Properties

Label 624.6.c.d.337.5
Level $624$
Weight $6$
Character 624.337
Analytic conductor $100.080$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [624,6,Mod(337,624)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("624.337"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(624, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 624.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,54,0,0,0,0,0,486,0,0,0,530] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(100.079503563\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} - 2946x^{3} + 131769x^{2} - 1332936x + 6741792 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{15}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.5
Root \(6.10758 - 6.10758i\) of defining polynomial
Character \(\chi\) \(=\) 624.337
Dual form 624.6.c.d.337.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.00000 q^{3} +37.1158i q^{5} -176.407i q^{7} +81.0000 q^{9} +179.404i q^{11} +(-554.740 - 252.104i) q^{13} +334.042i q^{15} -933.141 q^{17} +2335.97i q^{19} -1587.66i q^{21} +2792.36 q^{23} +1747.42 q^{25} +729.000 q^{27} +1503.58 q^{29} +737.236i q^{31} +1614.63i q^{33} +6547.48 q^{35} -3775.41i q^{37} +(-4992.66 - 2268.94i) q^{39} +368.848i q^{41} +20180.6 q^{43} +3006.38i q^{45} -20526.5i q^{47} -14312.3 q^{49} -8398.27 q^{51} -25081.9 q^{53} -6658.72 q^{55} +21023.7i q^{57} -35326.3i q^{59} +31741.4 q^{61} -14288.9i q^{63} +(9357.06 - 20589.6i) q^{65} +46661.3i q^{67} +25131.2 q^{69} -58973.4i q^{71} +3411.20i q^{73} +15726.8 q^{75} +31648.1 q^{77} +64977.3 q^{79} +6561.00 q^{81} -12233.4i q^{83} -34634.3i q^{85} +13532.2 q^{87} -61754.7i q^{89} +(-44472.9 + 97859.9i) q^{91} +6635.12i q^{93} -86701.4 q^{95} -28030.7i q^{97} +14531.7i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 54 q^{3} + 486 q^{9} + 530 q^{13} - 836 q^{17} + 416 q^{23} + 718 q^{25} + 4374 q^{27} + 18788 q^{29} - 6112 q^{35} + 4770 q^{39} + 24200 q^{43} - 3038 q^{49} - 7524 q^{51} - 42396 q^{53} - 124656 q^{55}+ \cdots - 567168 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/624\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(209\) \(469\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.00000 0.577350
\(4\) 0 0
\(5\) 37.1158i 0.663948i 0.943289 + 0.331974i \(0.107715\pi\)
−0.943289 + 0.331974i \(0.892285\pi\)
\(6\) 0 0
\(7\) 176.407i 1.36072i −0.732876 0.680362i \(-0.761823\pi\)
0.732876 0.680362i \(-0.238177\pi\)
\(8\) 0 0
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) 179.404i 0.447044i 0.974699 + 0.223522i \(0.0717554\pi\)
−0.974699 + 0.223522i \(0.928245\pi\)
\(12\) 0 0
\(13\) −554.740 252.104i −0.910397 0.413735i
\(14\) 0 0
\(15\) 334.042i 0.383330i
\(16\) 0 0
\(17\) −933.141 −0.783114 −0.391557 0.920154i \(-0.628063\pi\)
−0.391557 + 0.920154i \(0.628063\pi\)
\(18\) 0 0
\(19\) 2335.97i 1.48451i 0.670117 + 0.742256i \(0.266244\pi\)
−0.670117 + 0.742256i \(0.733756\pi\)
\(20\) 0 0
\(21\) 1587.66i 0.785614i
\(22\) 0 0
\(23\) 2792.36 1.10066 0.550328 0.834948i \(-0.314503\pi\)
0.550328 + 0.834948i \(0.314503\pi\)
\(24\) 0 0
\(25\) 1747.42 0.559174
\(26\) 0 0
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) 1503.58 0.331996 0.165998 0.986126i \(-0.446916\pi\)
0.165998 + 0.986126i \(0.446916\pi\)
\(30\) 0 0
\(31\) 737.236i 0.137785i 0.997624 + 0.0688926i \(0.0219466\pi\)
−0.997624 + 0.0688926i \(0.978053\pi\)
\(32\) 0 0
\(33\) 1614.63i 0.258101i
\(34\) 0 0
\(35\) 6547.48 0.903450
\(36\) 0 0
\(37\) 3775.41i 0.453377i −0.973967 0.226689i \(-0.927210\pi\)
0.973967 0.226689i \(-0.0727900\pi\)
\(38\) 0 0
\(39\) −4992.66 2268.94i −0.525618 0.238870i
\(40\) 0 0
\(41\) 368.848i 0.0342680i 0.999853 + 0.0171340i \(0.00545418\pi\)
−0.999853 + 0.0171340i \(0.994546\pi\)
\(42\) 0 0
\(43\) 20180.6 1.66442 0.832211 0.554459i \(-0.187075\pi\)
0.832211 + 0.554459i \(0.187075\pi\)
\(44\) 0 0
\(45\) 3006.38i 0.221316i
\(46\) 0 0
\(47\) 20526.5i 1.35541i −0.735335 0.677704i \(-0.762975\pi\)
0.735335 0.677704i \(-0.237025\pi\)
\(48\) 0 0
\(49\) −14312.3 −0.851570
\(50\) 0 0
\(51\) −8398.27 −0.452131
\(52\) 0 0
\(53\) −25081.9 −1.22651 −0.613253 0.789886i \(-0.710140\pi\)
−0.613253 + 0.789886i \(0.710140\pi\)
\(54\) 0 0
\(55\) −6658.72 −0.296814
\(56\) 0 0
\(57\) 21023.7i 0.857083i
\(58\) 0 0
\(59\) 35326.3i 1.32120i −0.750738 0.660600i \(-0.770302\pi\)
0.750738 0.660600i \(-0.229698\pi\)
\(60\) 0 0
\(61\) 31741.4 1.09220 0.546099 0.837721i \(-0.316112\pi\)
0.546099 + 0.837721i \(0.316112\pi\)
\(62\) 0 0
\(63\) 14288.9i 0.453575i
\(64\) 0 0
\(65\) 9357.06 20589.6i 0.274698 0.604456i
\(66\) 0 0
\(67\) 46661.3i 1.26990i 0.772552 + 0.634951i \(0.218980\pi\)
−0.772552 + 0.634951i \(0.781020\pi\)
\(68\) 0 0
\(69\) 25131.2 0.635465
\(70\) 0 0
\(71\) 58973.4i 1.38839i −0.719789 0.694193i \(-0.755762\pi\)
0.719789 0.694193i \(-0.244238\pi\)
\(72\) 0 0
\(73\) 3411.20i 0.0749204i 0.999298 + 0.0374602i \(0.0119267\pi\)
−0.999298 + 0.0374602i \(0.988073\pi\)
\(74\) 0 0
\(75\) 15726.8 0.322839
\(76\) 0 0
\(77\) 31648.1 0.608303
\(78\) 0 0
\(79\) 64977.3 1.17137 0.585685 0.810539i \(-0.300826\pi\)
0.585685 + 0.810539i \(0.300826\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) 12233.4i 0.194918i −0.995240 0.0974591i \(-0.968928\pi\)
0.995240 0.0974591i \(-0.0310715\pi\)
\(84\) 0 0
\(85\) 34634.3i 0.519947i
\(86\) 0 0
\(87\) 13532.2 0.191678
\(88\) 0 0
\(89\) 61754.7i 0.826409i −0.910638 0.413204i \(-0.864410\pi\)
0.910638 0.413204i \(-0.135590\pi\)
\(90\) 0 0
\(91\) −44472.9 + 97859.9i −0.562979 + 1.23880i
\(92\) 0 0
\(93\) 6635.12i 0.0795503i
\(94\) 0 0
\(95\) −86701.4 −0.985638
\(96\) 0 0
\(97\) 28030.7i 0.302485i −0.988497 0.151243i \(-0.951673\pi\)
0.988497 0.151243i \(-0.0483274\pi\)
\(98\) 0 0
\(99\) 14531.7i 0.149015i
\(100\) 0 0
\(101\) 102600. 1.00080 0.500398 0.865796i \(-0.333187\pi\)
0.500398 + 0.865796i \(0.333187\pi\)
\(102\) 0 0
\(103\) 203803. 1.89286 0.946430 0.322909i \(-0.104661\pi\)
0.946430 + 0.322909i \(0.104661\pi\)
\(104\) 0 0
\(105\) 58927.3 0.521607
\(106\) 0 0
\(107\) 147356. 1.24425 0.622125 0.782918i \(-0.286269\pi\)
0.622125 + 0.782918i \(0.286269\pi\)
\(108\) 0 0
\(109\) 7846.65i 0.0632584i 0.999500 + 0.0316292i \(0.0100696\pi\)
−0.999500 + 0.0316292i \(0.989930\pi\)
\(110\) 0 0
\(111\) 33978.7i 0.261758i
\(112\) 0 0
\(113\) −192673. −1.41947 −0.709733 0.704471i \(-0.751184\pi\)
−0.709733 + 0.704471i \(0.751184\pi\)
\(114\) 0 0
\(115\) 103641.i 0.730778i
\(116\) 0 0
\(117\) −44933.9 20420.5i −0.303466 0.137912i
\(118\) 0 0
\(119\) 164612.i 1.06560i
\(120\) 0 0
\(121\) 128865. 0.800152
\(122\) 0 0
\(123\) 3319.64i 0.0197846i
\(124\) 0 0
\(125\) 180844.i 1.03521i
\(126\) 0 0
\(127\) −255644. −1.40646 −0.703229 0.710964i \(-0.748259\pi\)
−0.703229 + 0.710964i \(0.748259\pi\)
\(128\) 0 0
\(129\) 181626. 0.960955
\(130\) 0 0
\(131\) 134257. 0.683530 0.341765 0.939786i \(-0.388975\pi\)
0.341765 + 0.939786i \(0.388975\pi\)
\(132\) 0 0
\(133\) 412081. 2.02001
\(134\) 0 0
\(135\) 27057.4i 0.127777i
\(136\) 0 0
\(137\) 74373.4i 0.338545i −0.985569 0.169272i \(-0.945858\pi\)
0.985569 0.169272i \(-0.0541418\pi\)
\(138\) 0 0
\(139\) −36348.4 −0.159569 −0.0797844 0.996812i \(-0.525423\pi\)
−0.0797844 + 0.996812i \(0.525423\pi\)
\(140\) 0 0
\(141\) 184738.i 0.782545i
\(142\) 0 0
\(143\) 45228.5 99522.5i 0.184958 0.406988i
\(144\) 0 0
\(145\) 55806.7i 0.220428i
\(146\) 0 0
\(147\) −128811. −0.491654
\(148\) 0 0
\(149\) 221253.i 0.816440i 0.912884 + 0.408220i \(0.133850\pi\)
−0.912884 + 0.408220i \(0.866150\pi\)
\(150\) 0 0
\(151\) 482448.i 1.72190i −0.508690 0.860950i \(-0.669870\pi\)
0.508690 0.860950i \(-0.330130\pi\)
\(152\) 0 0
\(153\) −75584.4 −0.261038
\(154\) 0 0
\(155\) −27363.1 −0.0914821
\(156\) 0 0
\(157\) −110726. −0.358508 −0.179254 0.983803i \(-0.557368\pi\)
−0.179254 + 0.983803i \(0.557368\pi\)
\(158\) 0 0
\(159\) −225737. −0.708124
\(160\) 0 0
\(161\) 492591.i 1.49769i
\(162\) 0 0
\(163\) 161064.i 0.474819i −0.971410 0.237410i \(-0.923702\pi\)
0.971410 0.237410i \(-0.0762984\pi\)
\(164\) 0 0
\(165\) −59928.5 −0.171365
\(166\) 0 0
\(167\) 466578.i 1.29459i −0.762238 0.647296i \(-0.775900\pi\)
0.762238 0.647296i \(-0.224100\pi\)
\(168\) 0 0
\(169\) 244180. + 279705.i 0.657647 + 0.753326i
\(170\) 0 0
\(171\) 189214.i 0.494837i
\(172\) 0 0
\(173\) −240767. −0.611620 −0.305810 0.952093i \(-0.598927\pi\)
−0.305810 + 0.952093i \(0.598927\pi\)
\(174\) 0 0
\(175\) 308256.i 0.760881i
\(176\) 0 0
\(177\) 317937.i 0.762795i
\(178\) 0 0
\(179\) 266435. 0.621526 0.310763 0.950487i \(-0.399415\pi\)
0.310763 + 0.950487i \(0.399415\pi\)
\(180\) 0 0
\(181\) 64307.2 0.145903 0.0729513 0.997336i \(-0.476758\pi\)
0.0729513 + 0.997336i \(0.476758\pi\)
\(182\) 0 0
\(183\) 285673. 0.630581
\(184\) 0 0
\(185\) 140127. 0.301019
\(186\) 0 0
\(187\) 167409.i 0.350086i
\(188\) 0 0
\(189\) 128601.i 0.261871i
\(190\) 0 0
\(191\) 925387. 1.83544 0.917720 0.397228i \(-0.130028\pi\)
0.917720 + 0.397228i \(0.130028\pi\)
\(192\) 0 0
\(193\) 632306.i 1.22190i −0.791671 0.610948i \(-0.790789\pi\)
0.791671 0.610948i \(-0.209211\pi\)
\(194\) 0 0
\(195\) 84213.5 185307.i 0.158597 0.348983i
\(196\) 0 0
\(197\) 100048.i 0.183671i 0.995774 + 0.0918357i \(0.0292735\pi\)
−0.995774 + 0.0918357i \(0.970727\pi\)
\(198\) 0 0
\(199\) 723076. 1.29435 0.647174 0.762342i \(-0.275951\pi\)
0.647174 + 0.762342i \(0.275951\pi\)
\(200\) 0 0
\(201\) 419952.i 0.733178i
\(202\) 0 0
\(203\) 265242.i 0.451754i
\(204\) 0 0
\(205\) −13690.1 −0.0227521
\(206\) 0 0
\(207\) 226181. 0.366886
\(208\) 0 0
\(209\) −419082. −0.663641
\(210\) 0 0
\(211\) −259548. −0.401340 −0.200670 0.979659i \(-0.564312\pi\)
−0.200670 + 0.979659i \(0.564312\pi\)
\(212\) 0 0
\(213\) 530760.i 0.801585i
\(214\) 0 0
\(215\) 749020.i 1.10509i
\(216\) 0 0
\(217\) 130053. 0.187488
\(218\) 0 0
\(219\) 30700.8i 0.0432553i
\(220\) 0 0
\(221\) 517651. + 235249.i 0.712945 + 0.324002i
\(222\) 0 0
\(223\) 1.07196e6i 1.44349i 0.692156 + 0.721747i \(0.256661\pi\)
−0.692156 + 0.721747i \(0.743339\pi\)
\(224\) 0 0
\(225\) 141541. 0.186391
\(226\) 0 0
\(227\) 65210.0i 0.0839942i −0.999118 0.0419971i \(-0.986628\pi\)
0.999118 0.0419971i \(-0.0133720\pi\)
\(228\) 0 0
\(229\) 191854.i 0.241759i 0.992667 + 0.120879i \(0.0385715\pi\)
−0.992667 + 0.120879i \(0.961429\pi\)
\(230\) 0 0
\(231\) 284832. 0.351204
\(232\) 0 0
\(233\) 353920. 0.427087 0.213543 0.976934i \(-0.431500\pi\)
0.213543 + 0.976934i \(0.431500\pi\)
\(234\) 0 0
\(235\) 761857. 0.899920
\(236\) 0 0
\(237\) 584796. 0.676291
\(238\) 0 0
\(239\) 1.15374e6i 1.30651i 0.757138 + 0.653255i \(0.226597\pi\)
−0.757138 + 0.653255i \(0.773403\pi\)
\(240\) 0 0
\(241\) 209753.i 0.232630i 0.993212 + 0.116315i \(0.0371083\pi\)
−0.993212 + 0.116315i \(0.962892\pi\)
\(242\) 0 0
\(243\) 59049.0 0.0641500
\(244\) 0 0
\(245\) 531214.i 0.565398i
\(246\) 0 0
\(247\) 588909. 1.29586e6i 0.614194 1.35150i
\(248\) 0 0
\(249\) 110101.i 0.112536i
\(250\) 0 0
\(251\) −427156. −0.427959 −0.213979 0.976838i \(-0.568643\pi\)
−0.213979 + 0.976838i \(0.568643\pi\)
\(252\) 0 0
\(253\) 500960.i 0.492042i
\(254\) 0 0
\(255\) 311708.i 0.300191i
\(256\) 0 0
\(257\) 207722. 0.196177 0.0980887 0.995178i \(-0.468727\pi\)
0.0980887 + 0.995178i \(0.468727\pi\)
\(258\) 0 0
\(259\) −666008. −0.616922
\(260\) 0 0
\(261\) 121790. 0.110665
\(262\) 0 0
\(263\) 831712. 0.741453 0.370726 0.928742i \(-0.379109\pi\)
0.370726 + 0.928742i \(0.379109\pi\)
\(264\) 0 0
\(265\) 930933.i 0.814336i
\(266\) 0 0
\(267\) 555792.i 0.477127i
\(268\) 0 0
\(269\) 1.67365e6 1.41021 0.705104 0.709104i \(-0.250901\pi\)
0.705104 + 0.709104i \(0.250901\pi\)
\(270\) 0 0
\(271\) 69792.6i 0.0577279i −0.999583 0.0288640i \(-0.990811\pi\)
0.999583 0.0288640i \(-0.00918896\pi\)
\(272\) 0 0
\(273\) −400256. + 880739.i −0.325036 + 0.715221i
\(274\) 0 0
\(275\) 313493.i 0.249975i
\(276\) 0 0
\(277\) 1.61380e6 1.26372 0.631859 0.775083i \(-0.282292\pi\)
0.631859 + 0.775083i \(0.282292\pi\)
\(278\) 0 0
\(279\) 59716.1i 0.0459284i
\(280\) 0 0
\(281\) 1.05655e6i 0.798224i 0.916902 + 0.399112i \(0.130682\pi\)
−0.916902 + 0.399112i \(0.869318\pi\)
\(282\) 0 0
\(283\) 512741. 0.380567 0.190284 0.981729i \(-0.439059\pi\)
0.190284 + 0.981729i \(0.439059\pi\)
\(284\) 0 0
\(285\) −780313. −0.569058
\(286\) 0 0
\(287\) 65067.4 0.0466293
\(288\) 0 0
\(289\) −549105. −0.386732
\(290\) 0 0
\(291\) 252276.i 0.174640i
\(292\) 0 0
\(293\) 2.71268e6i 1.84599i 0.384809 + 0.922996i \(0.374267\pi\)
−0.384809 + 0.922996i \(0.625733\pi\)
\(294\) 0 0
\(295\) 1.31117e6 0.877207
\(296\) 0 0
\(297\) 130785.i 0.0860336i
\(298\) 0 0
\(299\) −1.54903e6 703967.i −1.00204 0.455380i
\(300\) 0 0
\(301\) 3.56000e6i 2.26482i
\(302\) 0 0
\(303\) 923403. 0.577810
\(304\) 0 0
\(305\) 1.17811e6i 0.725162i
\(306\) 0 0
\(307\) 2.44475e6i 1.48043i −0.672371 0.740215i \(-0.734724\pi\)
0.672371 0.740215i \(-0.265276\pi\)
\(308\) 0 0
\(309\) 1.83423e6 1.09284
\(310\) 0 0
\(311\) −1.99183e6 −1.16775 −0.583877 0.811842i \(-0.698465\pi\)
−0.583877 + 0.811842i \(0.698465\pi\)
\(312\) 0 0
\(313\) 1.66396e6 0.960025 0.480013 0.877262i \(-0.340632\pi\)
0.480013 + 0.877262i \(0.340632\pi\)
\(314\) 0 0
\(315\) 530346. 0.301150
\(316\) 0 0
\(317\) 3.20482e6i 1.79125i −0.444813 0.895624i \(-0.646730\pi\)
0.444813 0.895624i \(-0.353270\pi\)
\(318\) 0 0
\(319\) 269749.i 0.148417i
\(320\) 0 0
\(321\) 1.32620e6 0.718369
\(322\) 0 0
\(323\) 2.17979e6i 1.16254i
\(324\) 0 0
\(325\) −969362. 440532.i −0.509070 0.231350i
\(326\) 0 0
\(327\) 70619.9i 0.0365222i
\(328\) 0 0
\(329\) −3.62101e6 −1.84434
\(330\) 0 0
\(331\) 3.53386e6i 1.77288i 0.462844 + 0.886440i \(0.346829\pi\)
−0.462844 + 0.886440i \(0.653171\pi\)
\(332\) 0 0
\(333\) 305808.i 0.151126i
\(334\) 0 0
\(335\) −1.73187e6 −0.843148
\(336\) 0 0
\(337\) 1.10242e6 0.528777 0.264389 0.964416i \(-0.414830\pi\)
0.264389 + 0.964416i \(0.414830\pi\)
\(338\) 0 0
\(339\) −1.73406e6 −0.819529
\(340\) 0 0
\(341\) −132263. −0.0615960
\(342\) 0 0
\(343\) 440075.i 0.201972i
\(344\) 0 0
\(345\) 932766.i 0.421915i
\(346\) 0 0
\(347\) −3.16432e6 −1.41077 −0.705386 0.708823i \(-0.749226\pi\)
−0.705386 + 0.708823i \(0.749226\pi\)
\(348\) 0 0
\(349\) 1.97526e6i 0.868080i −0.900894 0.434040i \(-0.857088\pi\)
0.900894 0.434040i \(-0.142912\pi\)
\(350\) 0 0
\(351\) −404405. 183784.i −0.175206 0.0796233i
\(352\) 0 0
\(353\) 2.24015e6i 0.956843i −0.878130 0.478422i \(-0.841209\pi\)
0.878130 0.478422i \(-0.158791\pi\)
\(354\) 0 0
\(355\) 2.18884e6 0.921815
\(356\) 0 0
\(357\) 1.48151e6i 0.615226i
\(358\) 0 0
\(359\) 2.13770e6i 0.875407i −0.899119 0.437704i \(-0.855792\pi\)
0.899119 0.437704i \(-0.144208\pi\)
\(360\) 0 0
\(361\) −2.98066e6 −1.20377
\(362\) 0 0
\(363\) 1.15979e6 0.461968
\(364\) 0 0
\(365\) −126609. −0.0497432
\(366\) 0 0
\(367\) −1.70502e6 −0.660791 −0.330395 0.943843i \(-0.607182\pi\)
−0.330395 + 0.943843i \(0.607182\pi\)
\(368\) 0 0
\(369\) 29876.7i 0.0114227i
\(370\) 0 0
\(371\) 4.42461e6i 1.66894i
\(372\) 0 0
\(373\) −2.31503e6 −0.861558 −0.430779 0.902458i \(-0.641761\pi\)
−0.430779 + 0.902458i \(0.641761\pi\)
\(374\) 0 0
\(375\) 1.62759e6i 0.597679i
\(376\) 0 0
\(377\) −834097. 379060.i −0.302248 0.137358i
\(378\) 0 0
\(379\) 4.32354e6i 1.54612i 0.634336 + 0.773058i \(0.281274\pi\)
−0.634336 + 0.773058i \(0.718726\pi\)
\(380\) 0 0
\(381\) −2.30080e6 −0.812018
\(382\) 0 0
\(383\) 2.00351e6i 0.697901i −0.937141 0.348951i \(-0.886538\pi\)
0.937141 0.348951i \(-0.113462\pi\)
\(384\) 0 0
\(385\) 1.17464e6i 0.403882i
\(386\) 0 0
\(387\) 1.63463e6 0.554807
\(388\) 0 0
\(389\) 1.70696e6 0.571940 0.285970 0.958239i \(-0.407684\pi\)
0.285970 + 0.958239i \(0.407684\pi\)
\(390\) 0 0
\(391\) −2.60567e6 −0.861940
\(392\) 0 0
\(393\) 1.20831e6 0.394636
\(394\) 0 0
\(395\) 2.41168e6i 0.777728i
\(396\) 0 0
\(397\) 1.22427e6i 0.389853i 0.980818 + 0.194927i \(0.0624469\pi\)
−0.980818 + 0.194927i \(0.937553\pi\)
\(398\) 0 0
\(399\) 3.70873e6 1.16625
\(400\) 0 0
\(401\) 4.15598e6i 1.29066i −0.763903 0.645332i \(-0.776719\pi\)
0.763903 0.645332i \(-0.223281\pi\)
\(402\) 0 0
\(403\) 185860. 408974.i 0.0570065 0.125439i
\(404\) 0 0
\(405\) 243517.i 0.0737720i
\(406\) 0 0
\(407\) 677323. 0.202680
\(408\) 0 0
\(409\) 6.52428e6i 1.92852i 0.264958 + 0.964260i \(0.414642\pi\)
−0.264958 + 0.964260i \(0.585358\pi\)
\(410\) 0 0
\(411\) 669361.i 0.195459i
\(412\) 0 0
\(413\) −6.23180e6 −1.79779
\(414\) 0 0
\(415\) 454053. 0.129416
\(416\) 0 0
\(417\) −327136. −0.0921271
\(418\) 0 0
\(419\) −4.77950e6 −1.32999 −0.664994 0.746849i \(-0.731566\pi\)
−0.664994 + 0.746849i \(0.731566\pi\)
\(420\) 0 0
\(421\) 3.41558e6i 0.939203i 0.882878 + 0.469602i \(0.155602\pi\)
−0.882878 + 0.469602i \(0.844398\pi\)
\(422\) 0 0
\(423\) 1.66265e6i 0.451803i
\(424\) 0 0
\(425\) −1.63059e6 −0.437897
\(426\) 0 0
\(427\) 5.59940e6i 1.48618i
\(428\) 0 0
\(429\) 407057. 895702.i 0.106785 0.234974i
\(430\) 0 0
\(431\) 6.21413e6i 1.61134i 0.592365 + 0.805670i \(0.298194\pi\)
−0.592365 + 0.805670i \(0.701806\pi\)
\(432\) 0 0
\(433\) −5.83362e6 −1.49526 −0.747632 0.664113i \(-0.768809\pi\)
−0.747632 + 0.664113i \(0.768809\pi\)
\(434\) 0 0
\(435\) 502260.i 0.127264i
\(436\) 0 0
\(437\) 6.52287e6i 1.63394i
\(438\) 0 0
\(439\) 766922. 0.189928 0.0949642 0.995481i \(-0.469726\pi\)
0.0949642 + 0.995481i \(0.469726\pi\)
\(440\) 0 0
\(441\) −1.15930e6 −0.283857
\(442\) 0 0
\(443\) −1.02042e6 −0.247042 −0.123521 0.992342i \(-0.539419\pi\)
−0.123521 + 0.992342i \(0.539419\pi\)
\(444\) 0 0
\(445\) 2.29207e6 0.548692
\(446\) 0 0
\(447\) 1.99128e6i 0.471372i
\(448\) 0 0
\(449\) 4.18123e6i 0.978787i 0.872063 + 0.489394i \(0.162782\pi\)
−0.872063 + 0.489394i \(0.837218\pi\)
\(450\) 0 0
\(451\) −66172.8 −0.0153193
\(452\) 0 0
\(453\) 4.34203e6i 0.994139i
\(454\) 0 0
\(455\) −3.63215e6 1.65065e6i −0.822498 0.373789i
\(456\) 0 0
\(457\) 3.58333e6i 0.802594i 0.915948 + 0.401297i \(0.131441\pi\)
−0.915948 + 0.401297i \(0.868559\pi\)
\(458\) 0 0
\(459\) −680260. −0.150710
\(460\) 0 0
\(461\) 1.67459e6i 0.366992i −0.983020 0.183496i \(-0.941259\pi\)
0.983020 0.183496i \(-0.0587414\pi\)
\(462\) 0 0
\(463\) 6.62362e6i 1.43596i −0.696063 0.717981i \(-0.745066\pi\)
0.696063 0.717981i \(-0.254934\pi\)
\(464\) 0 0
\(465\) −246268. −0.0528172
\(466\) 0 0
\(467\) −3.80744e6 −0.807868 −0.403934 0.914788i \(-0.632358\pi\)
−0.403934 + 0.914788i \(0.632358\pi\)
\(468\) 0 0
\(469\) 8.23138e6 1.72799
\(470\) 0 0
\(471\) −996531. −0.206985
\(472\) 0 0
\(473\) 3.62048e6i 0.744070i
\(474\) 0 0
\(475\) 4.08192e6i 0.830099i
\(476\) 0 0
\(477\) −2.03163e6 −0.408836
\(478\) 0 0
\(479\) 4.85878e6i 0.967583i 0.875183 + 0.483792i \(0.160741\pi\)
−0.875183 + 0.483792i \(0.839259\pi\)
\(480\) 0 0
\(481\) −951798. + 2.09437e6i −0.187578 + 0.412754i
\(482\) 0 0
\(483\) 4.43332e6i 0.864692i
\(484\) 0 0
\(485\) 1.04038e6 0.200834
\(486\) 0 0
\(487\) 71255.1i 0.0136142i 0.999977 + 0.00680712i \(0.00216679\pi\)
−0.999977 + 0.00680712i \(0.997833\pi\)
\(488\) 0 0
\(489\) 1.44957e6i 0.274137i
\(490\) 0 0
\(491\) 6.78617e6 1.27034 0.635172 0.772371i \(-0.280929\pi\)
0.635172 + 0.772371i \(0.280929\pi\)
\(492\) 0 0
\(493\) −1.40305e6 −0.259990
\(494\) 0 0
\(495\) −539356. −0.0989379
\(496\) 0 0
\(497\) −1.04033e7 −1.88921
\(498\) 0 0
\(499\) 167487.i 0.0301114i −0.999887 0.0150557i \(-0.995207\pi\)
0.999887 0.0150557i \(-0.00479256\pi\)
\(500\) 0 0
\(501\) 4.19920e6i 0.747433i
\(502\) 0 0
\(503\) −1.00972e7 −1.77942 −0.889712 0.456522i \(-0.849095\pi\)
−0.889712 + 0.456522i \(0.849095\pi\)
\(504\) 0 0
\(505\) 3.80809e6i 0.664476i
\(506\) 0 0
\(507\) 2.19762e6 + 2.51734e6i 0.379693 + 0.434933i
\(508\) 0 0
\(509\) 9.79146e6i 1.67515i 0.546324 + 0.837574i \(0.316027\pi\)
−0.546324 + 0.837574i \(0.683973\pi\)
\(510\) 0 0
\(511\) 601758. 0.101946
\(512\) 0 0
\(513\) 1.70292e6i 0.285694i
\(514\) 0 0
\(515\) 7.56433e6i 1.25676i
\(516\) 0 0
\(517\) 3.68253e6 0.605927
\(518\) 0 0
\(519\) −2.16690e6 −0.353119
\(520\) 0 0
\(521\) −9.42352e6 −1.52096 −0.760481 0.649360i \(-0.775037\pi\)
−0.760481 + 0.649360i \(0.775037\pi\)
\(522\) 0 0
\(523\) −5.16320e6 −0.825400 −0.412700 0.910867i \(-0.635414\pi\)
−0.412700 + 0.910867i \(0.635414\pi\)
\(524\) 0 0
\(525\) 2.77431e6i 0.439295i
\(526\) 0 0
\(527\) 687945.i 0.107901i
\(528\) 0 0
\(529\) 1.36094e6 0.211445
\(530\) 0 0
\(531\) 2.86143e6i 0.440400i
\(532\) 0 0
\(533\) 92988.3 204615.i 0.0141779 0.0311975i
\(534\) 0 0
\(535\) 5.46923e6i 0.826117i
\(536\) 0 0
\(537\) 2.39792e6 0.358838
\(538\) 0 0
\(539\) 2.56769e6i 0.380689i
\(540\) 0 0
\(541\) 1.03918e7i 1.52650i −0.646104 0.763250i \(-0.723603\pi\)
0.646104 0.763250i \(-0.276397\pi\)
\(542\) 0 0
\(543\) 578765. 0.0842369
\(544\) 0 0
\(545\) −291235. −0.0420002
\(546\) 0 0
\(547\) 7.33920e6 1.04877 0.524385 0.851481i \(-0.324295\pi\)
0.524385 + 0.851481i \(0.324295\pi\)
\(548\) 0 0
\(549\) 2.57105e6 0.364066
\(550\) 0 0
\(551\) 3.51233e6i 0.492851i
\(552\) 0 0
\(553\) 1.14624e7i 1.59391i
\(554\) 0 0
\(555\) 1.26115e6 0.173793
\(556\) 0 0
\(557\) 7.97266e6i 1.08884i −0.838812 0.544421i \(-0.816749\pi\)
0.838812 0.544421i \(-0.183251\pi\)
\(558\) 0 0
\(559\) −1.11950e7 5.08763e6i −1.51529 0.688630i
\(560\) 0 0
\(561\) 1.50668e6i 0.202122i
\(562\) 0 0
\(563\) −5.23721e6 −0.696352 −0.348176 0.937429i \(-0.613199\pi\)
−0.348176 + 0.937429i \(0.613199\pi\)
\(564\) 0 0
\(565\) 7.15122e6i 0.942451i
\(566\) 0 0
\(567\) 1.15740e6i 0.151192i
\(568\) 0 0
\(569\) −8.15975e6 −1.05657 −0.528283 0.849069i \(-0.677164\pi\)
−0.528283 + 0.849069i \(0.677164\pi\)
\(570\) 0 0
\(571\) 6.61371e6 0.848897 0.424448 0.905452i \(-0.360468\pi\)
0.424448 + 0.905452i \(0.360468\pi\)
\(572\) 0 0
\(573\) 8.32849e6 1.05969
\(574\) 0 0
\(575\) 4.87942e6 0.615458
\(576\) 0 0
\(577\) 4.82867e6i 0.603793i 0.953341 + 0.301896i \(0.0976196\pi\)
−0.953341 + 0.301896i \(0.902380\pi\)
\(578\) 0 0
\(579\) 5.69075e6i 0.705462i
\(580\) 0 0
\(581\) −2.15806e6 −0.265230
\(582\) 0 0
\(583\) 4.49978e6i 0.548302i
\(584\) 0 0
\(585\) 757922. 1.66776e6i 0.0915661 0.201485i
\(586\) 0 0
\(587\) 7.52814e6i 0.901763i −0.892584 0.450881i \(-0.851110\pi\)
0.892584 0.450881i \(-0.148890\pi\)
\(588\) 0 0
\(589\) −1.72216e6 −0.204544
\(590\) 0 0
\(591\) 900430.i 0.106043i
\(592\) 0 0
\(593\) 8.22445e6i 0.960439i −0.877148 0.480220i \(-0.840557\pi\)
0.877148 0.480220i \(-0.159443\pi\)
\(594\) 0 0
\(595\) −6.10972e6 −0.707504
\(596\) 0 0
\(597\) 6.50769e6 0.747293
\(598\) 0 0
\(599\) 1.25959e6 0.143437 0.0717185 0.997425i \(-0.477152\pi\)
0.0717185 + 0.997425i \(0.477152\pi\)
\(600\) 0 0
\(601\) 6.56541e6 0.741439 0.370720 0.928745i \(-0.379111\pi\)
0.370720 + 0.928745i \(0.379111\pi\)
\(602\) 0 0
\(603\) 3.77957e6i 0.423301i
\(604\) 0 0
\(605\) 4.78294e6i 0.531259i
\(606\) 0 0
\(607\) 7.92228e6 0.872727 0.436364 0.899770i \(-0.356266\pi\)
0.436364 + 0.899770i \(0.356266\pi\)
\(608\) 0 0
\(609\) 2.38718e6i 0.260821i
\(610\) 0 0
\(611\) −5.17482e6 + 1.13869e7i −0.560780 + 1.23396i
\(612\) 0 0
\(613\) 9.74465e6i 1.04741i −0.851901 0.523703i \(-0.824550\pi\)
0.851901 0.523703i \(-0.175450\pi\)
\(614\) 0 0
\(615\) −123211. −0.0131360
\(616\) 0 0
\(617\) 1.14334e7i 1.20910i 0.796569 + 0.604548i \(0.206646\pi\)
−0.796569 + 0.604548i \(0.793354\pi\)
\(618\) 0 0
\(619\) 1.07067e7i 1.12313i 0.827432 + 0.561566i \(0.189801\pi\)
−0.827432 + 0.561566i \(0.810199\pi\)
\(620\) 0 0
\(621\) 2.03563e6 0.211822
\(622\) 0 0
\(623\) −1.08939e7 −1.12451
\(624\) 0 0
\(625\) −1.25148e6 −0.128151
\(626\) 0 0
\(627\) −3.77174e6 −0.383154
\(628\) 0 0
\(629\) 3.52299e6i 0.355046i
\(630\) 0 0
\(631\) 475976.i 0.0475895i 0.999717 + 0.0237948i \(0.00757483\pi\)
−0.999717 + 0.0237948i \(0.992425\pi\)
\(632\) 0 0
\(633\) −2.33593e6 −0.231714
\(634\) 0 0
\(635\) 9.48844e6i 0.933814i
\(636\) 0 0
\(637\) 7.93963e6 + 3.60820e6i 0.775267 + 0.352324i
\(638\) 0 0
\(639\) 4.77684e6i 0.462795i
\(640\) 0 0
\(641\) −1.90742e7 −1.83358 −0.916791 0.399368i \(-0.869230\pi\)
−0.916791 + 0.399368i \(0.869230\pi\)
\(642\) 0 0
\(643\) 1.16474e7i 1.11097i 0.831528 + 0.555483i \(0.187466\pi\)
−0.831528 + 0.555483i \(0.812534\pi\)
\(644\) 0 0
\(645\) 6.74118e6i 0.638024i
\(646\) 0 0
\(647\) −1.83045e6 −0.171908 −0.0859540 0.996299i \(-0.527394\pi\)
−0.0859540 + 0.996299i \(0.527394\pi\)
\(648\) 0 0
\(649\) 6.33768e6 0.590634
\(650\) 0 0
\(651\) 1.17048e6 0.108246
\(652\) 0 0
\(653\) 1.75829e7 1.61365 0.806824 0.590792i \(-0.201185\pi\)
0.806824 + 0.590792i \(0.201185\pi\)
\(654\) 0 0
\(655\) 4.98304e6i 0.453828i
\(656\) 0 0
\(657\) 276307.i 0.0249735i
\(658\) 0 0
\(659\) 1.84370e7 1.65378 0.826888 0.562367i \(-0.190109\pi\)
0.826888 + 0.562367i \(0.190109\pi\)
\(660\) 0 0
\(661\) 1.08046e7i 0.961845i 0.876763 + 0.480922i \(0.159698\pi\)
−0.876763 + 0.480922i \(0.840302\pi\)
\(662\) 0 0
\(663\) 4.65886e6 + 2.11724e6i 0.411619 + 0.187062i
\(664\) 0 0
\(665\) 1.52947e7i 1.34118i
\(666\) 0 0
\(667\) 4.19855e6 0.365413
\(668\) 0 0
\(669\) 9.64761e6i 0.833402i
\(670\) 0 0
\(671\) 5.69453e6i 0.488260i
\(672\) 0 0
\(673\) −1.57676e7 −1.34193 −0.670964 0.741490i \(-0.734119\pi\)
−0.670964 + 0.741490i \(0.734119\pi\)
\(674\) 0 0
\(675\) 1.27387e6 0.107613
\(676\) 0 0
\(677\) 2.86244e6 0.240029 0.120015 0.992772i \(-0.461706\pi\)
0.120015 + 0.992772i \(0.461706\pi\)
\(678\) 0 0
\(679\) −4.94480e6 −0.411599
\(680\) 0 0
\(681\) 586890.i 0.0484941i
\(682\) 0 0
\(683\) 4.91047e6i 0.402783i −0.979511 0.201391i \(-0.935454\pi\)
0.979511 0.201391i \(-0.0645463\pi\)
\(684\) 0 0
\(685\) 2.76043e6 0.224776
\(686\) 0 0
\(687\) 1.72669e6i 0.139580i
\(688\) 0 0
\(689\) 1.39139e7 + 6.32325e6i 1.11661 + 0.507449i
\(690\) 0 0
\(691\) 1.79749e7i 1.43209i −0.698052 0.716047i \(-0.745949\pi\)
0.698052 0.716047i \(-0.254051\pi\)
\(692\) 0 0
\(693\) 2.56349e6 0.202768
\(694\) 0 0
\(695\) 1.34910e6i 0.105945i
\(696\) 0 0
\(697\) 344188.i 0.0268357i
\(698\) 0 0
\(699\) 3.18528e6 0.246579
\(700\) 0 0
\(701\) −8.74640e6 −0.672255 −0.336128 0.941816i \(-0.609117\pi\)
−0.336128 + 0.941816i \(0.609117\pi\)
\(702\) 0 0
\(703\) 8.81925e6 0.673044
\(704\) 0 0
\(705\) 6.85671e6 0.519569
\(706\) 0 0
\(707\) 1.80994e7i 1.36181i
\(708\) 0 0
\(709\) 2.43397e6i 0.181844i −0.995858 0.0909221i \(-0.971019\pi\)
0.995858 0.0909221i \(-0.0289814\pi\)
\(710\) 0 0
\(711\) 5.26316e6 0.390457
\(712\) 0 0
\(713\) 2.05863e6i 0.151654i
\(714\) 0 0
\(715\) 3.69386e6 + 1.67869e6i 0.270218 + 0.122802i
\(716\) 0 0
\(717\) 1.03836e7i 0.754313i
\(718\) 0 0
\(719\) −6.81620e6 −0.491723 −0.245861 0.969305i \(-0.579071\pi\)
−0.245861 + 0.969305i \(0.579071\pi\)
\(720\) 0 0
\(721\) 3.59523e7i 2.57566i
\(722\) 0 0
\(723\) 1.88778e6i 0.134309i
\(724\) 0 0
\(725\) 2.62739e6 0.185643
\(726\) 0 0
\(727\) 4.33605e6 0.304269 0.152135 0.988360i \(-0.451385\pi\)
0.152135 + 0.988360i \(0.451385\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) −1.88314e7 −1.30343
\(732\) 0 0
\(733\) 2.01689e7i 1.38651i 0.720693 + 0.693254i \(0.243824\pi\)
−0.720693 + 0.693254i \(0.756176\pi\)
\(734\) 0 0
\(735\) 4.78093e6i 0.326433i
\(736\) 0 0
\(737\) −8.37122e6 −0.567702
\(738\) 0 0
\(739\) 2.05423e7i 1.38369i −0.722048 0.691843i \(-0.756799\pi\)
0.722048 0.691843i \(-0.243201\pi\)
\(740\) 0 0
\(741\) 5.30018e6 1.16627e7i 0.354605 0.780286i
\(742\) 0 0
\(743\) 1.48776e7i 0.988689i −0.869266 0.494345i \(-0.835408\pi\)
0.869266 0.494345i \(-0.164592\pi\)
\(744\) 0 0
\(745\) −8.21200e6 −0.542074
\(746\) 0 0
\(747\) 990907.i 0.0649728i
\(748\) 0 0
\(749\) 2.59946e7i 1.69308i
\(750\) 0 0
\(751\) 2.94950e7 1.90831 0.954154 0.299315i \(-0.0967580\pi\)
0.954154 + 0.299315i \(0.0967580\pi\)
\(752\) 0 0
\(753\) −3.84440e6 −0.247082
\(754\) 0 0
\(755\) 1.79064e7 1.14325
\(756\) 0 0
\(757\) 2.01715e7 1.27938 0.639690 0.768633i \(-0.279063\pi\)
0.639690 + 0.768633i \(0.279063\pi\)
\(758\) 0 0
\(759\) 4.50864e6i 0.284080i
\(760\) 0 0
\(761\) 2.06956e7i 1.29544i 0.761880 + 0.647719i \(0.224277\pi\)
−0.761880 + 0.647719i \(0.775723\pi\)
\(762\) 0 0
\(763\) 1.38420e6 0.0860772
\(764\) 0 0
\(765\) 2.80538e6i 0.173316i
\(766\) 0 0
\(767\) −8.90592e6 + 1.95969e7i −0.546626 + 1.20282i
\(768\) 0 0
\(769\) 1.69130e7i 1.03135i −0.856785 0.515674i \(-0.827542\pi\)
0.856785 0.515674i \(-0.172458\pi\)
\(770\) 0 0
\(771\) 1.86950e6 0.113263
\(772\) 0 0
\(773\) 3.10969e7i 1.87184i −0.352212 0.935920i \(-0.614570\pi\)
0.352212 0.935920i \(-0.385430\pi\)
\(774\) 0 0
\(775\) 1.28826e6i 0.0770458i
\(776\) 0 0
\(777\) −5.99407e6 −0.356180
\(778\) 0 0
\(779\) −861619. −0.0508712
\(780\) 0 0
\(781\) 1.05800e7 0.620669
\(782\) 0 0
\(783\) 1.09611e6 0.0638926
\(784\) 0 0
\(785\) 4.10967e6i 0.238031i
\(786\) 0 0
\(787\) 628913.i 0.0361954i 0.999836 + 0.0180977i \(0.00576099\pi\)
−0.999836 + 0.0180977i \(0.994239\pi\)
\(788\) 0 0
\(789\) 7.48541e6 0.428078
\(790\) 0 0
\(791\) 3.39888e7i 1.93150i
\(792\) 0 0
\(793\) −1.76082e7 8.00215e6i −0.994335 0.451881i
\(794\) 0 0
\(795\) 8.37840e6i 0.470157i
\(796\) 0 0
\(797\) −2.43866e7 −1.35990 −0.679948 0.733260i \(-0.737998\pi\)
−0.679948 + 0.733260i \(0.737998\pi\)
\(798\) 0 0
\(799\) 1.91541e7i 1.06144i
\(800\) 0 0
\(801\) 5.00213e6i 0.275470i
\(802\) 0 0
\(803\) −611982. −0.0334927
\(804\) 0 0
\(805\) 1.82829e7 0.994388
\(806\) 0 0
\(807\) 1.50628e7 0.814183
\(808\) 0 0
\(809\) −2.86033e7 −1.53654 −0.768272 0.640123i \(-0.778883\pi\)
−0.768272 + 0.640123i \(0.778883\pi\)
\(810\) 0 0
\(811\) 5.97923e6i 0.319222i −0.987180 0.159611i \(-0.948976\pi\)
0.987180 0.159611i \(-0.0510240\pi\)
\(812\) 0 0
\(813\) 628133.i 0.0333292i
\(814\) 0 0
\(815\) 5.97800e6 0.315255
\(816\) 0 0
\(817\) 4.71414e7i 2.47085i
\(818\) 0 0
\(819\) −3.60231e6 + 7.92665e6i −0.187660 + 0.412933i
\(820\) 0 0
\(821\) 1.46642e7i 0.759279i −0.925134 0.379640i \(-0.876048\pi\)
0.925134 0.379640i \(-0.123952\pi\)
\(822\) 0 0
\(823\) −1.80149e7 −0.927113 −0.463557 0.886067i \(-0.653427\pi\)
−0.463557 + 0.886067i \(0.653427\pi\)
\(824\) 0 0
\(825\) 2.82144e6i 0.144323i
\(826\) 0 0
\(827\) 9.93027e6i 0.504891i −0.967611 0.252445i \(-0.918765\pi\)
0.967611 0.252445i \(-0.0812348\pi\)
\(828\) 0 0
\(829\) 2.97991e7 1.50597 0.752986 0.658037i \(-0.228613\pi\)
0.752986 + 0.658037i \(0.228613\pi\)
\(830\) 0 0
\(831\) 1.45242e7 0.729608
\(832\) 0 0
\(833\) 1.33554e7 0.666877
\(834\) 0 0
\(835\) 1.73174e7 0.859542
\(836\) 0 0
\(837\) 537445.i 0.0265168i
\(838\) 0 0
\(839\) 1.35283e7i 0.663496i 0.943368 + 0.331748i \(0.107638\pi\)
−0.943368 + 0.331748i \(0.892362\pi\)
\(840\) 0 0
\(841\) −1.82504e7 −0.889779
\(842\) 0 0
\(843\) 9.50897e6i 0.460855i
\(844\) 0 0
\(845\) −1.03815e7 + 9.06293e6i −0.500169 + 0.436643i
\(846\) 0 0
\(847\) 2.27327e7i 1.08879i
\(848\) 0 0
\(849\) 4.61467e6 0.219721
\(850\) 0 0
\(851\) 1.05423e7i 0.499013i
\(852\) 0 0
\(853\) 9.03698e6i 0.425257i −0.977133 0.212628i \(-0.931798\pi\)
0.977133 0.212628i \(-0.0682023\pi\)
\(854\) 0 0
\(855\) −7.02282e6 −0.328546
\(856\) 0 0
\(857\) −9.55364e6 −0.444341 −0.222171 0.975008i \(-0.571314\pi\)
−0.222171 + 0.975008i \(0.571314\pi\)
\(858\) 0 0
\(859\) −3.73649e6 −0.172775 −0.0863874 0.996262i \(-0.527532\pi\)
−0.0863874 + 0.996262i \(0.527532\pi\)
\(860\) 0 0
\(861\) 585606. 0.0269214
\(862\) 0 0
\(863\) 3.44318e7i 1.57374i −0.617120 0.786869i \(-0.711701\pi\)
0.617120 0.786869i \(-0.288299\pi\)
\(864\) 0 0
\(865\) 8.93626e6i 0.406084i
\(866\) 0 0
\(867\) −4.94194e6 −0.223280
\(868\) 0 0
\(869\) 1.16572e7i 0.523653i
\(870\) 0 0
\(871\) 1.17635e7 2.58849e7i 0.525403 1.15612i
\(872\) 0 0
\(873\) 2.27048e6i 0.100828i
\(874\) 0 0
\(875\) 3.19020e7 1.40863
\(876\) 0 0
\(877\) 2.12195e7i 0.931613i −0.884887 0.465807i \(-0.845764\pi\)
0.884887 0.465807i \(-0.154236\pi\)
\(878\) 0 0
\(879\) 2.44141e7i 1.06578i
\(880\) 0 0
\(881\) 3.83954e7 1.66663 0.833315 0.552798i \(-0.186440\pi\)
0.833315 + 0.552798i \(0.186440\pi\)
\(882\) 0 0
\(883\) −3.58049e7 −1.54540 −0.772699 0.634773i \(-0.781094\pi\)
−0.772699 + 0.634773i \(0.781094\pi\)
\(884\) 0 0
\(885\) 1.18005e7 0.506456
\(886\) 0 0
\(887\) −2.52692e7 −1.07841 −0.539203 0.842176i \(-0.681274\pi\)
−0.539203 + 0.842176i \(0.681274\pi\)
\(888\) 0 0
\(889\) 4.50973e7i 1.91380i
\(890\) 0 0
\(891\) 1.17707e6i 0.0496715i
\(892\) 0 0
\(893\) 4.79493e7 2.01212
\(894\) 0 0
\(895\) 9.88896e6i 0.412661i
\(896\) 0 0
\(897\) −1.39413e7 6.33570e6i −0.578525 0.262914i
\(898\) 0 0
\(899\) 1.10850e6i 0.0457441i
\(900\) 0 0
\(901\) 2.34049e7 0.960495
\(902\) 0 0
\(903\) 3.20400e7i 1.30759i
\(904\) 0 0
\(905\) 2.38681e6i 0.0968717i
\(906\) 0 0
\(907\) 2.49639e7 1.00761 0.503806 0.863817i \(-0.331933\pi\)
0.503806 + 0.863817i \(0.331933\pi\)
\(908\) 0 0
\(909\) 8.31063e6 0.333599
\(910\) 0 0
\(911\) 807347. 0.0322303 0.0161151 0.999870i \(-0.494870\pi\)
0.0161151 + 0.999870i \(0.494870\pi\)
\(912\) 0 0
\(913\) 2.19472e6 0.0871370
\(914\) 0 0
\(915\) 1.06030e7i 0.418673i
\(916\) 0 0
\(917\) 2.36838e7i 0.930095i
\(918\) 0 0
\(919\) 2.92665e6 0.114309 0.0571547 0.998365i \(-0.481797\pi\)
0.0571547 + 0.998365i \(0.481797\pi\)
\(920\) 0 0
\(921\) 2.20027e7i 0.854726i
\(922\) 0 0
\(923\) −1.48674e7 + 3.27149e7i −0.574423 + 1.26398i
\(924\) 0 0
\(925\) 6.59722e6i 0.253517i
\(926\) 0 0
\(927\) 1.65081e7 0.630953
\(928\) 0 0
\(929\) 2.03515e7i 0.773672i 0.922148 + 0.386836i \(0.126432\pi\)
−0.922148 + 0.386836i \(0.873568\pi\)
\(930\) 0 0
\(931\) 3.34332e7i 1.26417i
\(932\) 0 0
\(933\) −1.79265e7 −0.674203
\(934\) 0 0
\(935\) 6.21352e6 0.232439
\(936\) 0 0
\(937\) −659937. −0.0245558 −0.0122779 0.999925i \(-0.503908\pi\)
−0.0122779 + 0.999925i \(0.503908\pi\)
\(938\) 0 0
\(939\) 1.49757e7 0.554271
\(940\) 0 0
\(941\) 3.40074e7i 1.25199i −0.779828 0.625994i \(-0.784694\pi\)
0.779828 0.625994i \(-0.215306\pi\)
\(942\) 0 0
\(943\) 1.02996e6i 0.0377173i
\(944\) 0 0
\(945\) 4.77311e6 0.173869
\(946\) 0 0
\(947\) 1.44758e7i 0.524527i 0.964996 + 0.262263i \(0.0844689\pi\)
−0.964996 + 0.262263i \(0.915531\pi\)
\(948\) 0 0
\(949\) 859978. 1.89233e6i 0.0309972 0.0682073i
\(950\) 0 0
\(951\) 2.88434e7i 1.03418i
\(952\) 0 0
\(953\) 1.88172e7 0.671156 0.335578 0.942012i \(-0.391068\pi\)
0.335578 + 0.942012i \(0.391068\pi\)
\(954\) 0 0
\(955\) 3.43465e7i 1.21864i
\(956\) 0 0
\(957\) 2.42774e6i 0.0856883i
\(958\) 0 0
\(959\) −1.31200e7 −0.460666
\(960\) 0 0
\(961\) 2.80856e7 0.981015
\(962\) 0 0
\(963\) 1.19358e7 0.414750
\(964\) 0 0
\(965\) 2.34685e7 0.811275
\(966\) 0 0
\(967\) 4.30702e7i 1.48119i −0.671952 0.740595i \(-0.734544\pi\)
0.671952 0.740595i \(-0.265456\pi\)
\(968\) 0 0
\(969\) 1.96181e7i 0.671194i
\(970\) 0 0
\(971\) −2.85474e7 −0.971668 −0.485834 0.874051i \(-0.661484\pi\)
−0.485834 + 0.874051i \(0.661484\pi\)
\(972\) 0 0
\(973\) 6.41210e6i 0.217129i
\(974\) 0 0
\(975\) −8.72426e6 3.96479e6i −0.293912 0.133570i
\(976\) 0 0
\(977\) 4.23484e7i 1.41939i 0.704510 + 0.709694i \(0.251167\pi\)
−0.704510 + 0.709694i \(0.748833\pi\)
\(978\) 0 0
\(979\) 1.10790e7 0.369441
\(980\) 0 0
\(981\) 635579.i 0.0210861i
\(982\) 0 0
\(983\) 1.39064e7i 0.459020i 0.973306 + 0.229510i \(0.0737124\pi\)
−0.973306 + 0.229510i \(0.926288\pi\)
\(984\) 0 0
\(985\) −3.71335e6 −0.121948
\(986\) 0 0
\(987\) −3.25891e7 −1.06483
\(988\) 0 0
\(989\) 5.63516e7 1.83196
\(990\) 0 0
\(991\) 3.49486e6 0.113043 0.0565217 0.998401i \(-0.481999\pi\)
0.0565217 + 0.998401i \(0.481999\pi\)
\(992\) 0 0
\(993\) 3.18047e7i 1.02357i
\(994\) 0 0
\(995\) 2.68376e7i 0.859380i
\(996\) 0 0
\(997\) 77983.9 0.00248466 0.00124233 0.999999i \(-0.499605\pi\)
0.00124233 + 0.999999i \(0.499605\pi\)
\(998\) 0 0
\(999\) 2.75227e6i 0.0872525i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.6.c.d.337.5 6
4.3 odd 2 78.6.b.a.25.6 yes 6
12.11 even 2 234.6.b.c.181.1 6
13.12 even 2 inner 624.6.c.d.337.2 6
52.31 even 4 1014.6.a.q.1.3 3
52.47 even 4 1014.6.a.o.1.1 3
52.51 odd 2 78.6.b.a.25.1 6
156.155 even 2 234.6.b.c.181.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.6.b.a.25.1 6 52.51 odd 2
78.6.b.a.25.6 yes 6 4.3 odd 2
234.6.b.c.181.1 6 12.11 even 2
234.6.b.c.181.6 6 156.155 even 2
624.6.c.d.337.2 6 13.12 even 2 inner
624.6.c.d.337.5 6 1.1 even 1 trivial
1014.6.a.o.1.1 3 52.47 even 4
1014.6.a.q.1.3 3 52.31 even 4