Properties

Label 624.6.c.d
Level $624$
Weight $6$
Character orbit 624.c
Analytic conductor $100.080$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,6,Mod(337,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.337");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 624.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(100.079503563\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} - 2946x^{3} + 131769x^{2} - 1332936x + 6741792 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{15}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 9 q^{3} + \beta_{2} q^{5} + ( - \beta_{3} + \beta_1) q^{7} + 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 9 q^{3} + \beta_{2} q^{5} + ( - \beta_{3} + \beta_1) q^{7} + 81 q^{9} + ( - \beta_{3} + 7 \beta_{2} - \beta_1) q^{11} + ( - \beta_{5} - 3 \beta_{3} + \cdots + 88) q^{13}+ \cdots + ( - 81 \beta_{3} + 567 \beta_{2} - 81 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 54 q^{3} + 486 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 54 q^{3} + 486 q^{9} + 530 q^{13} - 836 q^{17} + 416 q^{23} + 718 q^{25} + 4374 q^{27} + 18788 q^{29} - 6112 q^{35} + 4770 q^{39} + 24200 q^{43} - 3038 q^{49} - 7524 q^{51} - 42396 q^{53} - 124656 q^{55} - 3196 q^{61} - 17168 q^{65} + 3744 q^{69} + 6462 q^{75} - 114024 q^{77} + 169328 q^{79} + 39366 q^{81} + 169092 q^{87} - 236152 q^{91} - 567168 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} + 2x^{4} - 2946x^{3} + 131769x^{2} - 1332936x + 6741792 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 44656\nu^{5} + 134068\nu^{4} + 544028\nu^{3} - 50022876\nu^{2} + 5555237724\nu - 31416904944 ) / 602644509 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 349772 \nu^{5} - 1122074 \nu^{4} + 22009634 \nu^{3} + 1570826760 \nu^{2} + \cdots + 198106775784 ) / 1807933527 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -56915\nu^{5} - 169814\nu^{4} - 1079710\nu^{3} + 205940238\nu^{2} - 7223623731\nu + 40746922668 ) / 212698062 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -12032\nu^{5} + 105004\nu^{4} - 4391680\nu^{3} + 17723136\nu^{2} + 44181504\nu + 26056530279 ) / 35449677 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 18680\nu^{5} + 685508\nu^{4} + 6818200\nu^{3} - 27515640\nu^{2} - 68592960\nu + 30761102889 ) / 35449677 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{5} + 5\beta_{4} - 48\beta_{3} + 48\beta_{2} - 18\beta _1 + 190 ) / 576 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 16\beta_{3} + 2\beta_{2} + 63\beta_1 ) / 12 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 437\beta_{5} - 1753\beta_{4} - 16656\beta_{3} + 17520\beta_{2} - 25542\beta _1 + 848794 ) / 576 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 1504\beta_{5} + 2335\beta_{4} - 3021373 ) / 36 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 46831\beta_{5} - 712811\beta_{4} + 7034448\beta_{3} - 6077136\beta_{2} + 13711086\beta _1 + 516391646 ) / 576 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/624\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(209\) \(469\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
337.1
9.96927 9.96927i
6.10758 + 6.10758i
−15.0768 15.0768i
−15.0768 + 15.0768i
6.10758 6.10758i
9.96927 + 9.96927i
0 9.00000 0 86.8538i 0 98.7774i 0 81.0000 0
337.2 0 9.00000 0 37.1158i 0 176.407i 0 81.0000 0
337.3 0 9.00000 0 9.73803i 0 105.184i 0 81.0000 0
337.4 0 9.00000 0 9.73803i 0 105.184i 0 81.0000 0
337.5 0 9.00000 0 37.1158i 0 176.407i 0 81.0000 0
337.6 0 9.00000 0 86.8538i 0 98.7774i 0 81.0000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 337.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 624.6.c.d 6
4.b odd 2 1 78.6.b.a 6
12.b even 2 1 234.6.b.c 6
13.b even 2 1 inner 624.6.c.d 6
52.b odd 2 1 78.6.b.a 6
52.f even 4 1 1014.6.a.o 3
52.f even 4 1 1014.6.a.q 3
156.h even 2 1 234.6.b.c 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.6.b.a 6 4.b odd 2 1
78.6.b.a 6 52.b odd 2 1
234.6.b.c 6 12.b even 2 1
234.6.b.c 6 156.h even 2 1
624.6.c.d 6 1.a even 1 1 trivial
624.6.c.d 6 13.b even 2 1 inner
1014.6.a.o 3 52.f even 4 1
1014.6.a.q 3 52.f even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{6} + 9016T_{5}^{4} + 11237904T_{5}^{2} + 985457664 \) acting on \(S_{6}^{\mathrm{new}}(624, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( (T - 9)^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + 9016 T^{4} + \cdots + 985457664 \) Copy content Toggle raw display
$7$ \( T^{6} + \cdots + 3359273140224 \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots + 871026613185600 \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots + 51\!\cdots\!57 \) Copy content Toggle raw display
$17$ \( (T^{3} + 418 T^{2} + \cdots - 1783218312)^{2} \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots + 224220196832256 \) Copy content Toggle raw display
$23$ \( (T^{3} - 208 T^{2} + \cdots - 2602266624)^{2} \) Copy content Toggle raw display
$29$ \( (T^{3} - 9394 T^{2} + \cdots - 2546571960)^{2} \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 15\!\cdots\!44 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 40\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( (T^{3} + \cdots + 1729964364544)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 20\!\cdots\!24 \) Copy content Toggle raw display
$53$ \( (T^{3} + \cdots - 26960052479832)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 11\!\cdots\!04 \) Copy content Toggle raw display
$61$ \( (T^{3} + \cdots + 17380383329800)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 94\!\cdots\!84 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots + 22\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 11\!\cdots\!16 \) Copy content Toggle raw display
$79$ \( (T^{3} + \cdots + 35835411156480)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 11\!\cdots\!56 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 35\!\cdots\!16 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 30\!\cdots\!64 \) Copy content Toggle raw display
show more
show less