Properties

Label 625.2.e.j.374.3
Level $625$
Weight $2$
Character 625.374
Analytic conductor $4.991$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [625,2,Mod(124,625)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("625.124"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(625, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 625 = 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 625.e (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,6,0,14,0,0,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.99065012633\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 374.3
Character \(\chi\) \(=\) 625.374
Dual form 625.2.e.j.249.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.989484 - 1.36191i) q^{2} +(0.675574 + 0.219507i) q^{3} +(-0.257680 + 0.793058i) q^{4} +(-0.369521 - 1.13727i) q^{6} -4.59110i q^{7} +(-1.86699 + 0.606623i) q^{8} +(-2.01883 - 1.46677i) q^{9} +(-3.16713 + 2.30105i) q^{11} +(-0.348164 + 0.479206i) q^{12} +(0.336765 - 0.463518i) q^{13} +(-6.25266 + 4.54282i) q^{14} +(4.02276 + 2.92270i) q^{16} +(0.221226 - 0.0718808i) q^{17} +4.20081i q^{18} +(1.71507 + 5.27846i) q^{19} +(1.00778 - 3.10163i) q^{21} +(6.26765 + 2.03648i) q^{22} +(-2.89935 - 3.99061i) q^{23} -1.39445 q^{24} -0.964492 q^{26} +(-2.29449 - 3.15809i) q^{27} +(3.64101 + 1.18304i) q^{28} +(-1.27643 + 3.92845i) q^{29} +(-1.08011 - 3.32424i) q^{31} -4.44444i q^{32} +(-2.64473 + 0.859324i) q^{33} +(-0.316795 - 0.230165i) q^{34} +(1.68345 - 1.22310i) q^{36} +(-3.18373 + 4.38203i) q^{37} +(5.49173 - 7.55872i) q^{38} +(0.329255 - 0.239218i) q^{39} +(-8.43214 - 6.12630i) q^{41} +(-5.22132 + 1.69651i) q^{42} -1.38833i q^{43} +(-1.00876 - 3.10465i) q^{44} +(-2.56598 + 7.89729i) q^{46} +(0.875370 + 0.284425i) q^{47} +(2.07611 + 2.85753i) q^{48} -14.0782 q^{49} +0.165233 q^{51} +(0.280819 + 0.386514i) q^{52} +(-1.17092 - 0.380455i) q^{53} +(-2.03067 + 6.24976i) q^{54} +(2.78507 + 8.57157i) q^{56} +3.94246i q^{57} +(6.61320 - 2.14876i) q^{58} +(3.64689 + 2.64962i) q^{59} +(9.43214 - 6.85285i) q^{61} +(-3.45856 + 4.76029i) q^{62} +(-6.73409 + 9.26868i) q^{63} +(1.99259 - 1.44770i) q^{64} +(3.78724 + 2.75159i) q^{66} +(2.80987 - 0.912982i) q^{67} +0.193968i q^{68} +(-1.08276 - 3.33238i) q^{69} +(0.990558 - 3.04862i) q^{71} +(4.65893 + 1.51378i) q^{72} +(-6.04961 - 8.32657i) q^{73} +9.11816 q^{74} -4.62806 q^{76} +(10.5644 + 14.5406i) q^{77} +(-0.651586 - 0.211713i) q^{78} +(2.97123 - 9.14449i) q^{79} +(1.45651 + 4.48267i) q^{81} +17.5457i q^{82} +(-9.97030 + 3.23955i) q^{83} +(2.20009 + 1.59846i) q^{84} +(-1.89077 + 1.37373i) q^{86} +(-1.72465 + 2.37377i) q^{87} +(4.51714 - 6.21731i) q^{88} +(5.87207 - 4.26631i) q^{89} +(-2.12806 - 1.54612i) q^{91} +(3.91189 - 1.27105i) q^{92} -2.48286i q^{93} +(-0.478804 - 1.47361i) q^{94} +(0.975587 - 3.00255i) q^{96} +(-7.91252 - 2.57093i) q^{97} +(13.9302 + 19.1733i) q^{98} +9.76903 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 6 q^{4} + 14 q^{6} + 24 q^{9} - 6 q^{11} + 2 q^{14} + 2 q^{16} - 20 q^{19} + 14 q^{21} - 20 q^{24} + 44 q^{26} - 16 q^{31} + 12 q^{34} + 2 q^{36} - 2 q^{39} - 16 q^{41} + 62 q^{44} + 84 q^{46} + 16 q^{49}+ \cdots + 88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/625\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{3}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.989484 1.36191i −0.699671 0.963014i −0.999958 0.00916528i \(-0.997083\pi\)
0.300287 0.953849i \(-0.402917\pi\)
\(3\) 0.675574 + 0.219507i 0.390043 + 0.126733i 0.497472 0.867480i \(-0.334262\pi\)
−0.107429 + 0.994213i \(0.534262\pi\)
\(4\) −0.257680 + 0.793058i −0.128840 + 0.396529i
\(5\) 0 0
\(6\) −0.369521 1.13727i −0.150856 0.464288i
\(7\) 4.59110i 1.73527i −0.497198 0.867637i \(-0.665638\pi\)
0.497198 0.867637i \(-0.334362\pi\)
\(8\) −1.86699 + 0.606623i −0.660082 + 0.214474i
\(9\) −2.01883 1.46677i −0.672945 0.488923i
\(10\) 0 0
\(11\) −3.16713 + 2.30105i −0.954926 + 0.693794i −0.951967 0.306201i \(-0.900942\pi\)
−0.00295900 + 0.999996i \(0.500942\pi\)
\(12\) −0.348164 + 0.479206i −0.100506 + 0.138335i
\(13\) 0.336765 0.463518i 0.0934019 0.128557i −0.759758 0.650205i \(-0.774683\pi\)
0.853160 + 0.521649i \(0.174683\pi\)
\(14\) −6.25266 + 4.54282i −1.67109 + 1.21412i
\(15\) 0 0
\(16\) 4.02276 + 2.92270i 1.00569 + 0.730676i
\(17\) 0.221226 0.0718808i 0.0536553 0.0174337i −0.282066 0.959395i \(-0.591020\pi\)
0.335722 + 0.941961i \(0.391020\pi\)
\(18\) 4.20081i 0.990140i
\(19\) 1.71507 + 5.27846i 0.393465 + 1.21096i 0.930151 + 0.367178i \(0.119676\pi\)
−0.536685 + 0.843782i \(0.680324\pi\)
\(20\) 0 0
\(21\) 1.00778 3.10163i 0.219916 0.676831i
\(22\) 6.26765 + 2.03648i 1.33627 + 0.434179i
\(23\) −2.89935 3.99061i −0.604556 0.832100i 0.391560 0.920153i \(-0.371936\pi\)
−0.996116 + 0.0880529i \(0.971936\pi\)
\(24\) −1.39445 −0.284641
\(25\) 0 0
\(26\) −0.964492 −0.189152
\(27\) −2.29449 3.15809i −0.441574 0.607775i
\(28\) 3.64101 + 1.18304i 0.688086 + 0.223573i
\(29\) −1.27643 + 3.92845i −0.237028 + 0.729496i 0.759818 + 0.650135i \(0.225288\pi\)
−0.996846 + 0.0793604i \(0.974712\pi\)
\(30\) 0 0
\(31\) −1.08011 3.32424i −0.193994 0.597051i −0.999987 0.00512633i \(-0.998368\pi\)
0.805993 0.591925i \(-0.201632\pi\)
\(32\) 4.44444i 0.785674i
\(33\) −2.64473 + 0.859324i −0.460388 + 0.149589i
\(34\) −0.316795 0.230165i −0.0543299 0.0394730i
\(35\) 0 0
\(36\) 1.68345 1.22310i 0.280574 0.203849i
\(37\) −3.18373 + 4.38203i −0.523402 + 0.720401i −0.986107 0.166112i \(-0.946879\pi\)
0.462705 + 0.886512i \(0.346879\pi\)
\(38\) 5.49173 7.55872i 0.890876 1.22619i
\(39\) 0.329255 0.239218i 0.0527230 0.0383055i
\(40\) 0 0
\(41\) −8.43214 6.12630i −1.31688 0.956768i −0.999965 0.00831339i \(-0.997354\pi\)
−0.316913 0.948455i \(-0.602646\pi\)
\(42\) −5.22132 + 1.69651i −0.805666 + 0.261777i
\(43\) 1.38833i 0.211718i −0.994381 0.105859i \(-0.966241\pi\)
0.994381 0.105859i \(-0.0337592\pi\)
\(44\) −1.00876 3.10465i −0.152077 0.468044i
\(45\) 0 0
\(46\) −2.56598 + 7.89729i −0.378334 + 1.16439i
\(47\) 0.875370 + 0.284425i 0.127686 + 0.0414876i 0.372163 0.928167i \(-0.378616\pi\)
−0.244477 + 0.969655i \(0.578616\pi\)
\(48\) 2.07611 + 2.85753i 0.299661 + 0.412448i
\(49\) −14.0782 −2.01118
\(50\) 0 0
\(51\) 0.165233 0.0231373
\(52\) 0.280819 + 0.386514i 0.0389425 + 0.0535998i
\(53\) −1.17092 0.380455i −0.160838 0.0522595i 0.227491 0.973780i \(-0.426948\pi\)
−0.388329 + 0.921521i \(0.626948\pi\)
\(54\) −2.03067 + 6.24976i −0.276339 + 0.850485i
\(55\) 0 0
\(56\) 2.78507 + 8.57157i 0.372171 + 1.14542i
\(57\) 3.94246i 0.522191i
\(58\) 6.61320 2.14876i 0.868356 0.282146i
\(59\) 3.64689 + 2.64962i 0.474785 + 0.344951i 0.799303 0.600928i \(-0.205202\pi\)
−0.324518 + 0.945879i \(0.605202\pi\)
\(60\) 0 0
\(61\) 9.43214 6.85285i 1.20766 0.877417i 0.212645 0.977129i \(-0.431792\pi\)
0.995016 + 0.0997121i \(0.0317922\pi\)
\(62\) −3.45856 + 4.76029i −0.439237 + 0.604558i
\(63\) −6.73409 + 9.26868i −0.848416 + 1.16774i
\(64\) 1.99259 1.44770i 0.249074 0.180963i
\(65\) 0 0
\(66\) 3.78724 + 2.75159i 0.466177 + 0.338697i
\(67\) 2.80987 0.912982i 0.343280 0.111539i −0.132303 0.991209i \(-0.542237\pi\)
0.475583 + 0.879671i \(0.342237\pi\)
\(68\) 0.193968i 0.0235220i
\(69\) −1.08276 3.33238i −0.130348 0.401171i
\(70\) 0 0
\(71\) 0.990558 3.04862i 0.117558 0.361805i −0.874914 0.484278i \(-0.839082\pi\)
0.992472 + 0.122473i \(0.0390824\pi\)
\(72\) 4.65893 + 1.51378i 0.549060 + 0.178400i
\(73\) −6.04961 8.32657i −0.708053 0.974551i −0.999837 0.0180667i \(-0.994249\pi\)
0.291784 0.956484i \(-0.405751\pi\)
\(74\) 9.11816 1.05996
\(75\) 0 0
\(76\) −4.62806 −0.530875
\(77\) 10.5644 + 14.5406i 1.20392 + 1.65706i
\(78\) −0.651586 0.211713i −0.0737775 0.0239718i
\(79\) 2.97123 9.14449i 0.334289 1.02884i −0.632782 0.774330i \(-0.718087\pi\)
0.967071 0.254506i \(-0.0819129\pi\)
\(80\) 0 0
\(81\) 1.45651 + 4.48267i 0.161834 + 0.498074i
\(82\) 17.5457i 1.93759i
\(83\) −9.97030 + 3.23955i −1.09438 + 0.355587i −0.799939 0.600082i \(-0.795135\pi\)
−0.294445 + 0.955669i \(0.595135\pi\)
\(84\) 2.20009 + 1.59846i 0.240049 + 0.174406i
\(85\) 0 0
\(86\) −1.89077 + 1.37373i −0.203887 + 0.148133i
\(87\) −1.72465 + 2.37377i −0.184902 + 0.254495i
\(88\) 4.51714 6.21731i 0.481529 0.662768i
\(89\) 5.87207 4.26631i 0.622438 0.452228i −0.231334 0.972874i \(-0.574309\pi\)
0.853772 + 0.520646i \(0.174309\pi\)
\(90\) 0 0
\(91\) −2.12806 1.54612i −0.223081 0.162078i
\(92\) 3.91189 1.27105i 0.407843 0.132516i
\(93\) 2.48286i 0.257461i
\(94\) −0.478804 1.47361i −0.0493848 0.151991i
\(95\) 0 0
\(96\) 0.975587 3.00255i 0.0995704 0.306446i
\(97\) −7.91252 2.57093i −0.803394 0.261039i −0.121597 0.992580i \(-0.538801\pi\)
−0.681797 + 0.731541i \(0.738801\pi\)
\(98\) 13.9302 + 19.1733i 1.40716 + 1.93679i
\(99\) 9.76903 0.981824
\(100\) 0 0
\(101\) −3.56513 −0.354744 −0.177372 0.984144i \(-0.556760\pi\)
−0.177372 + 0.984144i \(0.556760\pi\)
\(102\) −0.163495 0.225032i −0.0161885 0.0222815i
\(103\) 0.379779 + 0.123398i 0.0374207 + 0.0121587i 0.327668 0.944793i \(-0.393737\pi\)
−0.290247 + 0.956952i \(0.593737\pi\)
\(104\) −0.347558 + 1.06967i −0.0340809 + 0.104890i
\(105\) 0 0
\(106\) 0.640462 + 1.97114i 0.0622071 + 0.191454i
\(107\) 1.64372i 0.158904i −0.996839 0.0794522i \(-0.974683\pi\)
0.996839 0.0794522i \(-0.0253171\pi\)
\(108\) 3.09579 1.00588i 0.297893 0.0967913i
\(109\) 0.0606078 + 0.0440342i 0.00580518 + 0.00421771i 0.590684 0.806903i \(-0.298858\pi\)
−0.584879 + 0.811121i \(0.698858\pi\)
\(110\) 0 0
\(111\) −3.11273 + 2.26153i −0.295447 + 0.214655i
\(112\) 13.4184 18.4689i 1.26792 1.74515i
\(113\) −8.30708 + 11.4337i −0.781464 + 1.07559i 0.213655 + 0.976909i \(0.431463\pi\)
−0.995119 + 0.0986840i \(0.968537\pi\)
\(114\) 5.36926 3.90100i 0.502878 0.365362i
\(115\) 0 0
\(116\) −2.78658 2.02457i −0.258728 0.187977i
\(117\) −1.35975 + 0.441808i −0.125709 + 0.0408452i
\(118\) 7.58848i 0.698576i
\(119\) −0.330012 1.01567i −0.0302522 0.0931066i
\(120\) 0 0
\(121\) 1.33667 4.11386i 0.121516 0.373987i
\(122\) −18.6659 6.06492i −1.68993 0.549092i
\(123\) −4.35176 5.98969i −0.392385 0.540072i
\(124\) 2.91464 0.261742
\(125\) 0 0
\(126\) 19.2864 1.71817
\(127\) −6.94318 9.55647i −0.616108 0.848000i 0.380955 0.924594i \(-0.375595\pi\)
−0.997062 + 0.0765941i \(0.975595\pi\)
\(128\) −12.3971 4.02807i −1.09576 0.356034i
\(129\) 0.304748 0.937917i 0.0268315 0.0825790i
\(130\) 0 0
\(131\) −5.17210 15.9181i −0.451888 1.39077i −0.874750 0.484575i \(-0.838974\pi\)
0.422862 0.906194i \(-0.361026\pi\)
\(132\) 2.31885i 0.201830i
\(133\) 24.2339 7.87408i 2.10135 0.682770i
\(134\) −4.02372 2.92340i −0.347596 0.252544i
\(135\) 0 0
\(136\) −0.369424 + 0.268402i −0.0316778 + 0.0230153i
\(137\) 6.12598 8.43168i 0.523378 0.720367i −0.462726 0.886502i \(-0.653128\pi\)
0.986103 + 0.166134i \(0.0531285\pi\)
\(138\) −3.46702 + 4.77195i −0.295133 + 0.406215i
\(139\) 5.38800 3.91461i 0.457004 0.332033i −0.335351 0.942093i \(-0.608855\pi\)
0.792355 + 0.610060i \(0.208855\pi\)
\(140\) 0 0
\(141\) 0.528944 + 0.384300i 0.0445451 + 0.0323639i
\(142\) −5.13208 + 1.66752i −0.430675 + 0.139935i
\(143\) 2.24294i 0.187564i
\(144\) −3.83435 11.8009i −0.319529 0.983409i
\(145\) 0 0
\(146\) −5.35403 + 16.4780i −0.443103 + 1.36373i
\(147\) −9.51089 3.09027i −0.784445 0.254882i
\(148\) −2.65482 3.65404i −0.218225 0.300360i
\(149\) 12.0316 0.985667 0.492834 0.870124i \(-0.335961\pi\)
0.492834 + 0.870124i \(0.335961\pi\)
\(150\) 0 0
\(151\) −1.54218 −0.125501 −0.0627505 0.998029i \(-0.519987\pi\)
−0.0627505 + 0.998029i \(0.519987\pi\)
\(152\) −6.40407 8.81445i −0.519439 0.714946i
\(153\) −0.552052 0.179373i −0.0446308 0.0145014i
\(154\) 9.34970 28.7754i 0.753420 2.31879i
\(155\) 0 0
\(156\) 0.104871 + 0.322760i 0.00839641 + 0.0258415i
\(157\) 9.82482i 0.784106i −0.919943 0.392053i \(-0.871765\pi\)
0.919943 0.392053i \(-0.128235\pi\)
\(158\) −15.3939 + 5.00179i −1.22468 + 0.397921i
\(159\) −0.707530 0.514051i −0.0561108 0.0407669i
\(160\) 0 0
\(161\) −18.3213 + 13.3112i −1.44392 + 1.04907i
\(162\) 4.66379 6.41915i 0.366422 0.504336i
\(163\) 3.28047 4.51518i 0.256946 0.353656i −0.660982 0.750401i \(-0.729860\pi\)
0.917929 + 0.396745i \(0.129860\pi\)
\(164\) 7.03131 5.10854i 0.549053 0.398910i
\(165\) 0 0
\(166\) 14.2774 + 10.3732i 1.10814 + 0.805113i
\(167\) 20.7908 6.75534i 1.60884 0.522744i 0.639568 0.768735i \(-0.279113\pi\)
0.969272 + 0.245991i \(0.0791133\pi\)
\(168\) 6.40207i 0.493930i
\(169\) 3.91578 + 12.0515i 0.301214 + 0.927042i
\(170\) 0 0
\(171\) 4.27982 13.1719i 0.327286 1.00728i
\(172\) 1.10102 + 0.357744i 0.0839522 + 0.0272777i
\(173\) 13.7768 + 18.9622i 1.04743 + 1.44167i 0.891013 + 0.453977i \(0.149995\pi\)
0.156420 + 0.987691i \(0.450005\pi\)
\(174\) 4.93937 0.374453
\(175\) 0 0
\(176\) −19.4659 −1.46730
\(177\) 1.88213 + 2.59053i 0.141470 + 0.194716i
\(178\) −11.6206 3.77577i −0.871004 0.283006i
\(179\) 1.95259 6.00947i 0.145944 0.449169i −0.851187 0.524862i \(-0.824117\pi\)
0.997131 + 0.0756932i \(0.0241170\pi\)
\(180\) 0 0
\(181\) −4.12158 12.6849i −0.306355 0.942863i −0.979168 0.203051i \(-0.934914\pi\)
0.672813 0.739812i \(-0.265086\pi\)
\(182\) 4.42808i 0.328231i
\(183\) 7.87636 2.55918i 0.582237 0.189180i
\(184\) 7.83387 + 5.69164i 0.577520 + 0.419593i
\(185\) 0 0
\(186\) −3.38143 + 2.45675i −0.247938 + 0.180138i
\(187\) −0.535251 + 0.736710i −0.0391414 + 0.0538736i
\(188\) −0.451131 + 0.620928i −0.0329021 + 0.0452859i
\(189\) −14.4991 + 10.5342i −1.05466 + 0.766253i
\(190\) 0 0
\(191\) 2.24974 + 1.63453i 0.162785 + 0.118270i 0.666196 0.745777i \(-0.267922\pi\)
−0.503410 + 0.864047i \(0.667922\pi\)
\(192\) 1.66393 0.540642i 0.120084 0.0390175i
\(193\) 22.5667i 1.62438i −0.583391 0.812192i \(-0.698274\pi\)
0.583391 0.812192i \(-0.301726\pi\)
\(194\) 4.32793 + 13.3200i 0.310728 + 0.956321i
\(195\) 0 0
\(196\) 3.62768 11.1649i 0.259120 0.797490i
\(197\) 1.20957 + 0.393014i 0.0861786 + 0.0280011i 0.351789 0.936079i \(-0.385573\pi\)
−0.265610 + 0.964080i \(0.585573\pi\)
\(198\) −9.66629 13.3045i −0.686954 0.945511i
\(199\) 8.62648 0.611515 0.305757 0.952109i \(-0.401090\pi\)
0.305757 + 0.952109i \(0.401090\pi\)
\(200\) 0 0
\(201\) 2.09868 0.148030
\(202\) 3.52764 + 4.85538i 0.248204 + 0.341623i
\(203\) 18.0359 + 5.86023i 1.26588 + 0.411308i
\(204\) −0.0425773 + 0.131039i −0.00298101 + 0.00917459i
\(205\) 0 0
\(206\) −0.207729 0.639324i −0.0144732 0.0445438i
\(207\) 12.3091i 0.855538i
\(208\) 2.70945 0.880354i 0.187867 0.0610415i
\(209\) −17.5779 12.7711i −1.21589 0.883394i
\(210\) 0 0
\(211\) 17.0149 12.3621i 1.17136 0.851039i 0.180185 0.983633i \(-0.442330\pi\)
0.991171 + 0.132593i \(0.0423305\pi\)
\(212\) 0.603445 0.830571i 0.0414448 0.0570439i
\(213\) 1.33839 1.84214i 0.0917050 0.126221i
\(214\) −2.23859 + 1.62643i −0.153027 + 0.111181i
\(215\) 0 0
\(216\) 6.19957 + 4.50425i 0.421827 + 0.306475i
\(217\) −15.2619 + 4.95890i −1.03605 + 0.336632i
\(218\) 0.126113i 0.00854148i
\(219\) −2.25921 6.95314i −0.152663 0.469850i
\(220\) 0 0
\(221\) 0.0411833 0.126749i 0.00277029 0.00852608i
\(222\) 6.15999 + 2.00150i 0.413432 + 0.134332i
\(223\) −3.72384 5.12542i −0.249367 0.343224i 0.665923 0.746021i \(-0.268038\pi\)
−0.915289 + 0.402797i \(0.868038\pi\)
\(224\) −20.4049 −1.36336
\(225\) 0 0
\(226\) 23.7914 1.58258
\(227\) 6.61988 + 9.11148i 0.439377 + 0.604750i 0.970073 0.242812i \(-0.0780697\pi\)
−0.530697 + 0.847562i \(0.678070\pi\)
\(228\) −3.12660 1.01589i −0.207064 0.0672792i
\(229\) −4.64788 + 14.3047i −0.307140 + 0.945281i 0.671729 + 0.740797i \(0.265552\pi\)
−0.978870 + 0.204484i \(0.934448\pi\)
\(230\) 0 0
\(231\) 3.94525 + 12.1422i 0.259578 + 0.798900i
\(232\) 8.10872i 0.532363i
\(233\) −7.44438 + 2.41883i −0.487698 + 0.158463i −0.542536 0.840033i \(-0.682536\pi\)
0.0548381 + 0.998495i \(0.482536\pi\)
\(234\) 1.94715 + 1.41469i 0.127289 + 0.0924810i
\(235\) 0 0
\(236\) −3.04103 + 2.20944i −0.197954 + 0.143822i
\(237\) 4.01456 5.52557i 0.260774 0.358925i
\(238\) −1.05671 + 1.45444i −0.0684964 + 0.0942772i
\(239\) 7.06988 5.13657i 0.457313 0.332257i −0.335163 0.942160i \(-0.608792\pi\)
0.792476 + 0.609903i \(0.208792\pi\)
\(240\) 0 0
\(241\) 0.486132 + 0.353195i 0.0313145 + 0.0227513i 0.603332 0.797490i \(-0.293839\pi\)
−0.572018 + 0.820241i \(0.693839\pi\)
\(242\) −6.92531 + 2.25017i −0.445176 + 0.144646i
\(243\) 15.0589i 0.966031i
\(244\) 3.00423 + 9.24607i 0.192326 + 0.591919i
\(245\) 0 0
\(246\) −3.85140 + 11.8534i −0.245556 + 0.755745i
\(247\) 3.02423 + 0.982634i 0.192427 + 0.0625235i
\(248\) 4.03312 + 5.55112i 0.256104 + 0.352496i
\(249\) −7.44678 −0.471921
\(250\) 0 0
\(251\) −14.1908 −0.895712 −0.447856 0.894106i \(-0.647812\pi\)
−0.447856 + 0.894106i \(0.647812\pi\)
\(252\) −5.61536 7.72888i −0.353734 0.486873i
\(253\) 18.3652 + 5.96722i 1.15461 + 0.375156i
\(254\) −6.14486 + 18.9119i −0.385563 + 1.18664i
\(255\) 0 0
\(256\) 5.25868 + 16.1846i 0.328668 + 1.01153i
\(257\) 17.6859i 1.10322i −0.834103 0.551609i \(-0.814014\pi\)
0.834103 0.551609i \(-0.185986\pi\)
\(258\) −1.57890 + 0.513015i −0.0982980 + 0.0319389i
\(259\) 20.1183 + 14.6168i 1.25009 + 0.908245i
\(260\) 0 0
\(261\) 8.33904 6.05867i 0.516174 0.375022i
\(262\) −16.5612 + 22.7946i −1.02316 + 1.40825i
\(263\) 14.3036 19.6873i 0.882000 1.21397i −0.0938630 0.995585i \(-0.529922\pi\)
0.975863 0.218384i \(-0.0700784\pi\)
\(264\) 4.41641 3.20871i 0.271811 0.197482i
\(265\) 0 0
\(266\) −34.7029 25.2131i −2.12777 1.54591i
\(267\) 4.90350 1.59324i 0.300090 0.0975050i
\(268\) 2.46365i 0.150491i
\(269\) −9.26490 28.5144i −0.564891 1.73856i −0.668275 0.743915i \(-0.732967\pi\)
0.103384 0.994642i \(-0.467033\pi\)
\(270\) 0 0
\(271\) −8.55920 + 26.3425i −0.519934 + 1.60019i 0.254187 + 0.967155i \(0.418192\pi\)
−0.774121 + 0.633038i \(0.781808\pi\)
\(272\) 1.10003 + 0.357420i 0.0666989 + 0.0216718i
\(273\) −1.09827 1.51165i −0.0664706 0.0914889i
\(274\) −17.5447 −1.05992
\(275\) 0 0
\(276\) 2.92177 0.175870
\(277\) −1.34842 1.85594i −0.0810189 0.111513i 0.766584 0.642144i \(-0.221955\pi\)
−0.847603 + 0.530631i \(0.821955\pi\)
\(278\) −10.6627 3.46451i −0.639505 0.207788i
\(279\) −2.69533 + 8.29536i −0.161365 + 0.496630i
\(280\) 0 0
\(281\) −0.500078 1.53908i −0.0298321 0.0918139i 0.935032 0.354564i \(-0.115371\pi\)
−0.964864 + 0.262750i \(0.915371\pi\)
\(282\) 1.10063i 0.0655416i
\(283\) −12.3563 + 4.01481i −0.734506 + 0.238656i −0.652301 0.757960i \(-0.726196\pi\)
−0.0822051 + 0.996615i \(0.526196\pi\)
\(284\) 2.16249 + 1.57114i 0.128320 + 0.0932300i
\(285\) 0 0
\(286\) 3.05467 2.21935i 0.180627 0.131233i
\(287\) −28.1265 + 38.7128i −1.66025 + 2.28514i
\(288\) −6.51897 + 8.97259i −0.384134 + 0.528715i
\(289\) −13.7095 + 9.96055i −0.806442 + 0.585914i
\(290\) 0 0
\(291\) −4.78115 3.47371i −0.280276 0.203632i
\(292\) 8.16231 2.65210i 0.477663 0.155202i
\(293\) 11.7009i 0.683572i 0.939778 + 0.341786i \(0.111032\pi\)
−0.939778 + 0.341786i \(0.888968\pi\)
\(294\) 5.20220 + 16.0107i 0.303398 + 0.933765i
\(295\) 0 0
\(296\) 3.28576 10.1125i 0.190981 0.587780i
\(297\) 14.5339 + 4.72235i 0.843342 + 0.274018i
\(298\) −11.9051 16.3859i −0.689642 0.949211i
\(299\) −2.82612 −0.163439
\(300\) 0 0
\(301\) −6.37395 −0.367388
\(302\) 1.52596 + 2.10031i 0.0878094 + 0.120859i
\(303\) −2.40851 0.782572i −0.138365 0.0449576i
\(304\) −8.52804 + 26.2466i −0.489116 + 1.50535i
\(305\) 0 0
\(306\) 0.301958 + 0.929330i 0.0172618 + 0.0531263i
\(307\) 26.5673i 1.51628i 0.652094 + 0.758138i \(0.273891\pi\)
−0.652094 + 0.758138i \(0.726109\pi\)
\(308\) −14.2538 + 4.63134i −0.812185 + 0.263895i
\(309\) 0.229482 + 0.166728i 0.0130548 + 0.00948485i
\(310\) 0 0
\(311\) 10.9145 7.92981i 0.618902 0.449658i −0.233636 0.972324i \(-0.575062\pi\)
0.852538 + 0.522666i \(0.175062\pi\)
\(312\) −0.469603 + 0.646353i −0.0265860 + 0.0365925i
\(313\) −9.98904 + 13.7487i −0.564614 + 0.777124i −0.991904 0.126990i \(-0.959468\pi\)
0.427290 + 0.904115i \(0.359468\pi\)
\(314\) −13.3805 + 9.72150i −0.755105 + 0.548616i
\(315\) 0 0
\(316\) 6.48649 + 4.71271i 0.364893 + 0.265111i
\(317\) −15.9738 + 5.19021i −0.897180 + 0.291511i −0.721072 0.692860i \(-0.756351\pi\)
−0.176107 + 0.984371i \(0.556351\pi\)
\(318\) 1.47224i 0.0825588i
\(319\) −4.99696 15.3791i −0.279776 0.861063i
\(320\) 0 0
\(321\) 0.360808 1.11045i 0.0201384 0.0619795i
\(322\) 36.2573 + 11.7807i 2.02054 + 0.656513i
\(323\) 0.758839 + 1.04445i 0.0422230 + 0.0581149i
\(324\) −3.93033 −0.218351
\(325\) 0 0
\(326\) −9.39524 −0.520354
\(327\) 0.0312793 + 0.0430522i 0.00172975 + 0.00238079i
\(328\) 19.4591 + 6.32265i 1.07445 + 0.349110i
\(329\) 1.30582 4.01891i 0.0719924 0.221570i
\(330\) 0 0
\(331\) 3.96604 + 12.2062i 0.217994 + 0.670915i 0.998928 + 0.0463015i \(0.0147435\pi\)
−0.780934 + 0.624614i \(0.785257\pi\)
\(332\) 8.74180i 0.479768i
\(333\) 12.8548 4.17679i 0.704441 0.228887i
\(334\) −29.7723 21.6308i −1.62907 1.18359i
\(335\) 0 0
\(336\) 13.1192 9.53166i 0.715711 0.519995i
\(337\) 12.4831 17.1815i 0.679997 0.935935i −0.319937 0.947439i \(-0.603662\pi\)
0.999934 + 0.0115037i \(0.00366181\pi\)
\(338\) 12.5385 17.2577i 0.682003 0.938697i
\(339\) −8.12183 + 5.90085i −0.441117 + 0.320490i
\(340\) 0 0
\(341\) 11.0701 + 8.04291i 0.599480 + 0.435548i
\(342\) −22.1738 + 7.20470i −1.19902 + 0.389586i
\(343\) 32.4969i 1.75467i
\(344\) 0.842191 + 2.59200i 0.0454079 + 0.139751i
\(345\) 0 0
\(346\) 12.1928 37.5255i 0.655488 2.01739i
\(347\) 27.2270 + 8.84658i 1.46162 + 0.474909i 0.928565 0.371171i \(-0.121044\pi\)
0.533056 + 0.846080i \(0.321044\pi\)
\(348\) −1.43813 1.97942i −0.0770920 0.106108i
\(349\) −19.9124 −1.06588 −0.532942 0.846152i \(-0.678914\pi\)
−0.532942 + 0.846152i \(0.678914\pi\)
\(350\) 0 0
\(351\) −2.23654 −0.119377
\(352\) 10.2269 + 14.0761i 0.545096 + 0.750260i
\(353\) −23.4831 7.63011i −1.24988 0.406110i −0.392000 0.919965i \(-0.628217\pi\)
−0.857877 + 0.513855i \(0.828217\pi\)
\(354\) 1.66573 5.12658i 0.0885324 0.272475i
\(355\) 0 0
\(356\) 1.87031 + 5.75624i 0.0991265 + 0.305080i
\(357\) 0.758602i 0.0401495i
\(358\) −10.1164 + 3.28702i −0.534668 + 0.173724i
\(359\) 17.3947 + 12.6380i 0.918058 + 0.667008i 0.943040 0.332679i \(-0.107953\pi\)
−0.0249816 + 0.999688i \(0.507953\pi\)
\(360\) 0 0
\(361\) −9.54930 + 6.93797i −0.502595 + 0.365156i
\(362\) −13.1975 + 18.1647i −0.693643 + 0.954718i
\(363\) 1.80604 2.48581i 0.0947927 0.130471i
\(364\) 1.77452 1.28927i 0.0930103 0.0675760i
\(365\) 0 0
\(366\) −11.2789 8.19460i −0.589557 0.428338i
\(367\) 1.08785 0.353463i 0.0567852 0.0184506i −0.280487 0.959858i \(-0.590496\pi\)
0.337272 + 0.941407i \(0.390496\pi\)
\(368\) 24.5272i 1.27857i
\(369\) 8.03721 + 24.7360i 0.418400 + 1.28770i
\(370\) 0 0
\(371\) −1.74671 + 5.37581i −0.0906845 + 0.279098i
\(372\) 1.96905 + 0.639784i 0.102091 + 0.0331713i
\(373\) 6.78275 + 9.33566i 0.351198 + 0.483382i 0.947670 0.319251i \(-0.103431\pi\)
−0.596472 + 0.802634i \(0.703431\pi\)
\(374\) 1.53295 0.0792671
\(375\) 0 0
\(376\) −1.80685 −0.0931812
\(377\) 1.39105 + 1.91462i 0.0716427 + 0.0986077i
\(378\) 28.6933 + 9.32302i 1.47582 + 0.479524i
\(379\) −6.52188 + 20.0723i −0.335007 + 1.03104i 0.631712 + 0.775203i \(0.282352\pi\)
−0.966719 + 0.255841i \(0.917648\pi\)
\(380\) 0 0
\(381\) −2.59292 7.98018i −0.132839 0.408837i
\(382\) 4.68127i 0.239515i
\(383\) −0.816129 + 0.265176i −0.0417022 + 0.0135499i −0.329794 0.944053i \(-0.606979\pi\)
0.288092 + 0.957603i \(0.406979\pi\)
\(384\) −7.49097 5.44251i −0.382272 0.277737i
\(385\) 0 0
\(386\) −30.7337 + 22.3293i −1.56430 + 1.13653i
\(387\) −2.03635 + 2.80280i −0.103514 + 0.142474i
\(388\) 4.07780 5.61260i 0.207019 0.284937i
\(389\) −27.4537 + 19.9463i −1.39196 + 1.01132i −0.396310 + 0.918117i \(0.629710\pi\)
−0.995647 + 0.0931998i \(0.970290\pi\)
\(390\) 0 0
\(391\) −0.928260 0.674421i −0.0469442 0.0341069i
\(392\) 26.2840 8.54019i 1.32754 0.431345i
\(393\) 11.8891i 0.599728i
\(394\) −0.661604 2.03621i −0.0333311 0.102583i
\(395\) 0 0
\(396\) −2.51728 + 7.74740i −0.126498 + 0.389322i
\(397\) −25.5155 8.29049i −1.28059 0.416088i −0.411800 0.911274i \(-0.635100\pi\)
−0.868787 + 0.495186i \(0.835100\pi\)
\(398\) −8.53576 11.7485i −0.427859 0.588897i
\(399\) 18.1002 0.906145
\(400\) 0 0
\(401\) 3.79757 0.189642 0.0948208 0.995494i \(-0.469772\pi\)
0.0948208 + 0.995494i \(0.469772\pi\)
\(402\) −2.07661 2.85821i −0.103572 0.142555i
\(403\) −1.90459 0.618838i −0.0948743 0.0308265i
\(404\) 0.918663 2.82736i 0.0457052 0.140666i
\(405\) 0 0
\(406\) −9.86518 30.3619i −0.489601 1.50684i
\(407\) 21.2044i 1.05106i
\(408\) −0.308489 + 0.100234i −0.0152725 + 0.00496234i
\(409\) −11.4681 8.33207i −0.567062 0.411994i 0.266975 0.963703i \(-0.413976\pi\)
−0.834037 + 0.551709i \(0.813976\pi\)
\(410\) 0 0
\(411\) 5.98936 4.35153i 0.295434 0.214645i
\(412\) −0.195723 + 0.269389i −0.00964257 + 0.0132719i
\(413\) 12.1647 16.7432i 0.598585 0.823881i
\(414\) 16.7638 12.1796i 0.823896 0.598595i
\(415\) 0 0
\(416\) −2.06008 1.49673i −0.101004 0.0733834i
\(417\) 4.49928 1.46190i 0.220331 0.0715897i
\(418\) 36.5762i 1.78900i
\(419\) 6.05576 + 18.6377i 0.295843 + 0.910512i 0.982937 + 0.183943i \(0.0588862\pi\)
−0.687094 + 0.726569i \(0.741114\pi\)
\(420\) 0 0
\(421\) −7.96770 + 24.5221i −0.388322 + 1.19513i 0.545720 + 0.837968i \(0.316256\pi\)
−0.934042 + 0.357164i \(0.883744\pi\)
\(422\) −33.6720 10.9407i −1.63913 0.532584i
\(423\) −1.35004 1.85817i −0.0656412 0.0903474i
\(424\) 2.41689 0.117375
\(425\) 0 0
\(426\) −3.83313 −0.185716
\(427\) −31.4621 43.3039i −1.52256 2.09562i
\(428\) 1.30356 + 0.423554i 0.0630102 + 0.0204732i
\(429\) −0.492341 + 1.51527i −0.0237704 + 0.0731579i
\(430\) 0 0
\(431\) 2.91259 + 8.96402i 0.140294 + 0.431782i 0.996376 0.0850590i \(-0.0271079\pi\)
−0.856081 + 0.516841i \(0.827108\pi\)
\(432\) 19.4103i 0.933881i
\(433\) −1.66588 + 0.541277i −0.0800571 + 0.0260121i −0.348772 0.937208i \(-0.613401\pi\)
0.268715 + 0.963220i \(0.413401\pi\)
\(434\) 21.8550 + 15.8786i 1.04907 + 0.762197i
\(435\) 0 0
\(436\) −0.0505391 + 0.0367188i −0.00242038 + 0.00175851i
\(437\) 16.0917 22.1483i 0.769769 1.05950i
\(438\) −7.23408 + 9.95686i −0.345658 + 0.475757i
\(439\) 22.7197 16.5068i 1.08435 0.787827i 0.105914 0.994375i \(-0.466223\pi\)
0.978436 + 0.206549i \(0.0662232\pi\)
\(440\) 0 0
\(441\) 28.4216 + 20.6495i 1.35341 + 0.983311i
\(442\) −0.213371 + 0.0693285i −0.0101490 + 0.00329762i
\(443\) 29.9110i 1.42111i −0.703640 0.710557i \(-0.748443\pi\)
0.703640 0.710557i \(-0.251557\pi\)
\(444\) −0.991436 3.05133i −0.0470515 0.144810i
\(445\) 0 0
\(446\) −3.29568 + 10.1430i −0.156055 + 0.480287i
\(447\) 8.12823 + 2.64102i 0.384452 + 0.124916i
\(448\) −6.64656 9.14821i −0.314021 0.432212i
\(449\) −6.29974 −0.297303 −0.148652 0.988890i \(-0.547493\pi\)
−0.148652 + 0.988890i \(0.547493\pi\)
\(450\) 0 0
\(451\) 40.8026 1.92132
\(452\) −6.92703 9.53424i −0.325820 0.448453i
\(453\) −1.04186 0.338520i −0.0489508 0.0159051i
\(454\) 5.85873 18.0313i 0.274964 0.846252i
\(455\) 0 0
\(456\) −2.39159 7.36055i −0.111996 0.344689i
\(457\) 19.1809i 0.897243i −0.893722 0.448622i \(-0.851915\pi\)
0.893722 0.448622i \(-0.148085\pi\)
\(458\) 24.0807 7.82429i 1.12522 0.365605i
\(459\) −0.734607 0.533724i −0.0342885 0.0249121i
\(460\) 0 0
\(461\) −5.72064 + 4.15629i −0.266437 + 0.193578i −0.712980 0.701184i \(-0.752655\pi\)
0.446543 + 0.894762i \(0.352655\pi\)
\(462\) 12.6328 17.3876i 0.587732 0.808944i
\(463\) −5.65356 + 7.78146i −0.262743 + 0.361635i −0.919923 0.392099i \(-0.871749\pi\)
0.657180 + 0.753734i \(0.271749\pi\)
\(464\) −16.6165 + 12.0726i −0.771401 + 0.560456i
\(465\) 0 0
\(466\) 10.6603 + 7.74517i 0.493830 + 0.358788i
\(467\) −18.2812 + 5.93992i −0.845953 + 0.274867i −0.699750 0.714388i \(-0.746705\pi\)
−0.146203 + 0.989255i \(0.546705\pi\)
\(468\) 1.19220i 0.0551096i
\(469\) −4.19160 12.9004i −0.193550 0.595686i
\(470\) 0 0
\(471\) 2.15662 6.63739i 0.0993717 0.305835i
\(472\) −8.41605 2.73454i −0.387380 0.125867i
\(473\) 3.19462 + 4.39701i 0.146889 + 0.202175i
\(474\) −11.4977 −0.528105
\(475\) 0 0
\(476\) 0.890525 0.0408172
\(477\) 1.80585 + 2.48554i 0.0826843 + 0.113805i
\(478\) −13.9911 4.54598i −0.639937 0.207928i
\(479\) 11.7425 36.1398i 0.536529 1.65127i −0.203792 0.979014i \(-0.565327\pi\)
0.740321 0.672253i \(-0.234673\pi\)
\(480\) 0 0
\(481\) 0.958977 + 2.95143i 0.0437256 + 0.134574i
\(482\) 1.01155i 0.0460747i
\(483\) −15.2993 + 4.97104i −0.696142 + 0.226190i
\(484\) 2.91809 + 2.12012i 0.132641 + 0.0963691i
\(485\) 0 0
\(486\) 20.5089 14.9006i 0.930302 0.675904i
\(487\) 9.84481 13.5502i 0.446111 0.614019i −0.525445 0.850827i \(-0.676101\pi\)
0.971556 + 0.236808i \(0.0761013\pi\)
\(488\) −13.4527 + 18.5160i −0.608973 + 0.838180i
\(489\) 3.20732 2.33025i 0.145040 0.105378i
\(490\) 0 0
\(491\) 7.24115 + 5.26100i 0.326789 + 0.237426i 0.739067 0.673632i \(-0.235267\pi\)
−0.412278 + 0.911058i \(0.635267\pi\)
\(492\) 5.87153 1.90778i 0.264709 0.0860092i
\(493\) 0.960829i 0.0432736i
\(494\) −1.65418 5.09103i −0.0744249 0.229056i
\(495\) 0 0
\(496\) 5.37075 16.5295i 0.241154 0.742194i
\(497\) −13.9965 4.54775i −0.627831 0.203995i
\(498\) 7.36847 + 10.1418i 0.330189 + 0.454466i
\(499\) 36.3310 1.62640 0.813200 0.581985i \(-0.197724\pi\)
0.813200 + 0.581985i \(0.197724\pi\)
\(500\) 0 0
\(501\) 15.5286 0.693765
\(502\) 14.0415 + 19.3265i 0.626704 + 0.862583i
\(503\) 11.6928 + 3.79921i 0.521354 + 0.169398i 0.557860 0.829935i \(-0.311623\pi\)
−0.0365056 + 0.999333i \(0.511623\pi\)
\(504\) 6.94991 21.3896i 0.309574 0.952770i
\(505\) 0 0
\(506\) −10.0453 30.9162i −0.446567 1.37439i
\(507\) 9.00125i 0.399759i
\(508\) 9.36795 3.04383i 0.415636 0.135048i
\(509\) −25.1841 18.2973i −1.11626 0.811013i −0.132625 0.991166i \(-0.542341\pi\)
−0.983639 + 0.180153i \(0.942341\pi\)
\(510\) 0 0
\(511\) −38.2281 + 27.7744i −1.69111 + 1.22867i
\(512\) 1.51482 2.08496i 0.0669460 0.0921433i
\(513\) 12.7346 17.5277i 0.562248 0.773868i
\(514\) −24.0866 + 17.4999i −1.06241 + 0.771889i
\(515\) 0 0
\(516\) 0.665295 + 0.483365i 0.0292880 + 0.0212790i
\(517\) −3.42689 + 1.11346i −0.150714 + 0.0489701i
\(518\) 41.8624i 1.83933i
\(519\) 5.14493 + 15.8345i 0.225837 + 0.695056i
\(520\) 0 0
\(521\) 5.01130 15.4232i 0.219549 0.675702i −0.779250 0.626713i \(-0.784400\pi\)
0.998799 0.0489896i \(-0.0156001\pi\)
\(522\) −16.5027 5.36205i −0.722303 0.234691i
\(523\) 17.9822 + 24.7504i 0.786307 + 1.08226i 0.994558 + 0.104183i \(0.0332229\pi\)
−0.208251 + 0.978075i \(0.566777\pi\)
\(524\) 13.9567 0.609701
\(525\) 0 0
\(526\) −40.9655 −1.78618
\(527\) −0.477898 0.657770i −0.0208176 0.0286529i
\(528\) −13.1507 4.27291i −0.572309 0.185954i
\(529\) −0.411359 + 1.26603i −0.0178852 + 0.0550449i
\(530\) 0 0
\(531\) −3.47608 10.6983i −0.150849 0.464266i
\(532\) 21.2479i 0.921214i
\(533\) −5.67930 + 1.84532i −0.245998 + 0.0799295i
\(534\) −7.02179 5.10163i −0.303863 0.220769i
\(535\) 0 0
\(536\) −4.69218 + 3.40907i −0.202671 + 0.147249i
\(537\) 2.63824 3.63123i 0.113849 0.156699i
\(538\) −29.6666 + 40.8325i −1.27902 + 1.76041i
\(539\) 44.5876 32.3948i 1.92052 1.39534i
\(540\) 0 0
\(541\) −14.8062 10.7573i −0.636567 0.462493i 0.222102 0.975023i \(-0.428708\pi\)
−0.858669 + 0.512530i \(0.828708\pi\)
\(542\) 44.3452 14.4086i 1.90479 0.618904i
\(543\) 9.47432i 0.406582i
\(544\) −0.319470 0.983228i −0.0136972 0.0421555i
\(545\) 0 0
\(546\) −0.971996 + 2.99150i −0.0415976 + 0.128024i
\(547\) 6.23515 + 2.02592i 0.266596 + 0.0866223i 0.439265 0.898358i \(-0.355239\pi\)
−0.172669 + 0.984980i \(0.555239\pi\)
\(548\) 5.10827 + 7.03093i 0.218214 + 0.300346i
\(549\) −29.0935 −1.24168
\(550\) 0 0
\(551\) −22.9254 −0.976653
\(552\) 4.04300 + 5.56471i 0.172081 + 0.236850i
\(553\) −41.9833 13.6412i −1.78531 0.580083i
\(554\) −1.19338 + 3.67285i −0.0507020 + 0.156045i
\(555\) 0 0
\(556\) 1.71613 + 5.28171i 0.0727802 + 0.223994i
\(557\) 35.5383i 1.50581i 0.658131 + 0.752904i \(0.271347\pi\)
−0.658131 + 0.752904i \(0.728653\pi\)
\(558\) 13.9645 4.53734i 0.591164 0.192081i
\(559\) −0.643514 0.467540i −0.0272177 0.0197748i
\(560\) 0 0
\(561\) −0.523315 + 0.380210i −0.0220944 + 0.0160525i
\(562\) −1.60127 + 2.20396i −0.0675454 + 0.0929682i
\(563\) 22.4816 30.9432i 0.947486 1.30410i −0.00514973 0.999987i \(-0.501639\pi\)
0.952635 0.304115i \(-0.0983608\pi\)
\(564\) −0.441070 + 0.320456i −0.0185724 + 0.0134936i
\(565\) 0 0
\(566\) 17.6942 + 12.8556i 0.743741 + 0.540360i
\(567\) 20.5804 6.68697i 0.864295 0.280826i
\(568\) 6.29266i 0.264034i
\(569\) −2.33585 7.18901i −0.0979240 0.301379i 0.890081 0.455803i \(-0.150648\pi\)
−0.988005 + 0.154424i \(0.950648\pi\)
\(570\) 0 0
\(571\) 7.11549 21.8992i 0.297774 0.916454i −0.684501 0.729011i \(-0.739980\pi\)
0.982276 0.187443i \(-0.0600199\pi\)
\(572\) −1.77878 0.577960i −0.0743745 0.0241657i
\(573\) 1.16107 + 1.59808i 0.0485045 + 0.0667607i
\(574\) 80.5540 3.36226
\(575\) 0 0
\(576\) −6.14617 −0.256090
\(577\) 13.1175 + 18.0546i 0.546087 + 0.751624i 0.989475 0.144706i \(-0.0462235\pi\)
−0.443388 + 0.896330i \(0.646223\pi\)
\(578\) 27.1307 + 8.81529i 1.12849 + 0.366668i
\(579\) 4.95354 15.2454i 0.205862 0.633579i
\(580\) 0 0
\(581\) 14.8731 + 45.7747i 0.617040 + 1.89905i
\(582\) 9.94866i 0.412385i
\(583\) 4.58390 1.48940i 0.189846 0.0616846i
\(584\) 16.3457 + 11.8758i 0.676389 + 0.491425i
\(585\) 0 0
\(586\) 15.9355 11.5778i 0.658290 0.478276i
\(587\) 12.3897 17.0530i 0.511378 0.703851i −0.472773 0.881184i \(-0.656747\pi\)
0.984151 + 0.177333i \(0.0567471\pi\)
\(588\) 4.90153 6.74638i 0.202136 0.278216i
\(589\) 15.6944 11.4026i 0.646676 0.469838i
\(590\) 0 0
\(591\) 0.730887 + 0.531020i 0.0300647 + 0.0218433i
\(592\) −25.6147 + 8.32273i −1.05276 + 0.342062i
\(593\) 34.3547i 1.41078i 0.708819 + 0.705390i \(0.249228\pi\)
−0.708819 + 0.705390i \(0.750772\pi\)
\(594\) −7.94965 24.4665i −0.326178 1.00387i
\(595\) 0 0
\(596\) −3.10030 + 9.54175i −0.126993 + 0.390846i
\(597\) 5.82782 + 1.89357i 0.238517 + 0.0774988i
\(598\) 2.79640 + 3.84891i 0.114353 + 0.157394i
\(599\) −0.498231 −0.0203572 −0.0101786 0.999948i \(-0.503240\pi\)
−0.0101786 + 0.999948i \(0.503240\pi\)
\(600\) 0 0
\(601\) 27.8635 1.13657 0.568287 0.822830i \(-0.307606\pi\)
0.568287 + 0.822830i \(0.307606\pi\)
\(602\) 6.30692 + 8.68073i 0.257051 + 0.353800i
\(603\) −7.01180 2.27827i −0.285543 0.0927784i
\(604\) 0.397390 1.22304i 0.0161696 0.0497648i
\(605\) 0 0
\(606\) 1.31739 + 4.05451i 0.0535153 + 0.164703i
\(607\) 14.1000i 0.572303i 0.958184 + 0.286152i \(0.0923761\pi\)
−0.958184 + 0.286152i \(0.907624\pi\)
\(608\) 23.4598 7.62255i 0.951420 0.309135i
\(609\) 10.8982 + 7.91804i 0.441619 + 0.320855i
\(610\) 0 0
\(611\) 0.426630 0.309965i 0.0172596 0.0125398i
\(612\) 0.284506 0.391588i 0.0115005 0.0158290i
\(613\) −18.7067 + 25.7475i −0.755556 + 1.03993i 0.242015 + 0.970272i \(0.422192\pi\)
−0.997571 + 0.0696606i \(0.977808\pi\)
\(614\) 36.1822 26.2879i 1.46020 1.06089i
\(615\) 0 0
\(616\) −28.5443 20.7387i −1.15008 0.835585i
\(617\) −32.3038 + 10.4961i −1.30050 + 0.422559i −0.875756 0.482753i \(-0.839637\pi\)
−0.424746 + 0.905312i \(0.639637\pi\)
\(618\) 0.477508i 0.0192082i
\(619\) −0.348700 1.07319i −0.0140155 0.0431351i 0.943804 0.330505i \(-0.107219\pi\)
−0.957820 + 0.287370i \(0.907219\pi\)
\(620\) 0 0
\(621\) −5.95019 + 18.3128i −0.238773 + 0.734868i
\(622\) −21.5993 7.01805i −0.866055 0.281398i
\(623\) −19.5871 26.9593i −0.784739 1.08010i
\(624\) 2.02368 0.0810119
\(625\) 0 0
\(626\) 28.6085 1.14343
\(627\) −9.07181 12.4863i −0.362293 0.498654i
\(628\) 7.79165 + 2.53166i 0.310921 + 0.101024i
\(629\) −0.389341 + 1.19827i −0.0155240 + 0.0477781i
\(630\) 0 0
\(631\) 10.1296 + 31.1758i 0.403254 + 1.24109i 0.922345 + 0.386368i \(0.126271\pi\)
−0.519091 + 0.854719i \(0.673729\pi\)
\(632\) 18.8751i 0.750813i
\(633\) 14.2084 4.61659i 0.564733 0.183493i
\(634\) 22.8744 + 16.6193i 0.908460 + 0.660035i
\(635\) 0 0
\(636\) 0.589988 0.428652i 0.0233946 0.0169971i
\(637\) −4.74106 + 6.52551i −0.187848 + 0.258550i
\(638\) −16.0005 + 22.0227i −0.633464 + 0.871889i
\(639\) −6.47140 + 4.70175i −0.256005 + 0.185998i
\(640\) 0 0
\(641\) −24.6043 17.8761i −0.971812 0.706063i −0.0159485 0.999873i \(-0.505077\pi\)
−0.955864 + 0.293810i \(0.905077\pi\)
\(642\) −1.86935 + 0.607388i −0.0737773 + 0.0239717i
\(643\) 1.06932i 0.0421700i 0.999778 + 0.0210850i \(0.00671206\pi\)
−0.999778 + 0.0210850i \(0.993288\pi\)
\(644\) −5.83552 17.9599i −0.229952 0.707719i
\(645\) 0 0
\(646\) 0.671589 2.06694i 0.0264233 0.0813226i
\(647\) −29.0719 9.44602i −1.14293 0.371362i −0.324456 0.945901i \(-0.605181\pi\)
−0.818477 + 0.574539i \(0.805181\pi\)
\(648\) −5.43858 7.48556i −0.213648 0.294061i
\(649\) −17.6471 −0.692709
\(650\) 0 0
\(651\) −11.3991 −0.446765
\(652\) 2.73549 + 3.76508i 0.107130 + 0.147452i
\(653\) −31.7179 10.3058i −1.24122 0.403296i −0.386451 0.922310i \(-0.626299\pi\)
−0.854766 + 0.519014i \(0.826299\pi\)
\(654\) 0.0276828 0.0851989i 0.00108248 0.00333154i
\(655\) 0 0
\(656\) −16.0151 49.2893i −0.625283 1.92442i
\(657\) 25.6833i 1.00200i
\(658\) −6.76548 + 2.19824i −0.263746 + 0.0856962i
\(659\) −8.18325 5.94548i −0.318774 0.231603i 0.416878 0.908962i \(-0.363124\pi\)
−0.735652 + 0.677360i \(0.763124\pi\)
\(660\) 0 0
\(661\) 24.9487 18.1263i 0.970392 0.705031i 0.0148510 0.999890i \(-0.495273\pi\)
0.955541 + 0.294859i \(0.0952726\pi\)
\(662\) 12.6994 17.4793i 0.493577 0.679350i
\(663\) 0.0556448 0.0765885i 0.00216106 0.00297445i
\(664\) 16.6493 12.0964i 0.646119 0.469433i
\(665\) 0 0
\(666\) −18.4081 13.3742i −0.713298 0.518241i
\(667\) 19.3778 6.29621i 0.750310 0.243790i
\(668\) 18.2290i 0.705302i
\(669\) −1.39066 4.28001i −0.0537660 0.165475i
\(670\) 0 0
\(671\) −14.1040 + 43.4077i −0.544480 + 1.67574i
\(672\) −13.7850 4.47902i −0.531768 0.172782i
\(673\) 18.1185 + 24.9379i 0.698415 + 0.961286i 0.999969 + 0.00783693i \(0.00249460\pi\)
−0.301554 + 0.953449i \(0.597505\pi\)
\(674\) −35.7514 −1.37709
\(675\) 0 0
\(676\) −10.5666 −0.406407
\(677\) 24.2474 + 33.3736i 0.931902 + 1.28265i 0.959113 + 0.283023i \(0.0913374\pi\)
−0.0272110 + 0.999630i \(0.508663\pi\)
\(678\) 16.0728 + 5.22238i 0.617273 + 0.200564i
\(679\) −11.8034 + 36.3272i −0.452974 + 1.39411i
\(680\) 0 0
\(681\) 2.47218 + 7.60859i 0.0947342 + 0.291562i
\(682\) 23.0348i 0.882048i
\(683\) −21.2575 + 6.90698i −0.813395 + 0.264288i −0.686035 0.727568i \(-0.740650\pi\)
−0.127360 + 0.991857i \(0.540650\pi\)
\(684\) 9.34329 + 6.78830i 0.357250 + 0.259557i
\(685\) 0 0
\(686\) 44.2578 32.1552i 1.68977 1.22769i
\(687\) −6.27997 + 8.64364i −0.239596 + 0.329775i
\(688\) 4.05767 5.58490i 0.154697 0.212922i
\(689\) −0.570673 + 0.414618i −0.0217409 + 0.0157957i
\(690\) 0 0
\(691\) −7.43406 5.40116i −0.282805 0.205470i 0.437335 0.899299i \(-0.355922\pi\)
−0.720140 + 0.693829i \(0.755922\pi\)
\(692\) −18.5881 + 6.03965i −0.706614 + 0.229593i
\(693\) 44.8506i 1.70373i
\(694\) −14.8924 45.8342i −0.565309 1.73984i
\(695\) 0 0
\(696\) 1.77992 5.47804i 0.0674678 0.207644i
\(697\) −2.30577 0.749192i −0.0873374 0.0283777i
\(698\) 19.7030 + 27.1188i 0.745768 + 1.02646i
\(699\) −5.56018 −0.210305
\(700\) 0 0
\(701\) −35.9929 −1.35943 −0.679717 0.733475i \(-0.737897\pi\)
−0.679717 + 0.733475i \(0.737897\pi\)
\(702\) 2.21302 + 3.04595i 0.0835249 + 0.114962i
\(703\) −28.5907 9.28967i −1.07832 0.350366i
\(704\) −2.97956 + 9.17014i −0.112296 + 0.345613i
\(705\) 0 0
\(706\) 12.8446 + 39.5316i 0.483413 + 1.48779i
\(707\) 16.3679i 0.615578i
\(708\) −2.53943 + 0.825111i −0.0954376 + 0.0310096i
\(709\) 16.3795 + 11.9004i 0.615144 + 0.446928i 0.851222 0.524806i \(-0.175862\pi\)
−0.236078 + 0.971734i \(0.575862\pi\)
\(710\) 0 0
\(711\) −19.4113 + 14.1031i −0.727980 + 0.528908i
\(712\) −8.37508 + 11.5273i −0.313870 + 0.432004i
\(713\) −10.1341 + 13.9484i −0.379526 + 0.522373i
\(714\) −1.03315 + 0.750625i −0.0386645 + 0.0280914i
\(715\) 0 0
\(716\) 4.26271 + 3.09704i 0.159305 + 0.115742i
\(717\) 5.90374 1.91824i 0.220479 0.0716381i
\(718\) 36.1951i 1.35079i
\(719\) 11.4418 + 35.2143i 0.426708 + 1.31327i 0.901349 + 0.433093i \(0.142578\pi\)
−0.474641 + 0.880180i \(0.657422\pi\)
\(720\) 0 0
\(721\) 0.566531 1.74360i 0.0210987 0.0649352i
\(722\) 18.8977 + 6.14025i 0.703301 + 0.228516i
\(723\) 0.250889 + 0.345319i 0.00933066 + 0.0128425i
\(724\) 11.1219 0.413343
\(725\) 0 0
\(726\) −5.17249 −0.191969
\(727\) −7.09986 9.77211i −0.263319 0.362428i 0.656801 0.754064i \(-0.271909\pi\)
−0.920120 + 0.391636i \(0.871909\pi\)
\(728\) 4.91099 + 1.59568i 0.182013 + 0.0591397i
\(729\) 1.06397 3.27458i 0.0394065 0.121281i
\(730\) 0 0
\(731\) −0.0997940 0.307134i −0.00369102 0.0113598i
\(732\) 6.90586i 0.255248i
\(733\) −42.4282 + 13.7858i −1.56712 + 0.509188i −0.958698 0.284425i \(-0.908197\pi\)
−0.608422 + 0.793614i \(0.708197\pi\)
\(734\) −1.55779 1.13180i −0.0574992 0.0417756i
\(735\) 0 0
\(736\) −17.7360 + 12.8860i −0.653759 + 0.474984i
\(737\) −6.79840 + 9.35720i −0.250422 + 0.344677i
\(738\) 25.7354 35.4218i 0.947335 1.30389i
\(739\) −11.8491 + 8.60890i −0.435877 + 0.316683i −0.783995 0.620768i \(-0.786821\pi\)
0.348117 + 0.937451i \(0.386821\pi\)
\(740\) 0 0
\(741\) 1.82740 + 1.32768i 0.0671312 + 0.0487737i
\(742\) 9.04970 2.94043i 0.332225 0.107946i
\(743\) 24.4397i 0.896604i 0.893882 + 0.448302i \(0.147971\pi\)
−0.893882 + 0.448302i \(0.852029\pi\)
\(744\) 1.50616 + 4.63549i 0.0552186 + 0.169945i
\(745\) 0 0
\(746\) 6.00288 18.4750i 0.219781 0.676417i
\(747\) 24.8801 + 8.08402i 0.910314 + 0.295779i
\(748\) −0.446330 0.614321i −0.0163194 0.0224618i
\(749\) −7.54648 −0.275743
\(750\) 0 0
\(751\) 31.2863 1.14165 0.570826 0.821071i \(-0.306623\pi\)
0.570826 + 0.821071i \(0.306623\pi\)
\(752\) 2.69011 + 3.70262i 0.0980982 + 0.135021i
\(753\) −9.58690 3.11497i −0.349366 0.113516i
\(754\) 1.23111 3.78896i 0.0448343 0.137986i
\(755\) 0 0
\(756\) −4.61812 14.2131i −0.167959 0.516926i
\(757\) 11.3251i 0.411617i 0.978592 + 0.205808i \(0.0659824\pi\)
−0.978592 + 0.205808i \(0.934018\pi\)
\(758\) 33.7899 10.9790i 1.22730 0.398775i
\(759\) 11.0972 + 8.06260i 0.402803 + 0.292654i
\(760\) 0 0
\(761\) 33.4397 24.2954i 1.21219 0.880707i 0.216761 0.976225i \(-0.430451\pi\)
0.995428 + 0.0955176i \(0.0304506\pi\)
\(762\) −8.30262 + 11.4276i −0.300772 + 0.413977i
\(763\) 0.202165 0.278257i 0.00731888 0.0100736i
\(764\) −1.87599 + 1.36299i −0.0678709 + 0.0493111i
\(765\) 0 0
\(766\) 1.16869 + 0.849104i 0.0422266 + 0.0306794i
\(767\) 2.45629 0.798097i 0.0886915 0.0288176i
\(768\) 12.0882i 0.436195i
\(769\) −6.99895 21.5406i −0.252389 0.776773i −0.994333 0.106311i \(-0.966096\pi\)
0.741944 0.670462i \(-0.233904\pi\)
\(770\) 0 0
\(771\) 3.88219 11.9481i 0.139814 0.430302i
\(772\) 17.8967 + 5.81498i 0.644115 + 0.209286i
\(773\) −9.90659 13.6353i −0.356315 0.490426i 0.592802 0.805348i \(-0.298022\pi\)
−0.949118 + 0.314922i \(0.898022\pi\)
\(774\) 5.83210 0.209630
\(775\) 0 0
\(776\) 16.3322 0.586292
\(777\) 10.3829 + 14.2909i 0.372485 + 0.512682i
\(778\) 54.3300 + 17.6529i 1.94782 + 0.632886i
\(779\) 17.8757 55.0157i 0.640463 1.97114i
\(780\) 0 0
\(781\) 3.87782 + 11.9347i 0.138759 + 0.427058i
\(782\) 1.93153i 0.0690715i
\(783\) 15.3352 4.98270i 0.548035 0.178067i
\(784\) −56.6333 41.1465i −2.02262 1.46952i
\(785\) 0 0
\(786\) −16.1919 + 11.7641i −0.577547 + 0.419612i
\(787\) −11.8196 + 16.2683i −0.421323 + 0.579902i −0.965934 0.258787i \(-0.916677\pi\)
0.544611 + 0.838689i \(0.316677\pi\)
\(788\) −0.623366 + 0.857990i −0.0222065 + 0.0305646i
\(789\) 13.9847 10.1605i 0.497867 0.361722i
\(790\) 0 0
\(791\) 52.4934 + 38.1387i 1.86645 + 1.35605i
\(792\) −18.2387 + 5.92612i −0.648085 + 0.210576i
\(793\) 6.67976i 0.237205i
\(794\) 13.9563 + 42.9531i 0.495291 + 1.52435i
\(795\) 0 0
\(796\) −2.22287 + 6.84130i −0.0787876 + 0.242483i
\(797\) 51.5213 + 16.7403i 1.82498 + 0.592971i 0.999597 + 0.0283955i \(0.00903979\pi\)
0.825381 + 0.564576i \(0.190960\pi\)
\(798\) −17.9099 24.6508i −0.634003 0.872631i
\(799\) 0.214100 0.00757430
\(800\) 0 0
\(801\) −18.1124 −0.639971
\(802\) −3.75763 5.17194i −0.132687 0.182627i
\(803\) 38.3198 + 12.4508i 1.35228 + 0.439381i
\(804\) −0.540788 + 1.66438i −0.0190721 + 0.0586980i
\(805\) 0 0
\(806\) 1.04176 + 3.20620i 0.0366944 + 0.112934i
\(807\) 21.2973i 0.749701i
\(808\) 6.65608 2.16269i 0.234160 0.0760832i
\(809\) 12.4076 + 9.01462i 0.436227 + 0.316937i 0.784134 0.620592i \(-0.213108\pi\)
−0.347907 + 0.937529i \(0.613108\pi\)
\(810\) 0 0
\(811\) −9.35757 + 6.79868i −0.328589 + 0.238734i −0.739832 0.672792i \(-0.765095\pi\)
0.411243 + 0.911526i \(0.365095\pi\)
\(812\) −9.29501 + 12.7935i −0.326191 + 0.448963i
\(813\) −11.5647 + 15.9175i −0.405593 + 0.558251i
\(814\) −28.8784 + 20.9814i −1.01219 + 0.735397i
\(815\) 0 0
\(816\) 0.664693 + 0.482927i 0.0232689 + 0.0169058i
\(817\) 7.32822 2.38108i 0.256382 0.0833036i
\(818\) 23.8630i 0.834349i
\(819\) 2.02839 + 6.24274i 0.0708776 + 0.218139i
\(820\) 0 0
\(821\) 10.3111 31.7344i 0.359861 1.10754i −0.593276 0.804999i \(-0.702166\pi\)
0.953137 0.302539i \(-0.0978343\pi\)
\(822\) −11.8528 3.85119i −0.413412 0.134326i
\(823\) −17.6230 24.2560i −0.614300 0.845511i 0.382623 0.923905i \(-0.375021\pi\)
−0.996922 + 0.0783937i \(0.975021\pi\)
\(824\) −0.783901 −0.0273085
\(825\) 0 0
\(826\) −34.8395 −1.21222
\(827\) −14.5318 20.0013i −0.505320 0.695514i 0.477801 0.878468i \(-0.341434\pi\)
−0.983121 + 0.182954i \(0.941434\pi\)
\(828\) −9.76179 3.17180i −0.339246 0.110228i
\(829\) 0.0653280 0.201059i 0.00226893 0.00698306i −0.949916 0.312506i \(-0.898831\pi\)
0.952185 + 0.305523i \(0.0988314\pi\)
\(830\) 0 0
\(831\) −0.503566 1.54982i −0.0174685 0.0537625i
\(832\) 1.41114i 0.0489225i
\(833\) −3.11448 + 1.01195i −0.107910 + 0.0350622i
\(834\) −6.44294 4.68107i −0.223101 0.162092i
\(835\) 0 0
\(836\) 14.6577 10.6494i 0.506946 0.368318i
\(837\) −8.01995 + 11.0385i −0.277210 + 0.381547i
\(838\) 19.3908 26.6891i 0.669843 0.921960i
\(839\) −4.46346 + 3.24290i −0.154096 + 0.111957i −0.662162 0.749361i \(-0.730361\pi\)
0.508066 + 0.861318i \(0.330361\pi\)
\(840\) 0 0
\(841\) 9.65802 + 7.01696i 0.333035 + 0.241964i
\(842\) 41.2807 13.4129i 1.42263 0.462239i
\(843\) 1.14953i 0.0395920i
\(844\) 5.41942 + 16.6793i 0.186544 + 0.574124i
\(845\) 0 0
\(846\) −1.19482 + 3.67726i −0.0410786 + 0.126427i
\(847\) −18.8872 6.13681i −0.648970 0.210863i
\(848\) −3.59837 4.95273i −0.123568 0.170077i
\(849\) −9.22888 −0.316734
\(850\) 0 0
\(851\) 26.7177 0.915871
\(852\) 1.11604 + 1.53610i 0.0382350 + 0.0526260i
\(853\) 1.46411 + 0.475718i 0.0501302 + 0.0162883i 0.333975 0.942582i \(-0.391610\pi\)
−0.283845 + 0.958870i \(0.591610\pi\)
\(854\) −27.8447 + 85.6971i −0.952825 + 2.93249i
\(855\) 0 0
\(856\) 0.997118 + 3.06881i 0.0340808 + 0.104890i
\(857\) 45.3407i 1.54881i −0.632691 0.774404i \(-0.718050\pi\)
0.632691 0.774404i \(-0.281950\pi\)
\(858\) 2.55082 0.828811i 0.0870835 0.0282952i
\(859\) −17.6337 12.8116i −0.601654 0.437127i 0.244812 0.969571i \(-0.421274\pi\)
−0.846465 + 0.532444i \(0.821274\pi\)
\(860\) 0 0
\(861\) −27.4993 + 19.9794i −0.937173 + 0.680896i
\(862\) 9.32621 12.8364i 0.317652 0.437211i
\(863\) 7.51669 10.3458i 0.255871 0.352176i −0.661685 0.749782i \(-0.730159\pi\)
0.917557 + 0.397605i \(0.130159\pi\)
\(864\) −14.0360 + 10.1977i −0.477513 + 0.346933i
\(865\) 0 0
\(866\) 2.38553 + 1.73319i 0.0810637 + 0.0588962i
\(867\) −11.4482 + 3.71975i −0.388801 + 0.126329i
\(868\) 13.3814i 0.454194i
\(869\) 11.6317 + 35.7988i 0.394579 + 1.21439i
\(870\) 0 0
\(871\) 0.523084 1.60989i 0.0177240 0.0545489i
\(872\) −0.139867 0.0454454i −0.00473648 0.00153898i
\(873\) 12.2031 + 16.7961i 0.413012 + 0.568463i
\(874\) −46.0863 −1.55889
\(875\) 0 0
\(876\) 6.09640 0.205978
\(877\) −5.61535 7.72887i −0.189617 0.260985i 0.703615 0.710581i \(-0.251568\pi\)
−0.893232 + 0.449596i \(0.851568\pi\)
\(878\) −44.9615 14.6089i −1.51738 0.493025i
\(879\) −2.56843 + 7.90481i −0.0866309 + 0.266622i
\(880\) 0 0
\(881\) −12.0929 37.2180i −0.407419 1.25391i −0.918859 0.394587i \(-0.870888\pi\)
0.511440 0.859319i \(-0.329112\pi\)
\(882\) 59.1400i 1.99135i
\(883\) −33.3111 + 10.8234i −1.12101 + 0.364238i −0.810152 0.586220i \(-0.800616\pi\)
−0.310856 + 0.950457i \(0.600616\pi\)
\(884\) 0.0899074 + 0.0653215i 0.00302391 + 0.00219700i
\(885\) 0 0
\(886\) −40.7360 + 29.5964i −1.36855 + 0.994312i
\(887\) 21.3036 29.3219i 0.715304 0.984531i −0.284363 0.958717i \(-0.591782\pi\)
0.999667 0.0258147i \(-0.00821798\pi\)
\(888\) 4.43955 6.11052i 0.148982 0.205056i
\(889\) −43.8747 + 31.8769i −1.47151 + 1.06912i
\(890\) 0 0
\(891\) −14.9278 10.8457i −0.500100 0.363344i
\(892\) 5.02432 1.63250i 0.168227 0.0546601i
\(893\) 5.10841i 0.170946i
\(894\) −4.44593 13.6832i −0.148694 0.457633i
\(895\) 0 0
\(896\) −18.4933 + 56.9164i −0.617817 + 1.90144i
\(897\) −1.90925 0.620353i −0.0637480 0.0207130i
\(898\) 6.23349 + 8.57967i 0.208014 + 0.286307i
\(899\) 14.4378 0.481528
\(900\) 0 0
\(901\) −0.286386 −0.00954089
\(902\) −40.3735 55.5694i −1.34429 1.85026i
\(903\) −4.30607 1.39913i −0.143297 0.0465601i
\(904\) 8.57332 26.3860i 0.285144 0.877584i
\(905\) 0 0
\(906\) 0.569869 + 1.75388i 0.0189326 + 0.0582686i
\(907\) 40.8532i 1.35651i −0.734827 0.678255i \(-0.762737\pi\)
0.734827 0.678255i \(-0.237263\pi\)
\(908\) −8.93174 + 2.90210i −0.296410 + 0.0963095i
\(909\) 7.19741 + 5.22922i 0.238723 + 0.173442i
\(910\) 0 0
\(911\) −10.3124 + 7.49237i −0.341664 + 0.248233i −0.745364 0.666658i \(-0.767724\pi\)
0.403700 + 0.914892i \(0.367724\pi\)
\(912\) −11.5226 + 15.8595i −0.381553 + 0.525162i
\(913\) 24.1229 33.2023i 0.798351 1.09884i
\(914\) −26.1226 + 18.9792i −0.864058 + 0.627775i
\(915\) 0 0
\(916\) −10.1468 7.37207i −0.335259 0.243580i
\(917\) −73.0815 + 23.7456i −2.41337 + 0.784150i
\(918\) 1.52858i 0.0504506i
\(919\) −2.98883 9.19868i −0.0985924 0.303436i 0.889581 0.456778i \(-0.150997\pi\)
−0.988173 + 0.153341i \(0.950997\pi\)
\(920\) 0 0
\(921\) −5.83172 + 17.9482i −0.192162 + 0.591413i
\(922\) 11.3210 + 3.67840i 0.372836 + 0.121142i
\(923\) −1.07951 1.48581i −0.0355323 0.0489061i
\(924\) −10.6461 −0.350231
\(925\) 0 0
\(926\) 16.1917 0.532094
\(927\) −0.585715 0.806167i −0.0192374 0.0264780i
\(928\) 17.4598 + 5.67303i 0.573146 + 0.186226i
\(929\) −3.37431 + 10.3850i −0.110707 + 0.340722i −0.991028 0.133658i \(-0.957328\pi\)
0.880320 + 0.474380i \(0.157328\pi\)
\(930\) 0 0
\(931\) −24.1452 74.3113i −0.791328 2.43546i
\(932\) 6.52711i 0.213803i
\(933\) 9.11417 2.96137i 0.298384 0.0969510i
\(934\) 26.1786 + 19.0199i 0.856589 + 0.622349i
\(935\) 0 0
\(936\) 2.27063 1.64971i 0.0742178 0.0539224i
\(937\) 9.37319 12.9011i 0.306209 0.421460i −0.627985 0.778225i \(-0.716120\pi\)
0.934194 + 0.356765i \(0.116120\pi\)
\(938\) −13.4216 + 18.4733i −0.438232 + 0.603175i
\(939\) −9.76628 + 7.09562i −0.318710 + 0.231557i
\(940\) 0 0
\(941\) −4.79505 3.48381i −0.156314 0.113569i 0.506879 0.862017i \(-0.330799\pi\)
−0.663193 + 0.748448i \(0.730799\pi\)
\(942\) −11.1734 + 3.63047i −0.364051 + 0.118287i
\(943\) 51.4117i 1.67419i
\(944\) 6.92649 + 21.3176i 0.225438 + 0.693827i
\(945\) 0 0
\(946\) 2.82730 8.70154i 0.0919235 0.282912i
\(947\) −0.941910 0.306045i −0.0306080 0.00994513i 0.293673 0.955906i \(-0.405122\pi\)
−0.324281 + 0.945961i \(0.605122\pi\)
\(948\) 3.34763 + 4.60761i 0.108726 + 0.149648i
\(949\) −5.89681 −0.191418
\(950\) 0 0
\(951\) −11.9308 −0.386882
\(952\) 1.23226 + 1.69606i 0.0399379 + 0.0549697i
\(953\) 50.9759 + 16.5631i 1.65127 + 0.536531i 0.979015 0.203787i \(-0.0653250\pi\)
0.672257 + 0.740318i \(0.265325\pi\)
\(954\) 1.59822 4.91881i 0.0517442 0.159252i
\(955\) 0 0
\(956\) 2.25183 + 6.93042i 0.0728294 + 0.224146i
\(957\) 11.4866i 0.371308i
\(958\) −60.8380 + 19.7675i −1.96559 + 0.638658i
\(959\) −38.7107 28.1250i −1.25003 0.908203i
\(960\) 0 0
\(961\) 15.1956 11.0402i 0.490180 0.356137i
\(962\) 3.07068 4.22643i 0.0990027 0.136266i
\(963\) −2.41096 + 3.31840i −0.0776920 + 0.106934i
\(964\) −0.405371 + 0.294519i −0.0130561 + 0.00948582i
\(965\) 0 0
\(966\) 21.9085 + 15.9175i 0.704895 + 0.512136i
\(967\) 28.2796 9.18861i 0.909412 0.295486i 0.183296 0.983058i \(-0.441323\pi\)
0.726116 + 0.687572i \(0.241323\pi\)
\(968\) 8.49141i 0.272924i
\(969\) 0.283387 + 0.872176i 0.00910370 + 0.0280183i
\(970\) 0 0
\(971\) 18.7316 57.6498i 0.601125 1.85007i 0.0796154 0.996826i \(-0.474631\pi\)
0.521509 0.853246i \(-0.325369\pi\)
\(972\) −11.9426 3.88039i −0.383059 0.124463i
\(973\) −17.9724 24.7369i −0.576168 0.793027i
\(974\) −28.1954 −0.903440
\(975\) 0 0
\(976\) 57.9720 1.85564
\(977\) −26.1641 36.0117i −0.837062 1.15212i −0.986567 0.163356i \(-0.947768\pi\)
0.149505 0.988761i \(-0.452232\pi\)
\(978\) −6.34718 2.06232i −0.202960 0.0659458i
\(979\) −8.78060 + 27.0239i −0.280629 + 0.863688i
\(980\) 0 0
\(981\) −0.0577692 0.177795i −0.00184443 0.00567657i
\(982\) 15.0675i 0.480822i
\(983\) 36.3685 11.8168i 1.15997 0.376898i 0.335082 0.942189i \(-0.391236\pi\)
0.824892 + 0.565291i \(0.191236\pi\)
\(984\) 11.7582 + 8.54283i 0.374838 + 0.272336i
\(985\) 0 0
\(986\) 1.30856 0.950724i 0.0416730 0.0302772i
\(987\) 1.76436 2.42844i 0.0561602 0.0772979i
\(988\) −1.55857 + 2.14519i −0.0495847 + 0.0682475i
\(989\) −5.54027 + 4.02524i −0.176170 + 0.127995i
\(990\) 0 0
\(991\) −18.3713 13.3475i −0.583584 0.423998i 0.256431 0.966563i \(-0.417453\pi\)
−0.840014 + 0.542564i \(0.817453\pi\)
\(992\) −14.7744 + 4.80049i −0.469087 + 0.152416i
\(993\) 9.11678i 0.289312i
\(994\) 7.65574 + 23.5619i 0.242825 + 0.747339i
\(995\) 0 0
\(996\) 1.91889 5.90573i 0.0608023 0.187130i
\(997\) 19.6188 + 6.37453i 0.621333 + 0.201883i 0.602732 0.797944i \(-0.294079\pi\)
0.0186012 + 0.999827i \(0.494079\pi\)
\(998\) −35.9490 49.4795i −1.13794 1.56625i
\(999\) 21.1439 0.668962
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 625.2.e.j.374.3 32
5.2 odd 4 625.2.d.m.251.4 16
5.3 odd 4 625.2.d.q.251.1 16
5.4 even 2 inner 625.2.e.j.374.6 32
25.2 odd 20 625.2.d.n.126.1 16
25.3 odd 20 625.2.a.e.1.7 8
25.4 even 10 625.2.b.d.624.5 16
25.6 even 5 625.2.e.k.124.6 32
25.8 odd 20 625.2.d.p.501.4 16
25.9 even 10 inner 625.2.e.j.249.3 32
25.11 even 5 625.2.e.k.499.3 32
25.12 odd 20 625.2.d.m.376.4 16
25.13 odd 20 625.2.d.q.376.1 16
25.14 even 10 625.2.e.k.499.6 32
25.16 even 5 inner 625.2.e.j.249.6 32
25.17 odd 20 625.2.d.n.501.1 16
25.19 even 10 625.2.e.k.124.3 32
25.21 even 5 625.2.b.d.624.12 16
25.22 odd 20 625.2.a.g.1.2 yes 8
25.23 odd 20 625.2.d.p.126.4 16
75.47 even 20 5625.2.a.s.1.7 8
75.53 even 20 5625.2.a.be.1.2 8
100.3 even 20 10000.2.a.bn.1.4 8
100.47 even 20 10000.2.a.be.1.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
625.2.a.e.1.7 8 25.3 odd 20
625.2.a.g.1.2 yes 8 25.22 odd 20
625.2.b.d.624.5 16 25.4 even 10
625.2.b.d.624.12 16 25.21 even 5
625.2.d.m.251.4 16 5.2 odd 4
625.2.d.m.376.4 16 25.12 odd 20
625.2.d.n.126.1 16 25.2 odd 20
625.2.d.n.501.1 16 25.17 odd 20
625.2.d.p.126.4 16 25.23 odd 20
625.2.d.p.501.4 16 25.8 odd 20
625.2.d.q.251.1 16 5.3 odd 4
625.2.d.q.376.1 16 25.13 odd 20
625.2.e.j.249.3 32 25.9 even 10 inner
625.2.e.j.249.6 32 25.16 even 5 inner
625.2.e.j.374.3 32 1.1 even 1 trivial
625.2.e.j.374.6 32 5.4 even 2 inner
625.2.e.k.124.3 32 25.19 even 10
625.2.e.k.124.6 32 25.6 even 5
625.2.e.k.499.3 32 25.11 even 5
625.2.e.k.499.6 32 25.14 even 10
5625.2.a.s.1.7 8 75.47 even 20
5625.2.a.be.1.2 8 75.53 even 20
10000.2.a.be.1.5 8 100.47 even 20
10000.2.a.bn.1.4 8 100.3 even 20