1.54881 −0.774404 0.632691i \(-0.781950\pi\)
−0.774404 + 0.632691i \(0.781950\pi\)
\(858\) −2.16986 1.57649i −0.0740777 0.0538206i
\(859\) −6.73547 + 20.7296i −0.229811 + 0.707286i 0.767956 + 0.640502i \(0.221274\pi\)
−0.997767 + 0.0667839i \(0.978726\pi\)
\(860\) 0 0
\(861\) 10.5038 + 32.3273i 0.357968 + 1.10171i
\(862\) 4.90308 15.0901i 0.167000 0.513972i
\(863\) −3.95176 + 12.1623i −0.134519 + 0.414008i −0.995515 0.0946043i \(-0.969841\pi\)
0.860996 + 0.508613i \(0.169841\pi\)
\(864\) −5.36126 16.5003i −0.182394 0.561350i
\(865\) 0 0
\(866\) −0.911192 + 2.80436i −0.0309636 + 0.0952960i
\(867\) −9.73842 7.07538i −0.330734 0.240292i
\(868\) 13.3814 0.454194
\(869\) 30.4522 + 22.1248i 1.03302 + 0.750534i
\(870\) 0 0
\(871\) −1.36945 + 0.994964i −0.0464021 + 0.0337131i
\(872\) 0.118978 0.0864424i 0.00402909 0.00292731i
\(873\) 6.41555 + 19.7450i 0.217133 + 0.668268i
\(874\) 46.0863 1.55889
\(875\) 0 0
\(876\) 6.09640 0.205978
\(877\) 2.95216 + 9.08583i 0.0996875 + 0.306807i 0.988447 0.151567i \(-0.0484321\pi\)
−0.888759 + 0.458374i \(0.848432\pi\)
\(878\) −38.2465 + 27.7877i −1.29076 + 0.937790i
\(879\) −6.72423 + 4.88544i −0.226803 + 0.164782i
\(880\) 0 0
\(881\) 31.6595 + 23.0020i 1.06664 + 0.774956i 0.975305 0.220864i \(-0.0708877\pi\)
0.0913314 + 0.995821i \(0.470888\pi\)
\(882\) −59.1400 −1.99135
\(883\) 28.3361 + 20.5874i 0.953586 + 0.692821i 0.951652 0.307177i \(-0.0993844\pi\)
0.00193394 + 0.999998i \(0.499384\pi\)
\(884\) 0.0343416 0.105692i 0.00115503 0.00355482i
\(885\) 0 0
\(886\) 15.5598 + 47.8880i 0.522741 + 1.60883i
\(887\) 11.2000 34.4699i 0.376058 1.15739i −0.566705 0.823921i \(-0.691782\pi\)
0.942762 0.333465i \(-0.108218\pi\)
\(888\) −2.33401 + 7.18335i −0.0783243 + 0.241057i
\(889\) −16.7587 51.5779i −0.562068 1.72987i
\(890\) 0 0
\(891\) 5.70191 17.5487i 0.191021 0.587903i
\(892\) 4.27394 + 3.10520i 0.143102 + 0.103970i
\(893\) −5.10841 −0.170946
\(894\) −11.6396 8.45665i −0.389286 0.282833i
\(895\) 0 0
\(896\) 48.4160 35.1763i 1.61747 1.17516i
\(897\) 1.62411 1.17998i 0.0542273 0.0393985i
\(898\) 3.27714 + 10.0860i 0.109360 + 0.336574i
\(899\) −14.4378 −0.481528
\(900\) 0 0
\(901\) −0.286386 −0.00954089
\(902\) 21.2256 + 65.3258i 0.706736 + 2.17511i
\(903\) −3.66297 + 2.66130i −0.121896 + 0.0885625i
\(904\) 22.4452 16.3074i 0.746517 0.542377i
\(905\) 0 0
\(906\) −1.49194 1.08395i −0.0495662 0.0360120i
\(907\) −40.8532 −1.35651 −0.678255 0.734827i \(-0.737263\pi\)
−0.678255 + 0.734827i \(0.737263\pi\)
\(908\) 7.59779 + 5.52012i 0.252142 + 0.183192i
\(909\) 2.74917 8.46106i 0.0911841 0.280636i
\(910\) 0 0
\(911\) 3.93897 + 12.1229i 0.130504 + 0.401650i 0.994864 0.101224i \(-0.0322759\pi\)
−0.864360 + 0.502874i \(0.832276\pi\)
\(912\) −6.05781 + 18.6440i −0.200594 + 0.617365i
\(913\) −12.6821 + 39.0316i −0.419718 + 1.29176i
\(914\) −9.97794 30.7089i −0.330041 1.01576i
\(915\) 0 0
\(916\) 3.87573 11.9283i 0.128058 0.394121i
\(917\) −62.1669 45.1669i −2.05293 1.49154i
\(918\) −1.52858 −0.0504506
\(919\) −7.82486 5.68509i −0.258118 0.187534i 0.451199 0.892423i \(-0.350997\pi\)
−0.709317 + 0.704890i \(0.750997\pi\)
\(920\) 0 0
\(921\) 15.2676 11.0926i 0.503086 0.365513i
\(922\) −9.63019 + 6.99674i −0.317153 + 0.230425i
\(923\) −0.567529 1.74668i −0.0186805 0.0574925i
\(924\) 10.6461 0.350231
\(925\) 0 0
\(926\) 16.1917 0.532094
\(927\) 0.307928 + 0.947706i 0.0101137 + 0.0311268i
\(928\) 14.8522 10.7907i 0.487547 0.354223i
\(929\) −8.83405 + 6.41831i −0.289836 + 0.210578i −0.723196 0.690643i \(-0.757328\pi\)
0.433360 + 0.901221i \(0.357328\pi\)
\(930\) 0 0
\(931\) 63.2130 + 45.9269i 2.07172 + 1.50519i
\(932\) −6.52711 −0.213803
\(933\) −7.75297 5.63287i −0.253821 0.184412i
\(934\) 9.99933 30.7748i 0.327188 1.00698i
\(935\) 0 0
\(936\) −0.867303 2.66928i −0.0283487 0.0872483i
\(937\) 4.92778 15.1661i 0.160984 0.495456i −0.837734 0.546078i \(-0.816120\pi\)
0.998718 + 0.0506216i \(0.0161202\pi\)
\(938\) 7.05618 21.7167i 0.230392 0.709075i
\(939\) −3.73039 11.4809i −0.121737 0.374667i
\(940\) 0 0
\(941\) 1.83155 5.63692i 0.0597067 0.183758i −0.916755 0.399451i \(-0.869201\pi\)
0.976461 + 0.215692i \(0.0692009\pi\)
\(942\) −9.50470 6.90557i −0.309680 0.224996i
\(943\) −51.4117 −1.67419
\(944\) 18.1338 + 13.1750i 0.590205 + 0.428809i
\(945\) 0 0
\(946\) −7.40197 + 5.37785i −0.240659 + 0.174849i
\(947\) 0.801236 0.582132i 0.0260367 0.0189168i −0.574691 0.818371i \(-0.694878\pi\)
0.600727 + 0.799454i \(0.294878\pi\)
\(948\) 1.75995 + 5.41657i 0.0571606 + 0.175922i
\(949\) 5.89681 0.191418
\(950\) 0 0
\(951\) −11.9308 −0.386882
\(952\) −0.647839 1.99384i −0.0209966 0.0646208i
\(953\) 43.3627 31.5049i 1.40466 1.02054i 0.410584 0.911823i \(-0.365325\pi\)
0.994072 0.108720i \(-0.0346750\pi\)
\(954\) 4.18419 3.03999i 0.135468 0.0984234i
\(955\) 0 0
\(956\) −5.89537 4.28324i −0.190670 0.138530i
\(957\) −11.4866 −0.371308
\(958\) 51.7519 + 37.6000i 1.67203 + 1.21480i
\(959\) −14.7862 + 45.5072i −0.477471 + 1.46950i
\(960\) 0 0
\(961\) −5.80420 17.8635i −0.187232 0.576242i
\(962\) 1.61435 4.96846i 0.0520488 0.160190i
\(963\) 1.26751 3.90101i 0.0408451 0.125708i
\(964\) −0.154838 0.476542i −0.00498699 0.0153484i
\(965\) 0 0
\(966\) −8.36831 + 25.7550i −0.269246 + 0.828654i
\(967\) 24.0561 + 17.4778i 0.773592 + 0.562047i 0.903049 0.429538i \(-0.141323\pi\)
−0.129457 + 0.991585i \(0.541323\pi\)
\(968\) −8.49141 −0.272924
\(969\) 0.741917 + 0.539034i 0.0238338 + 0.0173163i
\(970\) 0 0
\(971\) −49.0399 + 35.6296i −1.57376 + 1.14341i −0.650330 + 0.759652i \(0.725369\pi\)
−0.923435 + 0.383755i \(0.874631\pi\)
\(972\) 10.1590 7.38094i 0.325850 0.236744i
\(973\) −9.44864 29.0799i −0.302910 0.932260i
\(974\) 28.1954 0.903440
\(975\) 0 0
\(976\) 57.9720 1.85564
\(977\) 13.7553 + 42.3343i 0.440070 + 1.35440i 0.887801 + 0.460227i \(0.152232\pi\)
−0.447731 + 0.894168i \(0.647768\pi\)
\(978\) −5.39923 + 3.92277i −0.172648 + 0.125436i
\(979\) −22.9879 + 16.7017i −0.734697 + 0.533789i
\(980\) 0 0
\(981\) 0.151242 + 0.109884i 0.00482878 + 0.00350831i
\(982\) −15.0675 −0.480822
\(983\) −30.9369 22.4769i −0.986732 0.716903i −0.0275293 0.999621i \(-0.508764\pi\)
−0.959203 + 0.282718i \(0.908764\pi\)
\(984\) 4.49123 13.8226i 0.143175 0.440648i
\(985\) 0 0
\(986\) −0.499825 1.53830i −0.0159177 0.0489896i
\(987\) 0.927580 2.85480i 0.0295252 0.0908692i
\(988\) 0.819389 2.52182i 0.0260682 0.0802298i
\(989\) −2.11619 6.51298i −0.0672911 0.207101i
\(990\) 0 0
\(991\) 7.01721 21.5968i 0.222909 0.686044i −0.775588 0.631239i \(-0.782547\pi\)
0.998497 0.0548043i \(-0.0174535\pi\)
\(992\) −12.5678 9.13108i −0.399030 0.289912i
\(993\) −9.11678 −0.289312
\(994\) 20.0430 + 14.5621i 0.635725 + 0.461881i
\(995\) 0 0
\(996\) −5.02371 + 3.64994i −0.159182 + 0.115653i
\(997\) −16.6887 + 12.1251i −0.528538 + 0.384005i −0.819811 0.572635i \(-0.805921\pi\)
0.291273 + 0.956640i \(0.405921\pi\)
\(998\) −18.8995 58.1666i −0.598253 1.84123i
\(999\) −21.1439 −0.668962
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 625.2.d.p.126.4 16
5.2 odd 4 625.2.e.k.499.3 32
5.3 odd 4 625.2.e.k.499.6 32
5.4 even 2 625.2.d.n.126.1 16
25.2 odd 20 625.2.b.d.624.12 16
25.3 odd 20 625.2.e.k.124.3 32
25.4 even 10 625.2.d.n.501.1 16
25.6 even 5 625.2.d.q.376.1 16
25.8 odd 20 625.2.e.j.249.3 32
25.9 even 10 625.2.d.m.251.4 16
25.11 even 5 625.2.a.e.1.7 8
25.12 odd 20 625.2.e.j.374.3 32
25.13 odd 20 625.2.e.j.374.6 32
25.14 even 10 625.2.a.g.1.2 yes 8
25.16 even 5 625.2.d.q.251.1 16
25.17 odd 20 625.2.e.j.249.6 32
25.19 even 10 625.2.d.m.376.4 16
25.21 even 5 inner 625.2.d.p.501.4 16
25.22 odd 20 625.2.e.k.124.6 32
25.23 odd 20 625.2.b.d.624.5 16
75.11 odd 10 5625.2.a.be.1.2 8
75.14 odd 10 5625.2.a.s.1.7 8
100.11 odd 10 10000.2.a.bn.1.4 8
100.39 odd 10 10000.2.a.be.1.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
625.2.a.e.1.7 8 25.11 even 5
625.2.a.g.1.2 yes 8 25.14 even 10
625.2.b.d.624.5 16 25.23 odd 20
625.2.b.d.624.12 16 25.2 odd 20
625.2.d.m.251.4 16 25.9 even 10
625.2.d.m.376.4 16 25.19 even 10
625.2.d.n.126.1 16 5.4 even 2
625.2.d.n.501.1 16 25.4 even 10
625.2.d.p.126.4 16 1.1 even 1 trivial
625.2.d.p.501.4 16 25.21 even 5 inner
625.2.d.q.251.1 16 25.16 even 5
625.2.d.q.376.1 16 25.6 even 5
625.2.e.j.249.3 32 25.8 odd 20
625.2.e.j.249.6 32 25.17 odd 20
625.2.e.j.374.3 32 25.12 odd 20
625.2.e.j.374.6 32 25.13 odd 20
625.2.e.k.124.3 32 25.3 odd 20
625.2.e.k.124.6 32 25.22 odd 20
625.2.e.k.499.3 32 5.2 odd 4
625.2.e.k.499.6 32 5.3 odd 4
5625.2.a.s.1.7 8 75.14 odd 10
5625.2.a.be.1.2 8 75.11 odd 10
10000.2.a.be.1.5 8 100.39 odd 10
10000.2.a.bn.1.4 8 100.11 odd 10