Properties

Label 624.6.c.d.337.4
Level $624$
Weight $6$
Character 624.337
Analytic conductor $100.080$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [624,6,Mod(337,624)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("624.337"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(624, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 624.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,54,0,0,0,0,0,486,0,0,0,530] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(100.079503563\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} - 2946x^{3} + 131769x^{2} - 1332936x + 6741792 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{15}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.4
Root \(-15.0768 + 15.0768i\) of defining polynomial
Character \(\chi\) \(=\) 624.337
Dual form 624.6.c.d.337.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.00000 q^{3} +9.73803i q^{5} +105.184i q^{7} +81.0000 q^{9} +269.350i q^{11} +(227.464 + 565.290i) q^{13} +87.6423i q^{15} +1663.75 q^{17} -2.82742i q^{19} +946.657i q^{21} -2151.14 q^{23} +3030.17 q^{25} +729.000 q^{27} +220.829 q^{29} -788.106i q^{31} +2424.15i q^{33} -1024.29 q^{35} +980.445i q^{37} +(2047.18 + 5087.61i) q^{39} -14809.7i q^{41} -14142.2 q^{43} +788.781i q^{45} +25181.2i q^{47} +5743.31 q^{49} +14973.7 q^{51} -30900.9 q^{53} -2622.94 q^{55} -25.4468i q^{57} +25094.7i q^{59} +12060.8 q^{61} +8519.91i q^{63} +(-5504.81 + 2215.05i) q^{65} +14450.5i q^{67} -19360.2 q^{69} -33547.5i q^{71} +25805.7i q^{73} +27271.5 q^{75} -28331.4 q^{77} -15620.3 q^{79} +6561.00 q^{81} +2819.78i q^{83} +16201.6i q^{85} +1987.46 q^{87} +16227.2i q^{89} +(-59459.6 + 23925.6i) q^{91} -7092.95i q^{93} +27.5335 q^{95} +126289. i q^{97} +21817.4i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 54 q^{3} + 486 q^{9} + 530 q^{13} - 836 q^{17} + 416 q^{23} + 718 q^{25} + 4374 q^{27} + 18788 q^{29} - 6112 q^{35} + 4770 q^{39} + 24200 q^{43} - 3038 q^{49} - 7524 q^{51} - 42396 q^{53} - 124656 q^{55}+ \cdots - 567168 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/624\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(209\) \(469\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.00000 0.577350
\(4\) 0 0
\(5\) 9.73803i 0.174199i 0.996200 + 0.0870996i \(0.0277598\pi\)
−0.996200 + 0.0870996i \(0.972240\pi\)
\(6\) 0 0
\(7\) 105.184i 0.811344i 0.914019 + 0.405672i \(0.132962\pi\)
−0.914019 + 0.405672i \(0.867038\pi\)
\(8\) 0 0
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) 269.350i 0.671175i 0.942009 + 0.335588i \(0.108935\pi\)
−0.942009 + 0.335588i \(0.891065\pi\)
\(12\) 0 0
\(13\) 227.464 + 565.290i 0.373297 + 0.927712i
\(14\) 0 0
\(15\) 87.6423i 0.100574i
\(16\) 0 0
\(17\) 1663.75 1.39625 0.698127 0.715974i \(-0.254017\pi\)
0.698127 + 0.715974i \(0.254017\pi\)
\(18\) 0 0
\(19\) 2.82742i 0.00179683i −1.00000 0.000898415i \(-0.999714\pi\)
1.00000 0.000898415i \(-0.000285974\pi\)
\(20\) 0 0
\(21\) 946.657i 0.468430i
\(22\) 0 0
\(23\) −2151.14 −0.847908 −0.423954 0.905684i \(-0.639358\pi\)
−0.423954 + 0.905684i \(0.639358\pi\)
\(24\) 0 0
\(25\) 3030.17 0.969655
\(26\) 0 0
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) 220.829 0.0487598 0.0243799 0.999703i \(-0.492239\pi\)
0.0243799 + 0.999703i \(0.492239\pi\)
\(30\) 0 0
\(31\) 788.106i 0.147292i −0.997284 0.0736462i \(-0.976536\pi\)
0.997284 0.0736462i \(-0.0234636\pi\)
\(32\) 0 0
\(33\) 2424.15i 0.387503i
\(34\) 0 0
\(35\) −1024.29 −0.141335
\(36\) 0 0
\(37\) 980.445i 0.117739i 0.998266 + 0.0588693i \(0.0187495\pi\)
−0.998266 + 0.0588693i \(0.981250\pi\)
\(38\) 0 0
\(39\) 2047.18 + 5087.61i 0.215523 + 0.535615i
\(40\) 0 0
\(41\) 14809.7i 1.37590i −0.725759 0.687949i \(-0.758511\pi\)
0.725759 0.687949i \(-0.241489\pi\)
\(42\) 0 0
\(43\) −14142.2 −1.16640 −0.583198 0.812330i \(-0.698199\pi\)
−0.583198 + 0.812330i \(0.698199\pi\)
\(44\) 0 0
\(45\) 788.781i 0.0580664i
\(46\) 0 0
\(47\) 25181.2i 1.66277i 0.555699 + 0.831383i \(0.312451\pi\)
−0.555699 + 0.831383i \(0.687549\pi\)
\(48\) 0 0
\(49\) 5743.31 0.341721
\(50\) 0 0
\(51\) 14973.7 0.806128
\(52\) 0 0
\(53\) −30900.9 −1.51106 −0.755530 0.655114i \(-0.772621\pi\)
−0.755530 + 0.655114i \(0.772621\pi\)
\(54\) 0 0
\(55\) −2622.94 −0.116918
\(56\) 0 0
\(57\) 25.4468i 0.00103740i
\(58\) 0 0
\(59\) 25094.7i 0.938538i 0.883055 + 0.469269i \(0.155483\pi\)
−0.883055 + 0.469269i \(0.844517\pi\)
\(60\) 0 0
\(61\) 12060.8 0.415003 0.207501 0.978235i \(-0.433467\pi\)
0.207501 + 0.978235i \(0.433467\pi\)
\(62\) 0 0
\(63\) 8519.91i 0.270448i
\(64\) 0 0
\(65\) −5504.81 + 2215.05i −0.161607 + 0.0650280i
\(66\) 0 0
\(67\) 14450.5i 0.393276i 0.980476 + 0.196638i \(0.0630023\pi\)
−0.980476 + 0.196638i \(0.936998\pi\)
\(68\) 0 0
\(69\) −19360.2 −0.489540
\(70\) 0 0
\(71\) 33547.5i 0.789795i −0.918725 0.394897i \(-0.870780\pi\)
0.918725 0.394897i \(-0.129220\pi\)
\(72\) 0 0
\(73\) 25805.7i 0.566772i 0.959006 + 0.283386i \(0.0914578\pi\)
−0.959006 + 0.283386i \(0.908542\pi\)
\(74\) 0 0
\(75\) 27271.5 0.559830
\(76\) 0 0
\(77\) −28331.4 −0.544554
\(78\) 0 0
\(79\) −15620.3 −0.281593 −0.140797 0.990039i \(-0.544966\pi\)
−0.140797 + 0.990039i \(0.544966\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) 2819.78i 0.0449284i 0.999748 + 0.0224642i \(0.00715117\pi\)
−0.999748 + 0.0224642i \(0.992849\pi\)
\(84\) 0 0
\(85\) 16201.6i 0.243226i
\(86\) 0 0
\(87\) 1987.46 0.0281515
\(88\) 0 0
\(89\) 16227.2i 0.217154i 0.994088 + 0.108577i \(0.0346294\pi\)
−0.994088 + 0.108577i \(0.965371\pi\)
\(90\) 0 0
\(91\) −59459.6 + 23925.6i −0.752693 + 0.302872i
\(92\) 0 0
\(93\) 7092.95i 0.0850393i
\(94\) 0 0
\(95\) 27.5335 0.000313006
\(96\) 0 0
\(97\) 126289.i 1.36281i 0.731906 + 0.681406i \(0.238631\pi\)
−0.731906 + 0.681406i \(0.761369\pi\)
\(98\) 0 0
\(99\) 21817.4i 0.223725i
\(100\) 0 0
\(101\) 92398.8 0.901287 0.450643 0.892704i \(-0.351195\pi\)
0.450643 + 0.892704i \(0.351195\pi\)
\(102\) 0 0
\(103\) −148091. −1.37542 −0.687711 0.725985i \(-0.741384\pi\)
−0.687711 + 0.725985i \(0.741384\pi\)
\(104\) 0 0
\(105\) −9218.57 −0.0816001
\(106\) 0 0
\(107\) −88180.1 −0.744580 −0.372290 0.928117i \(-0.621427\pi\)
−0.372290 + 0.928117i \(0.621427\pi\)
\(108\) 0 0
\(109\) 61467.2i 0.495538i 0.968819 + 0.247769i \(0.0796974\pi\)
−0.968819 + 0.247769i \(0.920303\pi\)
\(110\) 0 0
\(111\) 8824.01i 0.0679764i
\(112\) 0 0
\(113\) −82256.1 −0.605999 −0.303000 0.952991i \(-0.597988\pi\)
−0.303000 + 0.952991i \(0.597988\pi\)
\(114\) 0 0
\(115\) 20947.8i 0.147705i
\(116\) 0 0
\(117\) 18424.6 + 45788.5i 0.124432 + 0.309237i
\(118\) 0 0
\(119\) 175000.i 1.13284i
\(120\) 0 0
\(121\) 88501.4 0.549524
\(122\) 0 0
\(123\) 133287.i 0.794375i
\(124\) 0 0
\(125\) 59939.2i 0.343112i
\(126\) 0 0
\(127\) 143150. 0.787556 0.393778 0.919206i \(-0.371168\pi\)
0.393778 + 0.919206i \(0.371168\pi\)
\(128\) 0 0
\(129\) −127280. −0.673419
\(130\) 0 0
\(131\) 141329. 0.719539 0.359769 0.933041i \(-0.382855\pi\)
0.359769 + 0.933041i \(0.382855\pi\)
\(132\) 0 0
\(133\) 297.400 0.00145785
\(134\) 0 0
\(135\) 7099.02i 0.0335247i
\(136\) 0 0
\(137\) 3958.33i 0.0180182i −0.999959 0.00900909i \(-0.997132\pi\)
0.999959 0.00900909i \(-0.00286772\pi\)
\(138\) 0 0
\(139\) 445579. 1.95608 0.978042 0.208408i \(-0.0668283\pi\)
0.978042 + 0.208408i \(0.0668283\pi\)
\(140\) 0 0
\(141\) 226631.i 0.959999i
\(142\) 0 0
\(143\) −152261. + 61267.5i −0.622657 + 0.250547i
\(144\) 0 0
\(145\) 2150.44i 0.00849391i
\(146\) 0 0
\(147\) 51689.7 0.197293
\(148\) 0 0
\(149\) 49619.3i 0.183098i 0.995801 + 0.0915492i \(0.0291819\pi\)
−0.995801 + 0.0915492i \(0.970818\pi\)
\(150\) 0 0
\(151\) 402323.i 1.43593i −0.696081 0.717964i \(-0.745074\pi\)
0.696081 0.717964i \(-0.254926\pi\)
\(152\) 0 0
\(153\) 134763. 0.465418
\(154\) 0 0
\(155\) 7674.60 0.0256582
\(156\) 0 0
\(157\) −562429. −1.82104 −0.910519 0.413468i \(-0.864317\pi\)
−0.910519 + 0.413468i \(0.864317\pi\)
\(158\) 0 0
\(159\) −278108. −0.872411
\(160\) 0 0
\(161\) 226265.i 0.687945i
\(162\) 0 0
\(163\) 313878.i 0.925319i 0.886536 + 0.462659i \(0.153105\pi\)
−0.886536 + 0.462659i \(0.846895\pi\)
\(164\) 0 0
\(165\) −23606.5 −0.0675027
\(166\) 0 0
\(167\) 602228.i 1.67097i 0.549510 + 0.835487i \(0.314814\pi\)
−0.549510 + 0.835487i \(0.685186\pi\)
\(168\) 0 0
\(169\) −267813. + 257166.i −0.721299 + 0.692624i
\(170\) 0 0
\(171\) 229.021i 0.000598943i
\(172\) 0 0
\(173\) 304021. 0.772304 0.386152 0.922435i \(-0.373804\pi\)
0.386152 + 0.922435i \(0.373804\pi\)
\(174\) 0 0
\(175\) 318726.i 0.786723i
\(176\) 0 0
\(177\) 225852.i 0.541865i
\(178\) 0 0
\(179\) −406190. −0.947539 −0.473769 0.880649i \(-0.657107\pi\)
−0.473769 + 0.880649i \(0.657107\pi\)
\(180\) 0 0
\(181\) −240967. −0.546714 −0.273357 0.961913i \(-0.588134\pi\)
−0.273357 + 0.961913i \(0.588134\pi\)
\(182\) 0 0
\(183\) 108547. 0.239602
\(184\) 0 0
\(185\) −9547.60 −0.0205100
\(186\) 0 0
\(187\) 448130.i 0.937131i
\(188\) 0 0
\(189\) 76679.2i 0.156143i
\(190\) 0 0
\(191\) −226140. −0.448532 −0.224266 0.974528i \(-0.571999\pi\)
−0.224266 + 0.974528i \(0.571999\pi\)
\(192\) 0 0
\(193\) 406075.i 0.784717i −0.919812 0.392359i \(-0.871659\pi\)
0.919812 0.392359i \(-0.128341\pi\)
\(194\) 0 0
\(195\) −49543.3 + 19935.5i −0.0933037 + 0.0375439i
\(196\) 0 0
\(197\) 407390.i 0.747902i −0.927449 0.373951i \(-0.878003\pi\)
0.927449 0.373951i \(-0.121997\pi\)
\(198\) 0 0
\(199\) −202865. −0.363140 −0.181570 0.983378i \(-0.558118\pi\)
−0.181570 + 0.983378i \(0.558118\pi\)
\(200\) 0 0
\(201\) 130055.i 0.227058i
\(202\) 0 0
\(203\) 23227.7i 0.0395609i
\(204\) 0 0
\(205\) 144217. 0.239680
\(206\) 0 0
\(207\) −174242. −0.282636
\(208\) 0 0
\(209\) 761.568 0.00120599
\(210\) 0 0
\(211\) −657970. −1.01742 −0.508710 0.860938i \(-0.669877\pi\)
−0.508710 + 0.860938i \(0.669877\pi\)
\(212\) 0 0
\(213\) 301927.i 0.455988i
\(214\) 0 0
\(215\) 137717.i 0.203185i
\(216\) 0 0
\(217\) 82896.2 0.119505
\(218\) 0 0
\(219\) 232251.i 0.327226i
\(220\) 0 0
\(221\) 378442. + 940499.i 0.521217 + 1.29532i
\(222\) 0 0
\(223\) 978060.i 1.31705i 0.752558 + 0.658527i \(0.228820\pi\)
−0.752558 + 0.658527i \(0.771180\pi\)
\(224\) 0 0
\(225\) 245444. 0.323218
\(226\) 0 0
\(227\) 812137.i 1.04608i −0.852308 0.523040i \(-0.824798\pi\)
0.852308 0.523040i \(-0.175202\pi\)
\(228\) 0 0
\(229\) 1.36329e6i 1.71790i 0.512058 + 0.858951i \(0.328883\pi\)
−0.512058 + 0.858951i \(0.671117\pi\)
\(230\) 0 0
\(231\) −254982. −0.314398
\(232\) 0 0
\(233\) 931926. 1.12458 0.562292 0.826939i \(-0.309920\pi\)
0.562292 + 0.826939i \(0.309920\pi\)
\(234\) 0 0
\(235\) −245215. −0.289653
\(236\) 0 0
\(237\) −140583. −0.162578
\(238\) 0 0
\(239\) 885874.i 1.00318i 0.865107 + 0.501588i \(0.167251\pi\)
−0.865107 + 0.501588i \(0.832749\pi\)
\(240\) 0 0
\(241\) 1.32690e6i 1.47161i 0.677191 + 0.735807i \(0.263197\pi\)
−0.677191 + 0.735807i \(0.736803\pi\)
\(242\) 0 0
\(243\) 59049.0 0.0641500
\(244\) 0 0
\(245\) 55928.5i 0.0595275i
\(246\) 0 0
\(247\) 1598.32 643.137i 0.00166694 0.000670751i
\(248\) 0 0
\(249\) 25378.1i 0.0259394i
\(250\) 0 0
\(251\) 547596. 0.548625 0.274313 0.961641i \(-0.411550\pi\)
0.274313 + 0.961641i \(0.411550\pi\)
\(252\) 0 0
\(253\) 579409.i 0.569094i
\(254\) 0 0
\(255\) 145814.i 0.140427i
\(256\) 0 0
\(257\) −1.65509e6 −1.56311 −0.781554 0.623837i \(-0.785573\pi\)
−0.781554 + 0.623837i \(0.785573\pi\)
\(258\) 0 0
\(259\) −103127. −0.0955265
\(260\) 0 0
\(261\) 17887.2 0.0162533
\(262\) 0 0
\(263\) 668188. 0.595675 0.297838 0.954617i \(-0.403735\pi\)
0.297838 + 0.954617i \(0.403735\pi\)
\(264\) 0 0
\(265\) 300914.i 0.263226i
\(266\) 0 0
\(267\) 146045.i 0.125374i
\(268\) 0 0
\(269\) −384942. −0.324350 −0.162175 0.986762i \(-0.551851\pi\)
−0.162175 + 0.986762i \(0.551851\pi\)
\(270\) 0 0
\(271\) 1.05344e6i 0.871334i 0.900108 + 0.435667i \(0.143487\pi\)
−0.900108 + 0.435667i \(0.856513\pi\)
\(272\) 0 0
\(273\) −535136. + 215330.i −0.434568 + 0.174863i
\(274\) 0 0
\(275\) 816177.i 0.650808i
\(276\) 0 0
\(277\) −1.62051e6 −1.26897 −0.634485 0.772936i \(-0.718788\pi\)
−0.634485 + 0.772936i \(0.718788\pi\)
\(278\) 0 0
\(279\) 63836.6i 0.0490975i
\(280\) 0 0
\(281\) 563009.i 0.425353i 0.977123 + 0.212677i \(0.0682181\pi\)
−0.977123 + 0.212677i \(0.931782\pi\)
\(282\) 0 0
\(283\) −361892. −0.268604 −0.134302 0.990940i \(-0.542879\pi\)
−0.134302 + 0.990940i \(0.542879\pi\)
\(284\) 0 0
\(285\) 247.802 0.000180714
\(286\) 0 0
\(287\) 1.55774e6 1.11633
\(288\) 0 0
\(289\) 1.34819e6 0.949526
\(290\) 0 0
\(291\) 1.13660e6i 0.786820i
\(292\) 0 0
\(293\) 757318.i 0.515358i 0.966231 + 0.257679i \(0.0829577\pi\)
−0.966231 + 0.257679i \(0.917042\pi\)
\(294\) 0 0
\(295\) −244373. −0.163493
\(296\) 0 0
\(297\) 196356.i 0.129168i
\(298\) 0 0
\(299\) −489306. 1.21602e6i −0.316521 0.786614i
\(300\) 0 0
\(301\) 1.48753e6i 0.946348i
\(302\) 0 0
\(303\) 831589. 0.520358
\(304\) 0 0
\(305\) 117448.i 0.0722932i
\(306\) 0 0
\(307\) 1.96280e6i 1.18858i −0.804249 0.594292i \(-0.797432\pi\)
0.804249 0.594292i \(-0.202568\pi\)
\(308\) 0 0
\(309\) −1.33282e6 −0.794100
\(310\) 0 0
\(311\) −834419. −0.489197 −0.244598 0.969624i \(-0.578656\pi\)
−0.244598 + 0.969624i \(0.578656\pi\)
\(312\) 0 0
\(313\) 1.61834e6 0.933703 0.466851 0.884336i \(-0.345388\pi\)
0.466851 + 0.884336i \(0.345388\pi\)
\(314\) 0 0
\(315\) −82967.2 −0.0471118
\(316\) 0 0
\(317\) 660304.i 0.369059i −0.982827 0.184529i \(-0.940924\pi\)
0.982827 0.184529i \(-0.0590761\pi\)
\(318\) 0 0
\(319\) 59480.4i 0.0327263i
\(320\) 0 0
\(321\) −793621. −0.429883
\(322\) 0 0
\(323\) 4704.11i 0.00250883i
\(324\) 0 0
\(325\) 689255. + 1.71293e6i 0.361969 + 0.899560i
\(326\) 0 0
\(327\) 553205.i 0.286099i
\(328\) 0 0
\(329\) −2.64866e6 −1.34908
\(330\) 0 0
\(331\) 2.73497e6i 1.37209i −0.727558 0.686046i \(-0.759345\pi\)
0.727558 0.686046i \(-0.240655\pi\)
\(332\) 0 0
\(333\) 79416.1i 0.0392462i
\(334\) 0 0
\(335\) −140720. −0.0685083
\(336\) 0 0
\(337\) −880707. −0.422432 −0.211216 0.977439i \(-0.567742\pi\)
−0.211216 + 0.977439i \(0.567742\pi\)
\(338\) 0 0
\(339\) −740305. −0.349874
\(340\) 0 0
\(341\) 212277. 0.0988590
\(342\) 0 0
\(343\) 2.37193e6i 1.08860i
\(344\) 0 0
\(345\) 188531.i 0.0852774i
\(346\) 0 0
\(347\) 33079.1 0.0147479 0.00737395 0.999973i \(-0.497653\pi\)
0.00737395 + 0.999973i \(0.497653\pi\)
\(348\) 0 0
\(349\) 4.06448e6i 1.78624i 0.449814 + 0.893122i \(0.351490\pi\)
−0.449814 + 0.893122i \(0.648510\pi\)
\(350\) 0 0
\(351\) 165821. + 412097.i 0.0718410 + 0.178538i
\(352\) 0 0
\(353\) 3.57770e6i 1.52815i −0.645125 0.764077i \(-0.723195\pi\)
0.645125 0.764077i \(-0.276805\pi\)
\(354\) 0 0
\(355\) 326686. 0.137582
\(356\) 0 0
\(357\) 1.57500e6i 0.654047i
\(358\) 0 0
\(359\) 3.31455e6i 1.35734i −0.734444 0.678669i \(-0.762557\pi\)
0.734444 0.678669i \(-0.237443\pi\)
\(360\) 0 0
\(361\) 2.47609e6 0.999997
\(362\) 0 0
\(363\) 796513. 0.317268
\(364\) 0 0
\(365\) −251297. −0.0987313
\(366\) 0 0
\(367\) −192406. −0.0745681 −0.0372840 0.999305i \(-0.511871\pi\)
−0.0372840 + 0.999305i \(0.511871\pi\)
\(368\) 0 0
\(369\) 1.19958e6i 0.458632i
\(370\) 0 0
\(371\) 3.25029e6i 1.22599i
\(372\) 0 0
\(373\) 1.60161e6 0.596053 0.298027 0.954558i \(-0.403672\pi\)
0.298027 + 0.954558i \(0.403672\pi\)
\(374\) 0 0
\(375\) 539453.i 0.198096i
\(376\) 0 0
\(377\) 50230.7 + 124833.i 0.0182019 + 0.0452350i
\(378\) 0 0
\(379\) 3.76006e6i 1.34461i 0.740274 + 0.672305i \(0.234696\pi\)
−0.740274 + 0.672305i \(0.765304\pi\)
\(380\) 0 0
\(381\) 1.28835e6 0.454695
\(382\) 0 0
\(383\) 4.69693e6i 1.63613i −0.575128 0.818063i \(-0.695048\pi\)
0.575128 0.818063i \(-0.304952\pi\)
\(384\) 0 0
\(385\) 275892.i 0.0948608i
\(386\) 0 0
\(387\) −1.14552e6 −0.388799
\(388\) 0 0
\(389\) 4.85881e6 1.62801 0.814003 0.580860i \(-0.197284\pi\)
0.814003 + 0.580860i \(0.197284\pi\)
\(390\) 0 0
\(391\) −3.57894e6 −1.18389
\(392\) 0 0
\(393\) 1.27196e6 0.415426
\(394\) 0 0
\(395\) 152111.i 0.0490533i
\(396\) 0 0
\(397\) 3.91926e6i 1.24804i −0.781409 0.624019i \(-0.785499\pi\)
0.781409 0.624019i \(-0.214501\pi\)
\(398\) 0 0
\(399\) 2676.60 0.000841688
\(400\) 0 0
\(401\) 5.01898e6i 1.55867i −0.626606 0.779336i \(-0.715557\pi\)
0.626606 0.779336i \(-0.284443\pi\)
\(402\) 0 0
\(403\) 445509. 179266.i 0.136645 0.0549838i
\(404\) 0 0
\(405\) 63891.2i 0.0193555i
\(406\) 0 0
\(407\) −264083. −0.0790232
\(408\) 0 0
\(409\) 2.97886e6i 0.880526i −0.897869 0.440263i \(-0.854885\pi\)
0.897869 0.440263i \(-0.145115\pi\)
\(410\) 0 0
\(411\) 35625.0i 0.0104028i
\(412\) 0 0
\(413\) −2.63956e6 −0.761477
\(414\) 0 0
\(415\) −27459.1 −0.00782648
\(416\) 0 0
\(417\) 4.01021e6 1.12935
\(418\) 0 0
\(419\) 4.76887e6 1.32703 0.663515 0.748163i \(-0.269064\pi\)
0.663515 + 0.748163i \(0.269064\pi\)
\(420\) 0 0
\(421\) 651294.i 0.179090i 0.995983 + 0.0895451i \(0.0285413\pi\)
−0.995983 + 0.0895451i \(0.971459\pi\)
\(422\) 0 0
\(423\) 2.03968e6i 0.554256i
\(424\) 0 0
\(425\) 5.04143e6 1.35388
\(426\) 0 0
\(427\) 1.26860e6i 0.336710i
\(428\) 0 0
\(429\) −1.37035e6 + 551407.i −0.359491 + 0.144654i
\(430\) 0 0
\(431\) 5.22621e6i 1.35517i −0.735444 0.677585i \(-0.763027\pi\)
0.735444 0.677585i \(-0.236973\pi\)
\(432\) 0 0
\(433\) −6.33506e6 −1.62379 −0.811897 0.583801i \(-0.801565\pi\)
−0.811897 + 0.583801i \(0.801565\pi\)
\(434\) 0 0
\(435\) 19354.0i 0.00490396i
\(436\) 0 0
\(437\) 6082.18i 0.00152355i
\(438\) 0 0
\(439\) 7.44321e6 1.84331 0.921657 0.388006i \(-0.126836\pi\)
0.921657 + 0.388006i \(0.126836\pi\)
\(440\) 0 0
\(441\) 465208. 0.113907
\(442\) 0 0
\(443\) −327031. −0.0791734 −0.0395867 0.999216i \(-0.512604\pi\)
−0.0395867 + 0.999216i \(0.512604\pi\)
\(444\) 0 0
\(445\) −158021. −0.0378281
\(446\) 0 0
\(447\) 446574.i 0.105712i
\(448\) 0 0
\(449\) 5.82118e6i 1.36268i −0.731965 0.681342i \(-0.761396\pi\)
0.731965 0.681342i \(-0.238604\pi\)
\(450\) 0 0
\(451\) 3.98899e6 0.923468
\(452\) 0 0
\(453\) 3.62091e6i 0.829033i
\(454\) 0 0
\(455\) −232988. 579019.i −0.0527601 0.131119i
\(456\) 0 0
\(457\) 8.15788e6i 1.82720i −0.406612 0.913601i \(-0.633290\pi\)
0.406612 0.913601i \(-0.366710\pi\)
\(458\) 0 0
\(459\) 1.21287e6 0.268709
\(460\) 0 0
\(461\) 3.15011e6i 0.690357i 0.938537 + 0.345179i \(0.112182\pi\)
−0.938537 + 0.345179i \(0.887818\pi\)
\(462\) 0 0
\(463\) 202622.i 0.0439273i −0.999759 0.0219637i \(-0.993008\pi\)
0.999759 0.0219637i \(-0.00699182\pi\)
\(464\) 0 0
\(465\) 69071.4 0.0148138
\(466\) 0 0
\(467\) −91749.8 −0.0194676 −0.00973382 0.999953i \(-0.503098\pi\)
−0.00973382 + 0.999953i \(0.503098\pi\)
\(468\) 0 0
\(469\) −1.51997e6 −0.319082
\(470\) 0 0
\(471\) −5.06186e6 −1.05138
\(472\) 0 0
\(473\) 3.80921e6i 0.782856i
\(474\) 0 0
\(475\) 8567.58i 0.00174230i
\(476\) 0 0
\(477\) −2.50298e6 −0.503687
\(478\) 0 0
\(479\) 2.82910e6i 0.563390i −0.959504 0.281695i \(-0.909103\pi\)
0.959504 0.281695i \(-0.0908967\pi\)
\(480\) 0 0
\(481\) −554236. + 223016.i −0.109228 + 0.0439514i
\(482\) 0 0
\(483\) 2.03639e6i 0.397185i
\(484\) 0 0
\(485\) −1.22981e6 −0.237401
\(486\) 0 0
\(487\) 1.30176e6i 0.248719i 0.992237 + 0.124359i \(0.0396876\pi\)
−0.992237 + 0.124359i \(0.960312\pi\)
\(488\) 0 0
\(489\) 2.82490e6i 0.534233i
\(490\) 0 0
\(491\) 6.07696e6 1.13758 0.568791 0.822482i \(-0.307412\pi\)
0.568791 + 0.822482i \(0.307412\pi\)
\(492\) 0 0
\(493\) 367404. 0.0680810
\(494\) 0 0
\(495\) −212458. −0.0389727
\(496\) 0 0
\(497\) 3.52866e6 0.640795
\(498\) 0 0
\(499\) 3.78708e6i 0.680853i −0.940271 0.340426i \(-0.889429\pi\)
0.940271 0.340426i \(-0.110571\pi\)
\(500\) 0 0
\(501\) 5.42005e6i 0.964737i
\(502\) 0 0
\(503\) −2.28832e6 −0.403271 −0.201636 0.979461i \(-0.564626\pi\)
−0.201636 + 0.979461i \(0.564626\pi\)
\(504\) 0 0
\(505\) 899783.i 0.157003i
\(506\) 0 0
\(507\) −2.41032e6 + 2.31450e6i −0.416442 + 0.399886i
\(508\) 0 0
\(509\) 3.70029e6i 0.633055i −0.948583 0.316528i \(-0.897483\pi\)
0.948583 0.316528i \(-0.102517\pi\)
\(510\) 0 0
\(511\) −2.71435e6 −0.459847
\(512\) 0 0
\(513\) 2061.19i 0.000345800i
\(514\) 0 0
\(515\) 1.44212e6i 0.239597i
\(516\) 0 0
\(517\) −6.78256e6 −1.11601
\(518\) 0 0
\(519\) 2.73619e6 0.445890
\(520\) 0 0
\(521\) 6.13756e6 0.990608 0.495304 0.868720i \(-0.335057\pi\)
0.495304 + 0.868720i \(0.335057\pi\)
\(522\) 0 0
\(523\) −4.10572e6 −0.656349 −0.328175 0.944617i \(-0.606433\pi\)
−0.328175 + 0.944617i \(0.606433\pi\)
\(524\) 0 0
\(525\) 2.86853e6i 0.454215i
\(526\) 0 0
\(527\) 1.31121e6i 0.205658i
\(528\) 0 0
\(529\) −1.80895e6 −0.281053
\(530\) 0 0
\(531\) 2.03267e6i 0.312846i
\(532\) 0 0
\(533\) 8.37177e6 3.36867e6i 1.27644 0.513618i
\(534\) 0 0
\(535\) 858701.i 0.129705i
\(536\) 0 0
\(537\) −3.65571e6 −0.547062
\(538\) 0 0
\(539\) 1.54696e6i 0.229355i
\(540\) 0 0
\(541\) 2.51266e6i 0.369098i 0.982823 + 0.184549i \(0.0590824\pi\)
−0.982823 + 0.184549i \(0.940918\pi\)
\(542\) 0 0
\(543\) −2.16870e6 −0.315646
\(544\) 0 0
\(545\) −598569. −0.0863223
\(546\) 0 0
\(547\) 2.29454e6 0.327889 0.163945 0.986470i \(-0.447578\pi\)
0.163945 + 0.986470i \(0.447578\pi\)
\(548\) 0 0
\(549\) 976924. 0.138334
\(550\) 0 0
\(551\) 624.378i 8.76130e-5i
\(552\) 0 0
\(553\) 1.64301e6i 0.228469i
\(554\) 0 0
\(555\) −85928.4 −0.0118414
\(556\) 0 0
\(557\) 5.96324e6i 0.814412i −0.913336 0.407206i \(-0.866503\pi\)
0.913336 0.407206i \(-0.133497\pi\)
\(558\) 0 0
\(559\) −3.21684e6 7.99445e6i −0.435412 1.08208i
\(560\) 0 0
\(561\) 4.03317e6i 0.541053i
\(562\) 0 0
\(563\) 7.37754e6 0.980935 0.490468 0.871459i \(-0.336826\pi\)
0.490468 + 0.871459i \(0.336826\pi\)
\(564\) 0 0
\(565\) 801012.i 0.105565i
\(566\) 0 0
\(567\) 690113.i 0.0901493i
\(568\) 0 0
\(569\) 2.60845e6 0.337756 0.168878 0.985637i \(-0.445986\pi\)
0.168878 + 0.985637i \(0.445986\pi\)
\(570\) 0 0
\(571\) −1.09867e7 −1.41019 −0.705095 0.709113i \(-0.749095\pi\)
−0.705095 + 0.709113i \(0.749095\pi\)
\(572\) 0 0
\(573\) −2.03526e6 −0.258960
\(574\) 0 0
\(575\) −6.51831e6 −0.822177
\(576\) 0 0
\(577\) 1.10048e7i 1.37607i 0.725677 + 0.688036i \(0.241527\pi\)
−0.725677 + 0.688036i \(0.758473\pi\)
\(578\) 0 0
\(579\) 3.65468e6i 0.453057i
\(580\) 0 0
\(581\) −296596. −0.0364523
\(582\) 0 0
\(583\) 8.32318e6i 1.01419i
\(584\) 0 0
\(585\) −445890. + 179419.i −0.0538689 + 0.0216760i
\(586\) 0 0
\(587\) 1.09851e7i 1.31586i −0.753080 0.657929i \(-0.771433\pi\)
0.753080 0.657929i \(-0.228567\pi\)
\(588\) 0 0
\(589\) −2228.31 −0.000264659
\(590\) 0 0
\(591\) 3.66651e6i 0.431801i
\(592\) 0 0
\(593\) 3.90620e6i 0.456161i −0.973642 0.228081i \(-0.926755\pi\)
0.973642 0.228081i \(-0.0732449\pi\)
\(594\) 0 0
\(595\) −1.70415e6 −0.197340
\(596\) 0 0
\(597\) −1.82578e6 −0.209659
\(598\) 0 0
\(599\) 1.69973e7 1.93559 0.967797 0.251733i \(-0.0810005\pi\)
0.967797 + 0.251733i \(0.0810005\pi\)
\(600\) 0 0
\(601\) 1.07099e7 1.20948 0.604739 0.796424i \(-0.293278\pi\)
0.604739 + 0.796424i \(0.293278\pi\)
\(602\) 0 0
\(603\) 1.17049e6i 0.131092i
\(604\) 0 0
\(605\) 861829.i 0.0957267i
\(606\) 0 0
\(607\) 1.43102e7 1.57642 0.788212 0.615404i \(-0.211007\pi\)
0.788212 + 0.615404i \(0.211007\pi\)
\(608\) 0 0
\(609\) 209050.i 0.0228405i
\(610\) 0 0
\(611\) −1.42347e7 + 5.72781e6i −1.54257 + 0.620705i
\(612\) 0 0
\(613\) 1.67594e7i 1.80139i 0.434450 + 0.900696i \(0.356943\pi\)
−0.434450 + 0.900696i \(0.643057\pi\)
\(614\) 0 0
\(615\) 1.29795e6 0.138379
\(616\) 0 0
\(617\) 1.26793e7i 1.34085i −0.741976 0.670427i \(-0.766111\pi\)
0.741976 0.670427i \(-0.233889\pi\)
\(618\) 0 0
\(619\) 5.43928e6i 0.570577i 0.958442 + 0.285289i \(0.0920895\pi\)
−0.958442 + 0.285289i \(0.907911\pi\)
\(620\) 0 0
\(621\) −1.56818e6 −0.163180
\(622\) 0 0
\(623\) −1.70684e6 −0.176187
\(624\) 0 0
\(625\) 8.88559e6 0.909885
\(626\) 0 0
\(627\) 6854.11 0.000696277
\(628\) 0 0
\(629\) 1.63121e6i 0.164393i
\(630\) 0 0
\(631\) 5.28439e6i 0.528350i 0.964475 + 0.264175i \(0.0850996\pi\)
−0.964475 + 0.264175i \(0.914900\pi\)
\(632\) 0 0
\(633\) −5.92173e6 −0.587407
\(634\) 0 0
\(635\) 1.39400e6i 0.137192i
\(636\) 0 0
\(637\) 1.30639e6 + 3.24664e6i 0.127563 + 0.317019i
\(638\) 0 0
\(639\) 2.71735e6i 0.263265i
\(640\) 0 0
\(641\) 8.01855e6 0.770816 0.385408 0.922746i \(-0.374061\pi\)
0.385408 + 0.922746i \(0.374061\pi\)
\(642\) 0 0
\(643\) 1.39227e7i 1.32799i 0.747735 + 0.663997i \(0.231141\pi\)
−0.747735 + 0.663997i \(0.768859\pi\)
\(644\) 0 0
\(645\) 1.23945e6i 0.117309i
\(646\) 0 0
\(647\) 9.55517e6 0.897383 0.448692 0.893687i \(-0.351890\pi\)
0.448692 + 0.893687i \(0.351890\pi\)
\(648\) 0 0
\(649\) −6.75926e6 −0.629923
\(650\) 0 0
\(651\) 746066. 0.0689961
\(652\) 0 0
\(653\) −1.87340e7 −1.71928 −0.859640 0.510901i \(-0.829312\pi\)
−0.859640 + 0.510901i \(0.829312\pi\)
\(654\) 0 0
\(655\) 1.37627e6i 0.125343i
\(656\) 0 0
\(657\) 2.09026e6i 0.188924i
\(658\) 0 0
\(659\) 3.39787e6 0.304785 0.152392 0.988320i \(-0.451302\pi\)
0.152392 + 0.988320i \(0.451302\pi\)
\(660\) 0 0
\(661\) 1.81823e7i 1.61862i 0.587382 + 0.809310i \(0.300159\pi\)
−0.587382 + 0.809310i \(0.699841\pi\)
\(662\) 0 0
\(663\) 3.40598e6 + 8.46449e6i 0.300925 + 0.747854i
\(664\) 0 0
\(665\) 2896.09i 0.000253956i
\(666\) 0 0
\(667\) −475034. −0.0413438
\(668\) 0 0
\(669\) 8.80254e6i 0.760401i
\(670\) 0 0
\(671\) 3.24858e6i 0.278540i
\(672\) 0 0
\(673\) 686844. 0.0584548 0.0292274 0.999573i \(-0.490695\pi\)
0.0292274 + 0.999573i \(0.490695\pi\)
\(674\) 0 0
\(675\) 2.20899e6 0.186610
\(676\) 0 0
\(677\) −6.64858e6 −0.557516 −0.278758 0.960361i \(-0.589923\pi\)
−0.278758 + 0.960361i \(0.589923\pi\)
\(678\) 0 0
\(679\) −1.32836e7 −1.10571
\(680\) 0 0
\(681\) 7.30923e6i 0.603954i
\(682\) 0 0
\(683\) 1.66853e7i 1.36862i −0.729193 0.684308i \(-0.760104\pi\)
0.729193 0.684308i \(-0.239896\pi\)
\(684\) 0 0
\(685\) 38546.4 0.00313875
\(686\) 0 0
\(687\) 1.22696e7i 0.991831i
\(688\) 0 0
\(689\) −7.02885e6 1.74680e7i −0.564074 1.40183i
\(690\) 0 0
\(691\) 1.75290e7i 1.39657i 0.715822 + 0.698283i \(0.246052\pi\)
−0.715822 + 0.698283i \(0.753948\pi\)
\(692\) 0 0
\(693\) −2.29484e6 −0.181518
\(694\) 0 0
\(695\) 4.33906e6i 0.340748i
\(696\) 0 0
\(697\) 2.46395e7i 1.92110i
\(698\) 0 0
\(699\) 8.38734e6 0.649279
\(700\) 0 0
\(701\) 7.06379e6 0.542929 0.271464 0.962449i \(-0.412492\pi\)
0.271464 + 0.962449i \(0.412492\pi\)
\(702\) 0 0
\(703\) 2772.13 0.000211556
\(704\) 0 0
\(705\) −2.20694e6 −0.167231
\(706\) 0 0
\(707\) 9.71889e6i 0.731253i
\(708\) 0 0
\(709\) 9.07731e6i 0.678175i 0.940755 + 0.339087i \(0.110118\pi\)
−0.940755 + 0.339087i \(0.889882\pi\)
\(710\) 0 0
\(711\) −1.26525e6 −0.0938644
\(712\) 0 0
\(713\) 1.69532e6i 0.124890i
\(714\) 0 0
\(715\) −596625. 1.48272e6i −0.0436452 0.108466i
\(716\) 0 0
\(717\) 7.97287e6i 0.579184i
\(718\) 0 0
\(719\) 1.03755e7 0.748492 0.374246 0.927330i \(-0.377902\pi\)
0.374246 + 0.927330i \(0.377902\pi\)
\(720\) 0 0
\(721\) 1.55768e7i 1.11594i
\(722\) 0 0
\(723\) 1.19421e7i 0.849637i
\(724\) 0 0
\(725\) 669150. 0.0472801
\(726\) 0 0
\(727\) 2.94915e6 0.206948 0.103474 0.994632i \(-0.467004\pi\)
0.103474 + 0.994632i \(0.467004\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) −2.35290e7 −1.62858
\(732\) 0 0
\(733\) 1.71605e7i 1.17970i 0.807513 + 0.589849i \(0.200813\pi\)
−0.807513 + 0.589849i \(0.799187\pi\)
\(734\) 0 0
\(735\) 503356.i 0.0343682i
\(736\) 0 0
\(737\) −3.89226e6 −0.263957
\(738\) 0 0
\(739\) 2.20849e7i 1.48760i −0.668405 0.743798i \(-0.733023\pi\)
0.668405 0.743798i \(-0.266977\pi\)
\(740\) 0 0
\(741\) 14384.8 5788.23i 0.000962409 0.000387258i
\(742\) 0 0
\(743\) 2.21459e7i 1.47171i −0.677140 0.735854i \(-0.736781\pi\)
0.677140 0.735854i \(-0.263219\pi\)
\(744\) 0 0
\(745\) −483194. −0.0318956
\(746\) 0 0
\(747\) 228402.i 0.0149761i
\(748\) 0 0
\(749\) 9.27514e6i 0.604110i
\(750\) 0 0
\(751\) −6.38710e6 −0.413242 −0.206621 0.978421i \(-0.566247\pi\)
−0.206621 + 0.978421i \(0.566247\pi\)
\(752\) 0 0
\(753\) 4.92836e6 0.316749
\(754\) 0 0
\(755\) 3.91783e6 0.250137
\(756\) 0 0
\(757\) −2.47266e6 −0.156828 −0.0784141 0.996921i \(-0.524986\pi\)
−0.0784141 + 0.996921i \(0.524986\pi\)
\(758\) 0 0
\(759\) 5.21469e6i 0.328567i
\(760\) 0 0
\(761\) 1.59009e7i 0.995315i −0.867374 0.497657i \(-0.834194\pi\)
0.867374 0.497657i \(-0.165806\pi\)
\(762\) 0 0
\(763\) −6.46537e6 −0.402052
\(764\) 0 0
\(765\) 1.31233e6i 0.0810755i
\(766\) 0 0
\(767\) −1.41858e7 + 5.70814e6i −0.870693 + 0.350353i
\(768\) 0 0
\(769\) 4.80537e6i 0.293029i 0.989209 + 0.146515i \(0.0468055\pi\)
−0.989209 + 0.146515i \(0.953194\pi\)
\(770\) 0 0
\(771\) −1.48958e7 −0.902461
\(772\) 0 0
\(773\) 2.22008e7i 1.33635i 0.744004 + 0.668175i \(0.232924\pi\)
−0.744004 + 0.668175i \(0.767076\pi\)
\(774\) 0 0
\(775\) 2.38810e6i 0.142823i
\(776\) 0 0
\(777\) −928145. −0.0551523
\(778\) 0 0
\(779\) −41873.2 −0.00247225
\(780\) 0 0
\(781\) 9.03603e6 0.530090
\(782\) 0 0
\(783\) 160985. 0.00938382
\(784\) 0 0
\(785\) 5.47695e6i 0.317223i
\(786\) 0 0
\(787\) 2.85397e7i 1.64253i 0.570548 + 0.821264i \(0.306731\pi\)
−0.570548 + 0.821264i \(0.693269\pi\)
\(788\) 0 0
\(789\) 6.01370e6 0.343913
\(790\) 0 0
\(791\) 8.65203e6i 0.491674i
\(792\) 0 0
\(793\) 2.74339e6 + 6.81785e6i 0.154919 + 0.385003i
\(794\) 0 0
\(795\) 2.70823e6i 0.151973i
\(796\) 0 0
\(797\) −2.10013e7 −1.17112 −0.585558 0.810630i \(-0.699125\pi\)
−0.585558 + 0.810630i \(0.699125\pi\)
\(798\) 0 0
\(799\) 4.18951e7i 2.32165i
\(800\) 0 0
\(801\) 1.31440e6i 0.0723847i
\(802\) 0 0
\(803\) −6.95078e6 −0.380403
\(804\) 0 0
\(805\) 2.20338e6 0.119839
\(806\) 0 0
\(807\) −3.46448e6 −0.187264
\(808\) 0 0
\(809\) 3.59907e7 1.93339 0.966694 0.255935i \(-0.0823834\pi\)
0.966694 + 0.255935i \(0.0823834\pi\)
\(810\) 0 0
\(811\) 3.20415e7i 1.71065i −0.518093 0.855324i \(-0.673358\pi\)
0.518093 0.855324i \(-0.326642\pi\)
\(812\) 0 0
\(813\) 9.48092e6i 0.503065i
\(814\) 0 0
\(815\) −3.05655e6 −0.161190
\(816\) 0 0
\(817\) 39986.0i 0.00209581i
\(818\) 0 0
\(819\) −4.81622e6 + 1.93797e6i −0.250898 + 0.100957i
\(820\) 0 0
\(821\) 2.92849e7i 1.51630i 0.652079 + 0.758151i \(0.273897\pi\)
−0.652079 + 0.758151i \(0.726103\pi\)
\(822\) 0 0
\(823\) 1.27788e6 0.0657646 0.0328823 0.999459i \(-0.489531\pi\)
0.0328823 + 0.999459i \(0.489531\pi\)
\(824\) 0 0
\(825\) 7.34560e6i 0.375744i
\(826\) 0 0
\(827\) 3.34508e7i 1.70076i 0.526169 + 0.850380i \(0.323628\pi\)
−0.526169 + 0.850380i \(0.676372\pi\)
\(828\) 0 0
\(829\) −1.65727e7 −0.837541 −0.418770 0.908092i \(-0.637539\pi\)
−0.418770 + 0.908092i \(0.637539\pi\)
\(830\) 0 0
\(831\) −1.45845e7 −0.732640
\(832\) 0 0
\(833\) 9.55540e6 0.477129
\(834\) 0 0
\(835\) −5.86451e6 −0.291082
\(836\) 0 0
\(837\) 574529.i 0.0283464i
\(838\) 0 0
\(839\) 7.23411e6i 0.354797i 0.984139 + 0.177399i \(0.0567682\pi\)
−0.984139 + 0.177399i \(0.943232\pi\)
\(840\) 0 0
\(841\) −2.04624e7 −0.997622
\(842\) 0 0
\(843\) 5.06708e6i 0.245578i
\(844\) 0 0
\(845\) −2.50429e6 2.60797e6i −0.120654 0.125650i
\(846\) 0 0
\(847\) 9.30894e6i 0.445853i
\(848\) 0 0
\(849\) −3.25703e6 −0.155079
\(850\) 0 0
\(851\) 2.10907e6i 0.0998315i
\(852\) 0 0
\(853\) 3.08382e6i 0.145116i 0.997364 + 0.0725582i \(0.0231163\pi\)
−0.997364 + 0.0725582i \(0.976884\pi\)
\(854\) 0 0
\(855\) 2230.22 0.000104335
\(856\) 0 0
\(857\) 9.15615e6 0.425854 0.212927 0.977068i \(-0.431700\pi\)
0.212927 + 0.977068i \(0.431700\pi\)
\(858\) 0 0
\(859\) 3.40397e7 1.57399 0.786996 0.616958i \(-0.211635\pi\)
0.786996 + 0.616958i \(0.211635\pi\)
\(860\) 0 0
\(861\) 1.40197e7 0.644511
\(862\) 0 0
\(863\) 1.92683e7i 0.880676i −0.897832 0.440338i \(-0.854859\pi\)
0.897832 0.440338i \(-0.145141\pi\)
\(864\) 0 0
\(865\) 2.96057e6i 0.134535i
\(866\) 0 0
\(867\) 1.21337e7 0.548209
\(868\) 0 0
\(869\) 4.20734e6i 0.188998i
\(870\) 0 0
\(871\) −8.16875e6 + 3.28698e6i −0.364846 + 0.146808i
\(872\) 0 0
\(873\) 1.02294e7i 0.454270i
\(874\) 0 0
\(875\) −6.30466e6 −0.278382
\(876\) 0 0
\(877\) 2.63479e7i 1.15677i −0.815765 0.578384i \(-0.803684\pi\)
0.815765 0.578384i \(-0.196316\pi\)
\(878\) 0 0
\(879\) 6.81586e6i 0.297542i
\(880\) 0 0
\(881\) 4.12657e6 0.179122 0.0895610 0.995981i \(-0.471454\pi\)
0.0895610 + 0.995981i \(0.471454\pi\)
\(882\) 0 0
\(883\) −1.36506e6 −0.0589182 −0.0294591 0.999566i \(-0.509378\pi\)
−0.0294591 + 0.999566i \(0.509378\pi\)
\(884\) 0 0
\(885\) −2.19936e6 −0.0943925
\(886\) 0 0
\(887\) 2.77026e7 1.18225 0.591127 0.806578i \(-0.298683\pi\)
0.591127 + 0.806578i \(0.298683\pi\)
\(888\) 0 0
\(889\) 1.50571e7i 0.638978i
\(890\) 0 0
\(891\) 1.76721e6i 0.0745750i
\(892\) 0 0
\(893\) 71197.9 0.00298771
\(894\) 0 0
\(895\) 3.95549e6i 0.165060i
\(896\) 0 0
\(897\) −4.40376e6 1.09442e7i −0.182744 0.454152i
\(898\) 0 0
\(899\) 174037.i 0.00718194i
\(900\) 0 0
\(901\) −5.14113e7 −2.10983
\(902\) 0 0
\(903\) 1.33878e7i 0.546374i
\(904\) 0 0
\(905\) 2.34654e6i 0.0952372i
\(906\) 0 0
\(907\) 2.08574e7 0.841863 0.420931 0.907093i \(-0.361703\pi\)
0.420931 + 0.907093i \(0.361703\pi\)
\(908\) 0 0
\(909\) 7.48430e6 0.300429
\(910\) 0 0
\(911\) −3.95317e6 −0.157815 −0.0789077 0.996882i \(-0.525143\pi\)
−0.0789077 + 0.996882i \(0.525143\pi\)
\(912\) 0 0
\(913\) −759510. −0.0301548
\(914\) 0 0
\(915\) 1.05703e6i 0.0417385i
\(916\) 0 0
\(917\) 1.48656e7i 0.583793i
\(918\) 0 0
\(919\) −1.66130e7 −0.648873 −0.324436 0.945907i \(-0.605175\pi\)
−0.324436 + 0.945907i \(0.605175\pi\)
\(920\) 0 0
\(921\) 1.76652e7i 0.686230i
\(922\) 0 0
\(923\) 1.89641e7 7.63084e6i 0.732702 0.294828i
\(924\) 0 0
\(925\) 2.97092e6i 0.114166i
\(926\) 0 0
\(927\) −1.19954e7 −0.458474
\(928\) 0 0
\(929\) 4.33406e7i 1.64762i 0.566869 + 0.823808i \(0.308155\pi\)
−0.566869 + 0.823808i \(0.691845\pi\)
\(930\) 0 0
\(931\) 16238.8i 0.000614014i
\(932\) 0 0
\(933\) −7.50978e6 −0.282438
\(934\) 0 0
\(935\) −4.36391e6 −0.163247
\(936\) 0 0
\(937\) −5.84680e6 −0.217555 −0.108778 0.994066i \(-0.534694\pi\)
−0.108778 + 0.994066i \(0.534694\pi\)
\(938\) 0 0
\(939\) 1.45650e7 0.539073
\(940\) 0 0
\(941\) 3.23340e7i 1.19038i 0.803585 + 0.595190i \(0.202923\pi\)
−0.803585 + 0.595190i \(0.797077\pi\)
\(942\) 0 0
\(943\) 3.18577e7i 1.16663i
\(944\) 0 0
\(945\) −746705. −0.0272000
\(946\) 0 0
\(947\) 3.74163e6i 0.135577i 0.997700 + 0.0677884i \(0.0215943\pi\)
−0.997700 + 0.0677884i \(0.978406\pi\)
\(948\) 0 0
\(949\) −1.45877e7 + 5.86987e6i −0.525801 + 0.211574i
\(950\) 0 0
\(951\) 5.94273e6i 0.213076i
\(952\) 0 0
\(953\) −5.30640e7 −1.89264 −0.946319 0.323234i \(-0.895230\pi\)
−0.946319 + 0.323234i \(0.895230\pi\)
\(954\) 0 0
\(955\) 2.20216e6i 0.0781340i
\(956\) 0 0
\(957\) 535324.i 0.0188946i
\(958\) 0 0
\(959\) 416354. 0.0146189
\(960\) 0 0
\(961\) 2.80080e7 0.978305
\(962\) 0 0
\(963\) −7.14259e6 −0.248193
\(964\) 0 0
\(965\) 3.95437e6 0.136697
\(966\) 0 0
\(967\) 888502.i 0.0305557i −0.999883 0.0152779i \(-0.995137\pi\)
0.999883 0.0152779i \(-0.00486328\pi\)
\(968\) 0 0
\(969\) 42337.0i 0.00144847i
\(970\) 0 0
\(971\) 1.92989e7 0.656878 0.328439 0.944525i \(-0.393477\pi\)
0.328439 + 0.944525i \(0.393477\pi\)
\(972\) 0 0
\(973\) 4.68678e7i 1.58706i
\(974\) 0 0
\(975\) 6.20329e6 + 1.54163e7i 0.208983 + 0.519361i
\(976\) 0 0
\(977\) 2.73358e7i 0.916212i 0.888898 + 0.458106i \(0.151472\pi\)
−0.888898 + 0.458106i \(0.848528\pi\)
\(978\) 0 0
\(979\) −4.37079e6 −0.145748
\(980\) 0 0
\(981\) 4.97884e6i 0.165179i
\(982\) 0 0
\(983\) 2.36204e7i 0.779656i −0.920888 0.389828i \(-0.872534\pi\)
0.920888 0.389828i \(-0.127466\pi\)
\(984\) 0 0
\(985\) 3.96717e6 0.130284
\(986\) 0 0
\(987\) −2.38379e7 −0.778889
\(988\) 0 0
\(989\) 3.04218e7 0.988996
\(990\) 0 0
\(991\) 3.49750e7 1.13129 0.565644 0.824649i \(-0.308628\pi\)
0.565644 + 0.824649i \(0.308628\pi\)
\(992\) 0 0
\(993\) 2.46148e7i 0.792177i
\(994\) 0 0
\(995\) 1.97550e6i 0.0632587i
\(996\) 0 0
\(997\) 1.96013e7 0.624521 0.312261 0.949996i \(-0.398914\pi\)
0.312261 + 0.949996i \(0.398914\pi\)
\(998\) 0 0
\(999\) 714744.i 0.0226588i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.6.c.d.337.4 6
4.3 odd 2 78.6.b.a.25.5 yes 6
12.11 even 2 234.6.b.c.181.2 6
13.12 even 2 inner 624.6.c.d.337.3 6
52.31 even 4 1014.6.a.q.1.2 3
52.47 even 4 1014.6.a.o.1.2 3
52.51 odd 2 78.6.b.a.25.2 6
156.155 even 2 234.6.b.c.181.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.6.b.a.25.2 6 52.51 odd 2
78.6.b.a.25.5 yes 6 4.3 odd 2
234.6.b.c.181.2 6 12.11 even 2
234.6.b.c.181.5 6 156.155 even 2
624.6.c.d.337.3 6 13.12 even 2 inner
624.6.c.d.337.4 6 1.1 even 1 trivial
1014.6.a.o.1.2 3 52.47 even 4
1014.6.a.q.1.2 3 52.31 even 4